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Lecture – 20
Cover Time

This lecture we will learn about Cover Time.
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In the previous lecture we learnt an important parameter of random walks namely the

Commute time ok. So, commute time was denoted by C uv can be said that this is the

sum of 2 parameters h uv plus h vu ok, these were the hitting times both of them were

hitting time and h uv is the time taken to start at vertex u and reach vertex v for the first

time and h vu is the time taken to start at v and reach back at u. If the sum of these was

the  commute  time  and we had argued with  the  help  of  electrical  networks  that  this

quantity is equal to 2 times number of edges times the effective resistance between u and

v ok.

In case this is a number of edges and this is the effective resistance. We will now look at

cover time; cover time basically is the time taken to cover the entire graph or visit all the

vertices, so we will formally define what these are this is denoted by CG x. So, here x is

a starting vertex so this is the vertex, this is defined as time taken to visit every vertex at

least once starting at x. So, imagine that we are doing random walk on a graph and if the



starting vertex is x the time taken to visit every vertex assuming we start at x that is

known as the cover time or the expected time taken.

So, the time taken will be random variable its expectation is called as the cover time, the

theorem that we will show or prove is cover time of a graph ok. So, cover time of a graph

which is by definition equal to max overall vertices x CG x, so cover time is O n cube

ok.  That  means,  no  matter  which  vertex  you take  the  expected  time  to  visit  all  the

vertices once at least once is O of n cube.
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Now, we will also show the following fact there exist graphs such that CG is equal to

theta n cube ok, so we can construct one such graph. So, let us look at a click here this

the click on n 5 vertices, let us say that click on n vertices and there is a line with n

vertices. So, total 2 n vertices and edges is equal to n choose 2 plus n, so that you can say

that is appropriately O of n square and this graph the cover time is theta n cube that is if

you start at a vertex of course it depends on which vertex you start at.

If  you start  at  this  particular  vertex let  us call  this  vertex where the stem meets  the

cluster, so this graph has the special name this is called as the Lollipop graph. So, if you

call this as vertex u and this end as vertex v, if we start at vertex u the time taken to visit

all the vertices is O n cube ok. So now, couple of things about cover times cover time is

not a monotonic property with respect to the edges that is if you increase the number of



edges, the cover time need not decrease and if it is a complete graph the cover time is n

log n approximately n log n.

If you take the straight line graph it is n squares and something in between we can have

O of n cube ok. So, we will first show that if we start at vertex u and we want to travel it

will take O of n cube ok. So in order to show that we will take some results from our

previous lecture, if you look at h uv plus h vu that is the time taken to go from u to v and

then v to u that is a cover time that we know is equal to so O n square let us write this as

c times n square c is some absolute constant.

So, this is equal to 2 times the number of edges which is c n square times the resistance

within u and v which is about n. So, this is equal to O n cube so sum of 2 quantities is O

and cube means at least one of them should be greater than n cube. In fact, if you start at

vertex v and if you want to travel till u; this is a random walk which we have already

explored and we know that the time taken to do that so the first time you reach u will be

the time taken to traverse this entire thing and that is roughly. So, h vu this is O n square

while looking at the Markovs chain for 2 stand we had explored this and showed that it is

O n square.

So, since some of this O n cube h uv should be so this would mean that h uv is O n cube,

what we will show in the remaining part of this class is that CG is theta n cube. Now h

uv is the time taken to go from u to v; clearly C u G is going to be greater than or equal

to h uv, h uv is the expected time taken to start from u and reach v. Well it could be the

case that while moving we have not explored any vertex here, but clearly if we have

covered all vertices then the time taken to do that will surely be an upper bound on the

time taken to go from just u to v.

So, C u G is going to be greater than h uv and h uv we know is a O n cube ok. If we take

the cover time starting at vertex v this is no more than n cube, what we will show is not

just for this graph we will show that for the general graph any connected graph on n

vertices it is cover time is bounded by n cube ok.
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So, cover time that is our theorem of any graph on n vertices is O n cube; proof is fairly

simple. So, let us look at cover time little more carefully if this is our graph on which we

were doing a random walk ok. So, you start at  any vertex and keep on moving to a

neighbor and so on ok. So, let us say that we want to compute C x of G that is if you start

at vertex x how much time does it take to visit all vertex let us look at a spanning tree of

this particular graph ok. So, the red edges denote a spanning tree of the graph.

So,  if  it  travels  all  the  edges  of  this  particular  spanning  tree  starting  at  x  we  are

guaranteed that we would have visited all vertexs. So, we can write the following time

taken to traverse this spanning tree is going to be surely greater than or equal to cover

time starting at x.

So, spanning tree again when we say time taken to traverse a spanning tree we mean time

taken to traverse a spanning tree starting at vertex x ok. So, let us just number these

vertices in a particular way this is my vertex v 1 x I am going to calling as v 1 this v 2

this is v 3 v 4 someone traverse a spanning tree in a particular way, so from here to here

then all the way here before back to here.

If I travel along with blue line that would mean I visit every vertex twice, so done this in

a particular way and that would have visited every vertex twice. So, 2 times the time

taken to traverse the spanning tree also greater than or equal to the cover time and in I



want  to  traverse  this  spanning  tree  in  exact  in  the  exact  order  as  indicated  by  this

particular blue line ok, traverse the spanning tree in this particular order.
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So, let us say this was a spanning tree some graph, I am starting at this particular vertex

and they want to traverse along in this in some particular order ok. So, let us say the

vertices are v 0 starting vertex v 1 v 2 v and say 2 n, because every vertex is appearing

exactly twice. So, this is the order in which vertices are traversed. So, time taken to do

this the expected time taken to do this will be an upper bound on the cover time.

So, that we will just write down expected time for traversal along the above mentioned

path is an upper bound on the cover time and this time can infant be viewed as. Let us

say I am at vertex v 0 and from there I have to go to v 1 may be while I am doing the

random walk on the graph this is not the path that is chosen; from v 0 I might go to some

other vertex and after a long time I will come back to v 1. And then from v 1 after some

time I will reach v 2 from there after sometime I will reach v 3 ok. Let us look at all

these as random variables,  so the time taken for the traversal from v 0 to v 1 is the

expected time taken is going to be h v 0 v 1 ok, this I will think of as the expected time

for the first edge of the tree ok.

So, the total expected time if I think of this the time taken for this path as T ok, the

expected value of T will be the sum of those random variables. And then by linearity we

can just look at the sum of the expectation and each of the individual expectation is h is



of the form h v i v i plus 1 ok. So, the expected value of the T or the expected time is

going to be less than summation over all these is h v i and note that h v i v i plus 1 would

appear on let us say this particular this is i v i plus 1 and later on or if we had taken this

as i and this is i plus1 this edge would traverse forward as well as reverse.

So, all the edges are appearing in pair and therefore this random when we look at this

random variable, we have terms of the form h u v plus h v u 1 such pair for each edge of

this spanning tree. So, the total time taken if we denoted by a random variable T; the total

time taken is equal to the sum of these random variables and therefore its expectation is

going to be sum over all the edges in E.

So, if this edge e is equal to u comma v then this is the sum over terms of the form h u v

plus h v u ok. So, what we know what we have shown so far is that the expected time

taken to traverse along this particular path is going to be sum over all edges h u v plus h

u h u v plus h v u. And h u v plus h v u from our last class we know that is going to be

equal to 2 m times R u v and R u v note here u and v are 2 edges which are connected.

So, their effective resistance is at most 1 so this is going to be less than or equal to 1

therefore this quantity is less than 2 m times 1 ok. So, this the number of edges is going

to be n minus 1 because it is spanning tree. So, n minus 1 into 2 m is going to be the time

taken to traverse the spanning tree along this particular path ok.
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So, 2 times m times n minus 1 is an upper bound on the cover time. So, if we start at any

particular vertex we can do the same process, so this is an upper bound on the cover time

starting at any vertex and therefore this is an upper bound on CG and m is at most n

square. So, we know that O n cube is the an upper bound on the cover time ok. We will

use this  fact to  construct  a randomized algorithm for S t  connectivity, so we have a

special situation here we have a graph which is very large and we want to know whether

2 vertices S and t are connected ok.

So, further we want to do it without using too much space we could of course use d f s

and solve this problem but when we use DFS we have to store the entire graph to debug

or the data structures are going to take space and that requires O of n space that is it is

going to proportional to the size of the input. Here let us assume that there is a read only

input tape on which the entire data; the entire graph is stored, let us say an existence in

matrix format and we can query whether some particular edge i and j are connected. So,

this query can be done quickly we are not expected to use additional memory, so without

using additional memory or let us say we are allowed to use c times log n C is some

constant C times log n amount of memory. So, can you do a log space computation for S

t connectivity.

That is I want to say I want to have an algorithm which will check if vertices S and t are

connected  or  the algorithm will  not  use  more than  say 1000 times  log n amount  of

memory. The algorithm is simple we will just start at a particular vertex and keep on

going to  one of its  neighbors  ok.  So,  you can just  toss a  coin and select  one of its

neighbors at random and we go to that we do not remember as to which vertex, we were

in let us say previous steps we just keep tab on how many vertices have been visited so

far. In other words we will do so random walk say randomly walk on G for 2 n cube

steps starting at S. At any stage at any point if you already discovered t; if t is found say

connected if you do not find it in the nth you will say.

So, after 2 n cube step if you do not find t then you will say that they are not connected

ok. Of course, if you are given an input where S and t are not connected this algorithm

clearly gives the correct answer, where as if S and t were indeed connected; we want to

say that with significantly high probability the algorithm would return the correct answer.

Now from the previous analysis we know that 2 m times n minus 1 is the amount of time



taken is  an upper bound on the cover time, refer in those many steps it  would have

covered all the expected steps taken to visit all vertices is 2 m times n minus 1.

So, that is something like n cube at most n cube. So, if you just apply Markov inequality;

so  which  would  mean  that  probability  that  there  is  some  vertex  which  is  not  been

discovered  even  after  spending  twice  the  expected  number  of  steps  ok.  So,  that

probability will be by Markov inequality be less than or equal to half and therefore this

algorithm gives the correct answer.

On the S instances with probability at least half you can make this 200 n cube and then

the probability would be significantly higher ok, repeated runs this algorithm can make

the algorithm give more accurate  answer ok.  We will  stop here;  we will  in  the next

lecture see more properties of random walks we will see properties called as rapidly

mixing random walks etcetera.


