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Introduction to Computational Complexity

 In today’s lecture, we will learn about some notions in Computational Complexity. 
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So, the basic question that we ask ourselves is what does it mean to solve a problem

computationally? So, when we say that we have solved a problem from a computational

point of view, what do we mean?. The first requirement is we should have a program

which runs in certain number of steps. So, have an algorithm which takes no more than

let us say some T steps which runs for no more than T steps ok, when we have one such

algorithm natural question is are the algorithms which do even better than this. 

So, we would like to say some things give some guarantee that, no algorithm can do

significantly better significantly better, cannot take much smaller than T steps ok. So,

here we are addressing the time taken for solving the problem one could also look at

other  resources  like  space  or  the  amount  of  randomness  used  or  the  amount  of

communication used and so on. 



So,  it  is  natural  to  look  at  various  problems  and  look  at  which  problem  is

computationally more difficult. If we were looking at time complexity classes it would

mean which problems takes more time compared to other ok. So, first of all you need to

have an algorithm and then you want to say that algorithm is optimal and when we are

comparing two problems we will say that one problem is harder if the optimal algorithm

for one takes significantly more time than the optimal algorithm for the other problem

ok.

So, computational  complexity essentially  studies or classifies  problem based on their

computational difficulty ok. So, the famous question P versus NP basically arises when

we are trying to  classify problems on the basis  of their  computational  difficulty. So,

informally we can just look at the collection of problems called P and that is nothing, but

this is the set of all problems for which solution can be computed or found in polynomial

time ok. So, we have not formally defined what a problem is, we will see some examples

and that will make things clearer later on ok.

So,  the  collection  of  all  problems  for  which  we have  an  algorithm which  works  in

polynomial time. So, if the input is let us say of size x the running time the algorithm

should be bounded by P x, where P is some particular polynomial and NP is a superset of

this and this consist of all problems for which a solution can be checked in polynomial

time can be checked or verified ok.

So, what does it mean to check a solution when we are thinking about these problems? If

somebody claims that a particular problem has a particular solution, finding the solution

may be difficult, but if one can verify that a purported solution as a correct solution in

polynomial time then we will say that it belongs to NP. 
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So, let  us see some examples and that will  make things clear. Take an example of a

couple of problems. So, let us look at one problem where the input is a graph ok. The

input graph we call it as G and what we want is the following output. The output should

be yes, if G has an Eulerian cycle and the answer should be no, if G does not have an

Eulerian cycle. 

So, let us take an example. This is a graph on five vertices. What we want to know is

whether we can start at a particular vertex and traverse every edge of this graph without

visiting any edge twice. For example, we could start of at vertex 1 and traverse along this

path and then come back here ok. So, we could traverse at this way and we have visited

every vertex, but the starting vertex was 1 and the ending vertex was 2. Can we do a

traversal says at the starting vertex and the ending vertex are the same? In this graph one

can show that it is not possible to do this ok.

So, Eulerian cycle is a traversal of the edges such that no edge of the graph is traverse

more than once or in other words every edge has to be visited exactly once ok. So, that is

an Eulerian cycle. So, we want a program or an algorithm which takes graphs as input

and tells whether the graph has an Eulerian cycle or not and the computations should

work in poly time and there are algorithms to do it. All the one has to check is every

vertex is of even degree. 



So, this should be the algorithm basically checks for connectivity and then check for

connectivity;  if  you take two disconnected graphs and if  both of them have Eulerian

cycle that will not be considered as an Eulerian cycle because we do not really have a

cycle it is part of two different components. So, we check for connectivity and check that

every vertex has degree 2 ok. So, this is a polynomial time algorithm ok. So, one can see

that  the  solution  can  be  computed  based  on this  algorithm one  can  in  fact,  find  an

Eulerian cycle and if somebody gives an Eulerian cycle we can even check it. So, both

finding and checking are easy. 

Let us take another example the input is a graph again and the output should be YES if G

is connected and NO otherwise. The familiar DFS algorithm can be modified to check of

the graph is connected. You start at any particular vertex and do the DFS and keep track

of the number of vertices visited. If it is equal to the total number of vertices in the graph

then it is a connected graph otherwise it is not a connected graph. So, this problem also

belongs to P. There is a polynomial time algorithm which solves this problem. 
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Let us look at another problem. So, here the input is again a graph G and the output is

YES if G has a Hamiltonian cycle and it is NO otherwise ok. So, let us take an example.

So, we want to know whether we want a traversal where every vertex is visited exactly

once, and no vertex should be visited twice. So, Hamiltonian cycle this is a traversal

where every vertex is visited exactly once ok. So, you can ignore the fact that if you start



at the vertex you come back to the vertex. So, when you come back to the same vertex

that is just counted as once ok. So, you start at the vertex keep on traversing and come

back to the same vertex. 

So, in this graph it is possible for example, you could not just do this particular traversal

this visits every vertex once you can imagine that there is a cycle on which no vertex

appear more than once and every vertex appear at least once ok. So, given a graph we

want to check if it contains a Hamiltonian cycle. There no known good algorithms to

solve this problem, but we can see that if somebody has given a particular sequence of

vertex one can easily check that the answer is correct. So, it is easy to verify or check

that a particular sequence of vertices is a Hamiltonian cycle. It is not clear whether there

are good algorithms to find one such. So, this is a problem where verification is easy ok.

So, we will say that the verification can in fact, be done in polynomial time because we

just need to check whether all the vertices which are next to each other in the path we

need to verify whether they are connected in the graph or not. Let us look at couple of

other problems as well.
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Now, the input is going to be a Boolean formula and the output should be YES if phi is

satisfiable and it should be No if phi is not satisfiable. So, given any Boolean formula we

can and a particular assignment one can easily check if it is satisfiable whereas, finding



that assignment is not so straightforward. Again it is not known whether there are good

algorithms to do that ok. So, this is again a problem belonging to NP. 

Let us look at another example. The input now will be Boolean formula and a number n

and the output should be YES if phi has no more than n satisfying assignments and NO

otherwise. In this case it is not even clear that we can verify this part easily. Suppose,

somebody  gives  you  n  satisfying  assignments  we  need  to  figure  out  that  these  n

satisfying assignments are let us say the only satisfying assignments for this particular

formula.  Now, it is not clear if there is a polynomial  time algorithm for solving this

problem and we do not know whether this belongs to NP as well.
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So, now since we have seen many different problems we can formally define what is P?

So, P is the class of all problems or you can say P is the class of all problems which can

be solved in poly time. If we take sigma star as our universe what we require is the

following.
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P is the collection of all L subset of sigma star such that there exists an algorithm A

which runs in poly time and we require two conditions; x belongs to L implies  A x

returns YES or it accepts and x does not belong to L implies A x rejects or says NO

saying returns YES means accept, rejects means return NO ok.

So, all the languages for which you can do this is the collection called P, when we think

of graphs with containing Eulerian cycles language L there would consist of all strings

which are valid encodings of graphs which have an Eulerian cycle in them and NP is the

collection of all L belonging to sigma star such that again there should exist an algorithm

which runs in polynomial time. 

And then there are two requirements; if x belongs to L and that would imply there exists

a y and the length of this y is bounded by a polynomial in the size of x. So, y should be

less than P of x. And the algorithm now the algorithm has two inputs into A x, y accepts

when x does not belong to L this would imply that for all y A x, y rejects ok. So, this y

you can think of it as a certificate or the proof that x belongs to L. 

So, when we look at  our formula phi and we wanted to look at  this  problem is  phi

satisfiable we can think of the algorithm A as an algorithm which takes two inputs; the

first input as a formula and the second part is the assignment ok. So, it takes these two

input and then evaluates the formula at that particular assignment that evaluation can be

done in polynomial time. 



And note that for any satisfiable formula there will exist an assignment and the length of

the  assignment  is  at  most  equal  to  the  number  of  variables  in  the  formula  which is

bounded by a polynomial in the length of the input and A x, y is going to accept because

that  was  a  satisfying  assignment.  Whereas,  for  an  unsatisfiable  formula  whatever

assignment you give the algorithm is going to find that that particular assignment no

longer does not satisfy the formula and therefore, A x, y rejects ok. So, that is a problem

which belongs to NP and this is the formal definition. 

Now, we will see a classic problem and see that it belongs to NP. The problem that we

look as the following.
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The input is a number n and the output should be YES, if n is prime and it should be NO,

if n is not prime or if it is composite we want to say no and we will assume that the input

is greater than or equal to 3.

Now, then currently there are very good algorithms to do this. There are polynomial time

algorithms the so, this is a problem which belongs to P, but that was a recent result came

out. In the AKS algorithm is a polynomial time algorithm which solves this problem. So,

we will look at what was known before 2002. So, in order to understand the difficulty

here, let us look at this problem a bit more carefully. 



Let us say I give you a 30 digit number ok; some number which is 30 digit. A number is

about 10 to the power 30 in size. We could run a naive algorithm which starts at the

number 2 and then repeatedly checks whether the number divides the input n. If you find

the number which divides n then we know that  this  is not a prime number this  is  a

composite number ok. Now, this naive algorithm is not computationally efficient in the

sense we will never be able to run this even on modern day computers ok.

So, we are basically checking till let us say if you check till n by 2 or even square root n

there is a factor which is no larger than root n ok. So, we are going to check till root n.

So, root n root 10 to the power 30 is about 10 to the power 15 ok. If we had a 300 digit

number  then  this  is  something  like  10  to  the  power  150 ok.  This  is  the  number  of

divisions that you have to do if we do 10 to the power 9 computations per second even

then we will not be able to reach anywhere near 10 to the power 150 ok. So, brute force

algorithm clearly does not work and that is precisely the problem here.

When we measure the input the input is measured in terms of the size of the number of

bits required to represent the number. So, 30 digits would essentially mean 90 900 mean

90 bits  something  like  that.  So,  what  is  the  way out?  Is  there  some way by which

somebody can convince me that this number is a prime, without having to check all the

numbers up to square root n.. So, maybe to show that this belongs to P is difficult, but we

can be try and show that this belongs to NP; is there small certificate that is what we will

be seen. If you look at the complement problem where the input is again the same and

the output is going to be YES if n is not prime or composite and NO otherwise ok.

We look at this complement problem, then its clear that this belongs to NP because for

any number if it is composite it has a factor and the algorithm just takes that factor and

takes that number and checks that if that it is really the factor. So, compositeness or the

set of all composite numbers they do belong to NP. Can we do a similar thing for primes,

that is something known as Pratt’s certificate. 
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This is based on the following theorem. A number say n greater than or equal to 2 is

prime if and only if there exists a number a which is less than n such that a to the n minus

1 should be congruent to 1 mod n; that means, compute a to the power n minus 1 and

divided by n the remainder should be 1, that is the first requirement. And then the second

requirement is for all x, x less than n, a to the power x should not be 1 mod n. So, if these

conditions are true then the number is prime ok.

How do we come up with a non-deterministic algorithm or an algorithm which certifies

that this number is prime. So, this theorem asserts that there is surely for every prime

number  which  satisfies  these  conditions.  So,  if  we  can  take  the  day  and  do  these

computations that would suffice, but again here there is a lot of computations. First of all

we have to compute a to the power n minus 1 and then we have to compute. 

So, this probably by repeated multiplications we can compute, but here we have a lot of

computations; we have n computations in the second step ok. The input size is something

like log n because you are representing it in let us say binary. So, there are log n digits

and when you say n computations, that is, something like 2 to the log n ok. So, that is not

really a good way to check this.

Pratt’s certificate basically overcomes having to check for all the x’s here it says that if

you check for a subset of x’s that is as good as checking for all x ok. So, we will do this

with an example. So, suppose given the number 1783 as input this is actually a prime



number. Now, how do I prove to somebody that this is a prime without him having to

check for all the factors till under root of 1783? The first thing that I will ask somebody

to check that 10 to the power 1783 is congruent to 1 mod n. 

This calculation is not very difficult because we can do this by repeated multiplication.

So, this can be checked ok. So, that basically checks the first thing, but we are essentially

asserting is that when a is equal to 10 that will certify that 1783 is prime. So, 10 to the

1782 somebody can compute ok, anybody can just do this computation by a calculator

the value of n here is 1783 ok.

But, now how do I know that 10 to the power i, where i is varying from 1 to 1782, none

of them will give me 1. So, instead of checking for all of them I will check for only few

numbers and these numbers are nothing, but they are dependent on 1782. So, 1782 one

can factorize it ok. So, somebody tells me that this is it is factorization 2 into 11 into 81

that is equal to 2 into 3 raise to 4 into 11 you need not believe me on this you can just

multiply yourselves and check that 1782 indeed factorizes.

So, any number n if we want to check for want to verify that it is prime the proven must

provide you with a factorization for n minus 1 ok. So, 1782 can be in fact, written as 2

into  3  power  4  into  11 and  we  can  compute  10  to  the  1782  by  2;  this  is  again  a

computation of this kind ok, repeated multiplication or we can do fast exponentiation and

we will also check 10 raise to 1782 by 3 and 10 raise to 1782 by 11. So, these are three

computations which involve further multiplications ok.

But, basically we did one such computation for each prime factor of 1782. What we will

show is if none of these are 1, then there cannot be any other number between 1 and

1782 such that 10 to the i is going to be 1. So, we need not check for all these 1782

numbers we need to just check for three numbers the three numbers being 1782 by P i,

where P i is the prime factor of 1782 ok. Why would this suffice? 
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So, consider the smallest x such that 10 to the power x is congruent to 1 mod 1783. Now,

you can solve this equation cx plus d is equal to 1782 ok. So, just take 1782 divided by x

and you will get your quotient and remainder ok. So, now let us look at 10 to the 1782.

We have verified that 10 to the 1782 is 1. So, this is equal to 1 mod 1783 we will not

write it each time. So, all these calculations are done modulo 1783.

So, this would imply that 10 to the cx plus d this is equal to 1 mod 1782; that would

imply 10 to the cx times 10 to the d is equal to 1 mod 1782 ok. Now, 10 to the x is 1, so,

10 to the cx is also 1. So, this would imply 10 to the d is equal to 1. Now, d is a reminder

that you get when you divide 1782 by x. So, d has to be less than x, but 10 to the d is 1.

So, the smallest and we had assumed that x is smallest, so, d must essentially be 0 ok. If

d is 0, that would mean that x is a factor of 1782. 

So, look at all the factors of 1782, three of those factors were 1782 by 2, 1782 by 3 and

1782 by 11. For each of these factors we had verified that. So, let us call these factors

these as x primes. For each of these x primes we have verified that 10 to the power x

prime is not equal to 1. Now, if 10 to the power x is any other factor check that e those

x’s will surely divide it one of these factors because these are the largest factors of 1782,

other than 1782 ok. So, if none of them gives 1 when 10 is raised to those powers, we

can guarantee that none of the smaller factors would be giving 1 ok. So, this would imply



that and if you verify for these, then none of the smaller factors are going to matter ok;

so, that is basically the proof. 

So, this means that in order to check that 10 to the power x is not equal to 1 mod 1783,

we need to check only for three numbers namely 1782 by 2, 1782 by 3 and 1782 by 11

ok. Now, you can extend this to a general scheme.
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So, if your number is n and if somebody wants to show that this is a prime number, the

verification step would first what needs to be provided as certificate for the primality of n

would be an a such that a to the power n minus 1 is equal to 1 mod n and then the second

component would be prime factorization of n minus 1 ok. So, that means, n minus 1

should be presented as P 1 to the alpha 1, P 2 to the alpha 2, P k to the alpha k. 

Note that each of these P 1, P 2, P k are going to be prime factors. So, the maximum

number of alpha case is going to be. So, alpha k is going to be less than log n; if n was a

number then it cannot have more than log n distinct prime factor because each prime

factor is at least 2; so, 2 into 2. So, product is going to be at least 2 raise to log n which is

n, ok. So, number of distinct prime factors is less than log n. So, these P 1, P 2, P n are

going to be given.

So, the certificate would basically have a component a which is at most log n digits long

because its a single number and then log n numbers which are factors; if somebody gives



you P 1, P 2, P k you can multiply and see if that is indeed a factorization, ok. So, that is

going to be something of the length log n times let us say log n. Each of the factors is at

most log n bits long and there can be at most log n factors. So, these are the two parts

and then we need to have a box which will basically be a recursive called for which

certifies the primality of each P 1. 

So, recursive certificates for primality of each P i ok. Together all these things we can

account for and we can argue that the total length of this is going to be bounded by log n

to the power 3 and that is a polynomial time algorithm in terms of decides the input. So,

this is known as the Pratt certificate and that would show that primes belongs to NP. We

will stop here and we will continue on primality testing in the coming classes.


