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Rapid Mixing

So, in this lecture we will learn about Rapid Mixing.
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So, the basic question that we want to know something of this kind. So, assume that we

have  n  cards,  how many  times  do  you  have  to  shuffle  so  that  the  shuffle  becomes

something like a uniform sampling.  How many steps are required to ensure that  the

shuffle or the arrangement of cards resembles a uniform sampling? Its a little bit big

question we will make it more precisely later on ok.

 So,  if  we  draw  what  we  want  to  really  have  is  let  us  imagine  all  the  possible

arrangements of cards say in factorial arrangements. When we sample after shuffling,

how many times should we rearrange such that the arrangement that that at a particular

time looks like one that is obtained while doing a uniform sampling from this n factorial

arrangements.

So, we will describe what our shuffle operation is ok, suppose we have a deck of cards

ok, we pick one card and then put it on top ok. So, amongst these n cards, we pick 1 at



random uniformly at random, I will put it on the top. So, this is our shuffle operation. So,

how many times do we have to do this shuffle operation so that the arrangement looks

like the one obtained by uniform sampling. This is the first end that we want to answer.

So, we were introduced a notion of how close it is to uniform sampling ok.
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So, we will define something called as variation distance ok. So, let us imagine that D 1

and D 2 are distributions on a sample space ok. The variation distance between D 1 and

D 2 so that is written as D 1 absolute value or D 1 minus D 2 ok. Norm of D 1 minus D 2

this is defined as sum over all the elements of the sample space the absolute value of D 1

x minus D 2 x this divided by 2. 

So, at each point in the sample space compute for each point compute D 1 x. D 1 x is the

probability that is x is chosen if the underline this equation was D 1 and D 2 x is the

probability if the underlined equation was D 2. Look at their difference; take its absolute

value, sum of sum it up over all the points of the sample space and divide the sum by 2.

What we get is called as variation distance ok.

Now, we will just relate this variation distance to some other quantity ok. Say if you look

at D 1 minus D 2 the variation distance, this is equal to the maximum over all subsets of

S of the sample space D 1 A minus D 2 A, it’s absolute value ok. So, look at all possible

subsets of the sample space and look at the difference between the probabilities that these



distributions assigned to the set or the event A I mean that will be equal to the variation

distance; proof is very straight forward. 

So, let us look at all these points and if you look at all points inside the sample space,

there are some points some collection where D 1 x is greater than or equal to D 2 x

which we will call as S plus and the others are where, D 1 x is less than D 2 x that we

will call as S minus ok.

So, S plus is the subset consisting of all points, where D 1 x. So, all point x where D 1 x

is greater than or equal to D 2 x and S minus is similarly the subset consisting of all

points where D 1 x is less than D 2 x.
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Now, note that if you take the entire sample space since this is the distribution D 1 S is

equal to D 2 S and that is this is equal to 1. Now, let us look at this quantity, let they are

interested in. Max over all subsets D 1 A minus D 2 A, it is absolute value. Clearly if you

take S plus that will be the A which maximizes this quantity. So, if you take D 1 A minus

D 2 A, this is maximized when A is S. So, this is equal to D 1 S plus minus D 2 S plus

and if you look at D 2 A minus D 1 A and if you try to maximize that quantity that is

maximize when A becomes S minus.

So, this is equal to D 2 S minus minus D 1 S minus ok. S minus consists of all points

where D 2 dominates.  So,  on that  subset  D 2 S minus minus D 1 S minus will  be



maximized ok. If we look at D 1 S plus plus D 1 S minus that is two disjoint parts of the

sample spaces. So, this is equal to D 1 S and is equal to 1. Similarly D 2 S plus plus D 2

S minus will be equal to D 2 S and that will also be equal to 1. So, max overall subsets

absolute value of D 1 A minus D 2 A this is equal to both these quantities and they those

quantities will essentially be equal. If we take this is equation 1 and equation 2, they

subtract them what we will get is D 1 S plus minus D 2 S plus plus minus of D 2 S minus

plus D 1 S minus and at the right hand sides are both being equal to 1 they subtract out

and gives is 0.

So, D 1 S plus minus D 2 S plus is equal to D 1 S plus minus D 2 S plus is equal to D 2 S

minus minus D 1 S minus. So, these quantities are the same. So, therefore, D 1 A minus

D 2 A is maximized at this point and D 2 A minus D 1 A is maximized at S minus and

they are equal. So, the maximum of the absolute value is just D 1 S plus minus D 2 S

plus plus D 2 S minus minus D 1 S minus the whole divided by half. Now if you take D

1 S plus minus D 2 S plus this consist of one region which consists of all points, where D

1 is greater than D 2 and the second portion is all those points were D 2 is greater than D

1.

So, we can write this entire expression as sum over the absolute value of D 1 x minus D

2 x, where x belongs to S and this into half. So, this is nothing but the variation distance.

So, variation distance can also be seen as the maximum possible difference that can be

there for the probabilities of events when you look at those events under distribution D 1

and D 2 ok. Now, that we understand what is variation distance.
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We will want to look at the number of steps ok; we need to define what is called as Rapid

Mixing. We will do this by defining rapid mixing in terms of variation distance ok. So,

let us say so, intuitively what rapid mixing means is the Markov chain quickly moves

towards it is stationary distribution. So, let us say pi is what we will call as the stationary

distribution and let P x t denote the distribution at time t on starting at x.

So let be x any point in the state space of the Markov chain and let the Markov chain

evolve for t seconds or t times steps. How close is it to the stationary distribution? If it

approaches the stationary distribution quickly, then we will say it is the rapidly mixing

Markov chain. So, we will define certain terms. So, let us say delta x t ok. So, this is the

variation distance this is the distribution P x t is the distribution and pi is the distribution. 

So, let us look at the variation distance between P x t and pi ok. So, this we can think of

as a difference between the distribution, if you allow the Markov chain to start at state x

and evolve it for t time units. Depending upon the value of x, the this number could be

different and the maximum overall choices of x delta x t is what we will call as delta t.

We will define some more quantities say tau x epsilon, we will define as the time taken

for the variation distance between P x t and pi to reach epsilon ok. So, if you had evolved

this  Markov chains by starting at  x how much time will  it  take before the variation

distance becomes less than epsilon. So, that is denoted by tau x t and the maximum value



of tau x epsilon when x ranges over all possible states, this is defined as the mixing time

ok. So, the mixing time is small. 

What it means is for every state, if you begin a Markov chain at that particular state, the

number of steps taken for the variation distance to be smaller than epsilon is at most this

value ok. Suppose the mixing time is t, then in t steps we can guarantee that the variation

distance between the distribution and the study state distribution will be no more than

epsilon ok.

So, if tau x epsilon the maximum or all x is called as tau x and tau x is what we call as a

mixing time; this tau x is small. We will later on described as to what it means to say that

the tau x is small,  but when it is small then the underlying chain is called as rapidly

mixing ok. So, in a nut shell what this means is we now have a definition for telling that

Markov chain mixes  quickly. Now, we want  to  know or when we say that  it  mixes

quickly means that it reaches its steady state distribution quickly or we want to know

how can be proved that is certain Markov chains are rapidly mixing.
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So, methods for proving rapid mixing ok, we will see once such method; the method is

called as coupling ok. So, we will define what is a coupling we will require another

definition ok. So, let M t be a Markov chain and let this Markov chain beyond some

stage space S. Now let us take another Markov chain Z t which consists of two parts ok.

So, X t and Y t. So, it consists of two processes X t and Y t and we say so Z t also we



wanted to be a Markov chain and the Z t is a Markov chain on the cross product space on

S cross S.

Now we can think of many such Markov’s chain for example,  if  you take a simple

random walk on a graph, now if we take a copy of it and do these things together; then

that  is a that can be something like Z t  ok. So, now, when do we say that  this  is a

coupling of the chain M t ok?

So, if you look at the marginals since Z t consists of two parts X t and Y t if we look at

the marginals, they should behave exactly like the Markov chain M t. In other words,

probability that X t plus 1 is equal to x prime given Z t is equal to x comma y. This

probability should be same as probability that M t plus 1 is equal to x prime given M t is

equal to x.

 And similarly, the other marginal also should behave similarly that is Y t plus 1 is equal

to y bar given Z t is equal to x, y should be equal to the probability that M t plus 1 is

equal to y bar given M t is equal to y. If these conditions are met, then we will say that

this is a coupling ok. Z t is the coupling of the Markov chain M t.

So, one way to obtain coupling would be to take identical copies which are completely

independent of each other ok, but that is not the kind of coupling that we will be needing

in order to prove rapid mixing. What we will look at is a coupling where in these X t and

Y t, they are in they are own rights Markov chain, but once they have a tendency we will

try to make couplings in such a way that this X t and Y t has a tendency to move towards

a common state and once they reach the common state they continue in the that particular

state ok. So, when they reach a common state that is if X t is equal to x and Y t equals x

ok, when such a situation has been reached we will say that the chains have coupled ok.

So, once again we first define what is a coupling? Coupling just means that the marginals

should behave like the underlying Markov chain ok. We say that they are coupled if the

individual Markov chains X t and Y t have coalesced into a particular state. From there

onwards they stay in that state even if they continue in the same state, we know that

these equations will be satisfied because both of them will have identical marginals ok.

So, now, we have seen what is coupling and what is a coupled Markov chain?
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Now, we will have a lemma called as coupling lemma, it is known as coupling lemma

and this is the key tool that we will use to show that certain Markov chains are rapidly

mixing.  While  we were thinking about  rapidly mixing,  we mention  that  the  Markov

chains should quickly move to its stationary distribution, but we did not say that what

exactly is quickly ok. We will do that when we are looking at the examples of using

coupling lemma ok. 

So, let us take coupling lemma suppose Z t is equal to X t, Y t is a coupling of some

Markov chain M t. If there exists a T such that probability that X t not equal to Y t given

x 0 is equal to x and y 0 equals y. If this is less than epsilon, then tau epsilon is less than

or equal to t ok. Let us see this lemma closely. So, what we have is, we have coupling of

Markov chains.

 So,  X t  and Y t  are the marginal.  Now suppose somebody could guarantee that the

probability that these do not become this X t and Y t probability that they do not become

equal a small irrespective of this starting state ok. No matter which state you begin; the

probability that X t and Y t are different. 

If that probability is bounded by epsilon that means, the probabilities at most epsilon,

then the mixing time for parameter epsilon is going to be less than T. In other words, in

time T they would have mixed to the extent of variation distance being no more than

epsilon ok. We will see an application of this lemma. So, let us we will solve the card



shuffling problem using this ok. So, in our card shuffling problem, we will think of a

Markov chain in the following way ok. 

So, individual states are a is one particular configuration of cards ok. So, the total sample

space is the total stable space of the Markov chain is of size n factorial. Each possible

arrangement  is  one  of  the  states  and  from  each  state  what  we  will  do  is  if  the

arrangement was say 1 to up to n, we choose one position at random and then put it on

the top of the pile ok. So, at each node what we are doing is and whenever we are in a

particular state, what we are doing is we will choose one of these cards at random and

put it at the top of the pile and we keep on doing this. 

So, this is the M t for us ok, the underlined Markov chain or the Markov process is M t,

wherein the states are configurations and from each state goes to one of the neighboring

states. So, you can note that the sample space is of the state space is of size n factorial,

but from each node there are exactly n minus 1 transactions to make we can also just

redundantly say that the first when we are choosing one at random, we choose the first

node also with the equal probability in which case we just stay in that state.

So, we can say that they are at most or exactly n neighbors for each particular sample

state in this or state space. So, we have one such Markov’s chain and what we will do in

order to construct the coupling is the following X t is just a copy of M t and Y t is going

to be; so, Y t is going to mimic the moves on X t ok. What does it mean to mimic the

moves on X t? So, X t is basically moving from one particular configuration into another

by choosing one particular card ok. 

So, the state at any time t is fully captured by the arrangement of the deck. Now, suppose

we moved from X t to X t plus 1 by picking a card say C. In Y t what we will do is in Y t

move C to top to obtain Y t plus 1; that means, if card number 10 was bought to the top

to obtain the next state in X t, in Y t also you just pick the card 10 wherever it is and put

it on the top of the file ok.

So, of course starting configurations could be different for these two different chains, but

X t and Y t there is some kind of relationship between them ok. What is interesting is

these chains have a tendency to move towards a configuration such that the states match

and if you have these states match, then from that point onwards they will remain in the

particular config; they will they will have x the subsequent states being equal.
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So, X t and Y t have tendency to match moves ok, what we need to know is how long we

will it  take for X t and Y t to be identical and how do we use coupling lemma? So,

coupling lemma states that if the probability that they do not know match if that is small

after a particular time t, then the time t is going to be a bound on the mixing time ok.

So, let us ask this question; how long will it be before X and Y match ok. In other words,

what  we  want  to  know  is  probability  that  X  T  equal  to  or  let  us  look  at  the

complimentary event not equal to Y T given X 0 equals X and Y 0 equals Y ok. We want

this probability to be less than epsilon can be find the time t such that this statement is

true. If we could find such a time, then we can use the coupling lemma and say that the

mixing time for the variation  distance to be smaller  than epsilon or mixing time for

parameter epsilon will surely be less than T ok. So, how good or how small a T can be;

find out how much. So, X t and Y t are to be different ok.

So, when can we say that X t and Y t are same? X t and Y t are same means their stage

space have coalesced ok. So, if you think of this entire thing as a starting your random

walk at some particular point x and the other random process Y we will start at some

particular small y; they will move around this is also move around and finally, they will

reach a point and after that they will continue on the same path ok. We want to know

how long will it take before this happens ok. 



Since the deck is completely characterized by the arrangement of cards and we know that

if some card let us say if card 10 has a ever been picked, their position in both cards we

will then always be same ok. So, this is some particular card, if card 10 was picked and

then it was bought to the top, then in the other deck also the card 10 would have been

bought to the top from wherever it was.

So, once a card is picked, later on arrangements we will not change the position of 10

that holds true for any other card that you pick. So, if every card has been picked once,

then X t and Y t would coalesced ok, so, that we will write it as a fact. If every card has

been picked once, the Markov’s chain X t and Y t would have coalesced ok. So, now,

what we need to tell is how long will it take for every card to be picked at least once ok,

that is just coupon collector ok. 

So, let us say that we keep on picking the cards for n log n plus c n steps; c we will

choose later on. So, if we keep on stimulating the Markov’s chains for n log plus c steps

each step every card has a probability of being picked.
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So, let us look at some particular card. Let us say probability that card i is not picked in n

log n plus c n steps ok. That would mean that it should not have been picked in the first

step, not in the second, not in the third and so on. So, 1 minus 1 minus is the probability

of not being picked in the first step and then, it is not picked for n log n steps that would

be the product. So, 1 minus 1 by n whole raised to n log n plus c n ok. So, this is going to



be 1 minus 1 by n the whole raised to n times log n plus c ok. So, that is going to be less

than 1 minus 1 by n raised to n that is e raised to minus 1 ok. So, this is e raised to log n

into e raised to minus c. So, that is equal to e raised to minus c by e raised to log n is just

one by e raised to minus log n is by n ok.

So, a card i is not picked with probability e raised to minus c. So, probability that there

exists a card which was not picked ok. So, this probability is going to be less than or

equal to we can apply union bound there are n possibilities. So, that is going to be e

raised to minus c ok. So, if we choose c to be say log 1 by epsilon and probability that

there exists a card which is not picked or we will call that is a probability of the bad

event is going to be less than e raised to log 1 by epsilon and negative of this. 

So, that is going to be epsilon ok. So, probability of bad event is going to be epsilon. So

we can just write this as if T is equal to n log n plus n log 1 by epsilon that is equal to n

log  n  by  epsilon,  then  the  probability  that  X  T  not  equal  to  Y T given  a  starting

configuration that is going to be less than epsilon. 

Now, once we have this we know that the mixing time is going to be less than n log n by

epsilon ok. So, in n log n by epsilon time, the Markov chain that we had constructed will

reach stationary very close to stationary distribution. In the sense the variation distance

between the distribution that has been reached and the stationary distribution is going to

be less than epsilon ok.
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So, look at the Markov chain, it had n factorial states ok. Although it had n factorial

states, in n log n by epsilon moves, the number of the fraction of states that would have

been explored is very small that is a tiny fraction and if let us say epsilon is 1 by n square

ok. The number of states that has been explored is n log n cube which is approximately 3

log 3 n log n ok. So, although you have only stimulated this the Markov chain for 3 n log

n steps, the Markov chain is now equally likely to be in any one of the n factorial states

ok; almost equally likely. 

So, since there are n factorial state, since the Markov chain has an the one which we

constructed is a periodic and if it is all nice properties. We can argue that its study state

distribution is going to be the uniform distribution ok. We could take a epsilon to be

much bigger than this, we could take epsilon to be let us say 1 by 2 raised to n; even then

we are running it for only if epsilon is a 1 by 2 raised to n, then n log n times two raised

to n is going to be less than n square or let us say certain less than n cube. So, even if you

run the Markov chain for n cubes steps, we are going to get some distribution on the

states which is very close to the uniform distribution.

So, 1 by n factorial minus 1 by 2 raised to n or something like that ok. So, you could

have taken this to be larger than 1 by 2 raised to n is larger quantity than 1 by n factorial,

but we could have taken this to be say n square and even then, we do not I mean this not

much harm done in the calculations ok. So, if epsilon is 1 by 10 n factorial which is 2

raised to n log n ok, then n log 2 raised to n log n is approximately n square ok.

 So, if you take this to be n cube, then we know that we get very close to the uniform

distribution ok. If you taken n to b epsilon to be 1 by n square that is not good enough

because this probability is significantly higher than 1 by n factorial ok.
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Now, we will see at another application of this coupling method, wherein we will look at

random walk on a hyper cube ok. So, hyper cube we had seen before its a graph ok. Let

us say n dimensional hyper cube ok. It is a graph, where every bits string of length n is

present  ok.  So,  these  are  the  vertices.  Every  n  length  bit  string  is  a  vertex  and the

neighbors are all those vertices which can be obtained from this by flipping 1 digit. 

So, if you flip the ith digit whatever you get that is going to be one of the neighbors and

you can flip any of the n digits ok. Now, in this random walk we will assume that we toss

a coin and if  the coin is  heads,  we stay there itself;  otherwise we will  transition by

choosing one random position to flip ok.

So, X t plus 1 is equal to X t with probability half and this is equal to say S, where S is

obtained by a single bit flip of x t. So, take X t and flip one digit, one bit and that bit is

chosen uniformly at random. So, it is a ran position all of those things are happening

with probability 1 by 2 n ok. So, this is the random walk on the hyper cube that we are

interested in.  Now what we want to know is how long will  it  be before we will get

uniform distribution or all most uniform distribution on the hyper cube. 

So, how long will  we have to stimulate  the chain to reach the study state? You can

convenes yourself that there is only one stationary distribution for that this and it is the

uniform distribution ok.



So, in order to answer this question, we are interested in is we want to say if it is to be

away from the uniform distribution by an amount epsilon. Then, how much time we will

it take? In other words, we want to find out the mixing time of this random walk, we can

do very similar thing as the previous example.
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So, can X t is going to be the same random walk. So, X t plus 1 or the random walk X t

is M t and Y t is obtained by mimicking the moves of X t ok. Mimicking the moves

means if X t had changed the ith bit and Y t will also change the ith bit ok. So, we have

to be careful. If the ith position, if you look at a state that consist of a bit string, if the ith

position was flipped from 0 to 1 in a X t and if Y t was in a state, where this is already 1;

then you just do nothing. If it was 0, then you change it to 1.

So, when you mimic, it essentially means that after the move both X t and Y t will agree

on the position, where the change has been made. Note that if you look at these two

Markov’s chain jointly, then you can see that the marginals will exactly be the empty

itself. Because there was some probability of this bit flipping, if it was flipping then it

can flip to can either flip or stay with some probability and the same thing happens in Y t

as well ok. So, X t and Y t has the tendency to couple and once they have coupled it

remains the marginal’s anyways are same as empty once they have coupled, they remain

in that particular state. 



So, what we want to know is probability that X t not equal to Y t given some initial

condition. So, whatever is the initial condition, if we have identified all the even if you

have chosen at random, all the positions in the state space that is I mean you look at any

state each state will consist of n bits; if each of these bits were chosen even once, then

the chains would have coalesced.

 So, we will just write this is a fact. If every bit position was chosen at least once, we can

guarantee that X T would be equal to Y T ok. So, that is if every bit position was chosen

at least  once by time T, then we can guarantee that X T equals Y T and from there

onwards they will remains ok. 

So, now, how do we upper bound the time taken for X T equals Y T. Again, it is a same

as a previous analysis. Each of these positions had equal probability of being sampled.

There is a factor half which is with the probability half you remain in the same stage

itself,  but if you ignore that part and if you just imagine this to be a chain which is

running two times slower than the earlier one. 

We can say that this is similar to coupon collector problem. How much time we will take

for you to collect n coupons and that is again going to be something like n log n and if

you run the chain for n log n by e steps and by epsilon steps, you can argue that all

positions would have been chosen at least once ok.

So, this concludes the week on Markov’s chains and the mixing properties of Markov’s

chains.  We will  again see the mixing properties  of Markov chains,  when we look at

approximate counting.


