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Lecture – 15
Lovasz Local Lemma

In this lecture, we will learn about Lovasz Local Lemma. Lovasz local lemma is a tool

that can be used while we apply probabilistic method. 
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So, while using probabilistic method, we often have to show that probability of A certain

good event is greater than 0. So, now, this can be done in a wide variety of ways how do

we describe this event E. So, E if you think of is a good event, we could say that this

good event happens when a list of bad events does not happen. So, let us say if our bad

events were E 1, E 2 up to E n, and if you call this is the bad events, in order to say that

the good event happens with a positive probability, we could also say that probability of

any of the bad event happening is less than 1 that means, there is the probability that the

good event happens.

So, we look at E as and we can simply write E as E 1 union E n, this is this means one of

the bad events is happening, and the complement  of it  means none of the bad event

happens that is equal to intersection over i, E i complement. So, instead of saying that the

good event happens with positive probability  we will  say that  the probability  of this



intersection this is going to be greater than 0. So, when can we say such a thing, so

depends on these events.

So, let us see what are some of the common assumptions that we could make about E i

one way to look at this would be if we thought that we knew nothing more about the

events, just that the all belong to the same underlying probability space, we could use

union bound ok. 

So, probability of E complement rebar we want to say the that is less than 1, this would

imply the probability of E is greater than 0. If we want to say this we could use the union

bound and it can work in some cases, but in many cases when these E is are not too small

and or when there are too many such bad events, if we apply union bound we might not

get any useful result.

(Refer Slide Time: 03:26)

Another  case  is  when  the  events  are  independent  ok.  So,  when  these  events  are

independent then we can say probability of intersection of i E i complement this is equal

to probability of each of the individually identity product over there i going from 1 to n..

So, if each these events if at least one of those event happen with probability less than 1,

we know that the product is going to be less than (Refer Time: 03:48). If p i is greater

than 0 the only assumption that we would need E i compliment is greater than 0, but

independence is a very strong requirement. If the bad events are independent so are their



compliments. The probability that one of the bad events occur we can bound it by using

independence ok.
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So,  now, when  there  is  some  amount  of  limited  dependence  even  then  we  can  use

probabilistic method and that is what Lovasz local lemma tells us. So, what does it mean

to have limited dependence, we will get to it. But before that in order to specify this

notion  of  dependency  we need something  called  as  dependency  graph,  we need the

concept of mutual dependence. So, these two concepts we will first learn ok. We would

say that events A and B are independent if probability of A intersection B is equal to

probability of A times probability of B this is the definition of independence.

We will say that if you have a collection A 1, A 2 up to A k they are independent if

mutually independent if you take any subset this is equal to probability or i, i going from

1 to j ok. So, you take any subset of these events if their probability if the probability that

all of them happens is equal to the product of the probabilities, then we will say that

these are mutually independent. We will modify this definition of mutual independence,

and we will  say when is one particular event mutually  independent  of a set  of other

events.

We could also cause this mutual independence in terms of conditional probabilities. So,

A is independent of B if probability of A given B is equal to probability of A. Ok, this is

because probability of A given B is probability of A intersection B by probability of B



ok. So, they are the same thing. So, the definition of independence you can take this as

the definition or even this as the definition ok. We will basically work with conditional

probabilities.

In case of mutual independence the new definition that we will have is as following. An

event A said to be mutually independent of A 1 to let us say A k if for all subset j of 1 to k

we have the following condition probability of A given intersection over j belonging to j

A j is equal to probability of A. So, if you look at an event we say that it is mutually

independent of a collection of other events. If the probability of A conditioned on any

subset of that collection of events is same as the probability of A. In this case we will say

that A is mutually independent of A 1 to A k ok, so that is our definition. 
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Now, we are in a position to state what is dependency graph. If we have a collection of

events E 1 to E n, we could imagine a graph in which the vertices are these events ok.

So, E 1, E 2, E 3 up to E n are the vertices of our graph. And we will say that this is a

dependency graph for these events if so the conditional images write it down. For any

event  E i  you look at  the  vertices  to  which  it  is  connected  those  we will  call  as  a

dependent vertices and the non dependent vertices are the other ones. So, these are the

non-dependent vertices. 

So, for any E i the non-dependent vertices or the non-neighbours in G will be such that E

i is mutually independent of the neighbours ok. So, if you look at any particular event E i



and if its neighbours are let us say E A 1 to E a k, these form a collection such that E i is

mutually independent of the non-neighbours. In other words, the dependency can be at

most amongst the neighbours; E i can be dependent on at most the neighbours of E i and

not  on  anything  else.  Events  in  form  such  a  graph  that  is  called  that  is  called  a

dependency graph of E 1 to E n, of course, there could be multiple dependency graph.

For example, if you take the complete graph which is anyway dependency graph on any

collection of events,  because there are no non-neighbours.  And therefore,  there is  no

requirement I mean nontrivial conditions on dependency ok. So, now we know what are

dependent  dependency  graphs,  and  we  know  what  is  mutual  mutually  independent

independent.
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Now, we are in a position to state Lovasz local lemma.  So, we have a collection of

events. So, let E 1 to E n be events such that some conditions, and then under certain

conditions  Lovasz  local  lemma  will  say  that  the  probability  of  intersection  E  i

complement is going to be greater than a certain quantity nonzero quantity.

So, let us write down the conditions first. First requirement is probability of each E i

should be less than or equal to some p. The second condition says that dependency graph

should have max degree at most say d ok. So, if you construct the dependency graph E 1

to E n, every vertex should have degree less than or equal to d. And the third condition is



a relationship between this p and d, E times p times d plus 1 should be less than or equal

to 1.

So, under these conditions the probability of E i complement is going to be greater than

or equal to 1 minus 1 by d plus 1, the whole power n ok. So, this is what Lovasz local

lemma states. So, let us look at some cases suppose E i was I mean all the events were

independent and of course there is not such a great bound because the condition requires

that E times p times d plus 1 is less than 1, and d when they are dependent this becomes

as large as n minus 1 ok. So, E times p times n should be less than 1.

But in that case we could have used union bound itself and here we get an additional

factor of E union bound would have required p n is less than 1, but here we are getting an

additional factor E ok. So, when they are when there is lot of dependency Lovasz local

lemma may not be useful. But we will see that there are cases where the dependency is

limited in that case this is the very handy tool to apply probabilistic method ok. We will

first see a proof of Lovasz local lemma.
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And the proof will rest on the following claim. The probability of any E i conditioned on

the none of the events in a certain set S has occurred ok. So, j belonging to S. So, let us

say S is some set, and what this part says is that E j bars have occurred for all j and S.

That means none of the events in s has occurred. So, probability that an event i occurs.

So, this is our collection of all events all bad events which we wanted to look at. And this



one particular bad event occurs given that none of these other bad events have occurred

ok.

The claim says that this probability is going to be less than 1 by d plus 1. Under the

assumptions  of  our  theorem  the  claim  says  that  probability  that  E  i  happens  given

intersection j belonging to S E j bar is less than 1 by d plus 1. We will prove the Lovasz

local lemma assuming this claim and later on prove the claim ok. This claim is true for

all S subset of if your events are 1 to n. E 1 to E n and you take any subset of 1 to n for

that this statement is true.

So, Lovasz local lemma said the probability of intersection E i bar is going to be greater

than or equal to 1 minus 1 by d plus 1 the whole raised to n ok. So, this event intersection

i going from 1 to n p i bar and so the probability of this can be written as a product

involving conditional probability. So, if you think of the intersection is let us say A, A 1,

A 2, A k, we could think of this is probability of A 1 into probability of A 2 conditioned

on A 1 into probability of A 3 conditioned on A 1 and A 2 and so on.

So, this is probability of E i,  E 1 bar into probability of E 2 bar given E 1 bar into

probability of E 3 conditioned on E 1 bar comma E 2 bar and so on. The last would be

probability of E suppose your n events E n bar conditioned on E 1 bar, E 2 bar, E n minus

1 bar. There  are  going to  be  n  terms  in  this  product,  and each term looks  like  the

complement  of one of the events in the claim ok. So, this  I  can write  it  as 1 minus

probability of E 1 into 1 minus probability of E 2 on the same conditioned into 1 minus

probability of E 3 based on the same condition and so on. 

And these events by our claim we know that they are going to be less than 1 by d plus 1..

So, this quantity p of u 1 is less than 1 by d plus 1. So, 1 minus that is going to be greater

than, so this quantity is going to be greater than 1 minus 1 by d plus 1 and every quantity

is going to be greater than 1 minus 1 by d plus 1. So, that gives us the lemma the whole

product is going to be greater than 1 minus 1 by d plus 1 the whole raise to n. So, if we

assume the claim we are done, but we need to prove the claim.
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So, proof of claim we want to show the probability of any event E i conditioned on a set

of other events not happening j belonging to S E j bar less than or equal to 1 by d plus 1.

We will prove this on by induction on size of S. So, let us just have a small diagram

before that. This is our favourite event which we are looking at E i, and this is our set of

other events s ok. These are conditioning on that ok. We are saying that none of the

events in S happens ok. 

This S we can split into two parts let us say S 1 and S 2. S 1, where the events to which E

was connect in the dependency graph. And these are the non neighbours. We can split it

into  two  parts.  So,  the  conditioning  over  intersection,  we  can  we  can  write  this  is

probability of E 1 given let us say when I will abuse a notation I will write it as S 1 the

intersection of our all these events. So, if the if S 1 and S 2 where the two parts of S,

what we are doing us these were A B and C, and this is D E and F. We have this A

intersection B intersection C intersection D intersection E intersection F ok.

So, we could split this two parts you can think of this as let us say capital A or script A

and this is script B ok. And instead of looking at these things, we just called them as S 1

and S 2. It is basically S 2 intersection S 2 ok. Here I am abusing the notation because S

1 and I mean you can think of it a an index set or you can just think of it as the collection

of events. So, E i in G 1 S 1 intersection S 2, that is what we need to calculate.



Now, S could be any subset of 1 to n, if S was the empty set that would or base case of

our induction. If s was the empty set, this means the intersection of an empty set is a

whole  universe  that  means,  your  conditioning  on  the  entire  sample  space.  So,  the

expression would be when S is equal to phi, LHS is equal to probability of E i. And

probability of E i is less than some p which we know is less than 1 by E times d plus 1,

because we had the condition that E p times d plus 1 is less than or equal to 1, and

therefore, this quantities less than 1 by d plus 1. 

So, when S is equal to phi, we are done. When S is not equal to phi, we have some set on

which we are some nontrivial set on which we are conditioning that set we have split into

two parts S 1 and S 2. S 1 consists of all those events on which E i could be dependent;

and S 2 is all those events on which E i is not independent. 

So, now probability of A given B intersection C can simply be written as probability of A

intersection  B  intersection  C  by  probability  of  B  intersection  C  which  is  same  as

probability of A intersection B given C into probability of C divided by probability of B

given C into probability of C. And probability of C, we can cancel out assuming that that

is a nonzero probability event. And then we have this particular expression and that is

what we will use to expand probability of E i given S 1 intersection S 2.
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So, this will be equal to probability of E i intersection S 1 given S 2 into probability of S

1 given S 2 ok. So, this is the expression that we will need to simplify.
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Probability of E i intersection S 1 given S 2 into probability of S 1 given S 2, now, the

numerator is going to be less than or equal to probability of E i given S 2 divided by

probability of S 1 given S 2. A numerator E i given S 2 since S 2 are all the events in S 2

are basically disconnected from E 1 when you drew the dependency graph or they are not

connected by n h. And therefore, we know that this probability is same as probability of

E i divided by the denominator S 1 given S 2 this is because of dependency relations ok.

We need to estimate or bound probability of S 1 given S 2.

And one thing to note in between is that if S 1 was an empty set, it is if everything was

connected to only S 2, then this probability would essentially be probability of E 1 which

anyways less than 1 by d plus 1 ok.. So, if all the elements to which I mean on which we

had conditioned were not connected to E i then we automatically have this. So, we can

assume here that S 1 contains at least one particular element in it ok. If there were not

probability  of  E  i  conditioned  on  certain  other  events  and  all  these  events  are  not

connected by E i by n h. So, this probability is equal to probability of E i and that we

know is less than 1 over d plus 1. So, from now on we can assume that there is at least

single event in S 1 ok.

So,  when we compute  this  probability  S  1  given S  2,  you can  again  apply  iterated

conditioning properties and write this is probability. So, S 1 we called it as a set was a set

contained is B 1 intersection B 2 intersection B r where each of these B is 1 of the E 1, E



2, E n ok. So, if S 1 was this we could write this probability S probability of B 1 given S

2 times probability of B 2 given S 2 S S 2 B 1 into probability of B 3 given S 2 B 1 B 2

and so on. 

Note that the number of terms here is at most d terms, because S 1 is the elements which

were connected to E 1, and we are the restriction that the dependency graph had at most

d edges out of any particular vertex. And therefore, there are at most d terms. And look at

all of these terms the conditioning is on a set whose size is strictly less than the size of S

ok. So, conditioning is on a set whose size is less than size of S ok, because here subsets

of S from which at least one element has been removed.

So, we can use the induction hypothesis. And based on this we can say that each of these

B 1. So, B 1 now is some event of the form E i complement, so probability of some E k

complement given some other thing is going to be greater than 1 minus 1 by d plus 1 this

is because what we know is probability of E k given this is less than 1 by d plus 1.

Therefore,  the compliment event on the same condition is going to be greater than 1

minus 1 by d plus 1. 

So,  product  of  the  denominators  is  going  to  be.  So,  let  me  just  called  this  as  the

denominator. So, d is going to be greater than 1 minus 1 by d plus 1 the whole raised to d

ok. And since the inner term less than 1, this is of course greater than 1 minus 1 by d plus

1 the whole raise to d plus 1 in this quantity is going to be greater than 1 over E ok,

because it the limit becomes 1 by E ok.
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So, we can plug this into the original expression. What we will get is probability of the

event  that  we were interested  in  is  going to  be less  than or  equal  to  1 by E in the

denominator. So, E times probability of sum E i ok. And probability of E i that is going

to be less than E times p which by assumption is less than 1 by d plus 1 ok, so that

concludes the proof of the lemma.

Just  quickly  recap  the  key  ideas  in  the  proof  we  had  this  lemma  which  says  the

probability of a bad event occurring conditioned on a collection of other bad events not

occurring is going to be less than 1 over d plus 1. After we have that we can just apply

iterated conditioning to get our lemma. In order to prove the claim what we did is we

used induction the conditioning was on a set of bad events, the split the set of bad events

into events which depend on E i and events which did not depend on E i.

If there is at least one event which depends on E i, then we could do this our induction

case. If there was no events which depended on E i, then we can just simply say that are

argument that these are mutually independent takes care of the lemma. When they where

events the degree bound on the dependency graph helps us get what we want ok. So, we

will move on to an application of Lovasz local lemma ok.
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So, let us look at a K-SAT expression you can think of 3-SAT or maybe purpose of this

lecture think off a 20-SAT expression and that means, expression was form x 1 or x 2 so

on x k or x 20 and some similar expression and so on. So, each of this is called as a

clause, there are large number of clause each clause has at most has exactly 20 literals in

it  K-SAT means  each  clauses  exactly  K-literals  in  it.  We want  to  know  that  is  an

assignment to the variables which makes this expression evaluate to 1 ok. We will use

probabilistic method to show that in many cases expression indeed evaluates to 1 ok.

So, theorem that we will show we will prove is if no variable appears in more than 2

raise to k minus 2 by k clauses ok. So, in case of 20-SAT expression that would mean 2

raise to 18 by 20. So, 2 raise to 18 by 20 that is approximately 2 raise to 20 by 42 raise to

[10 is about 1000. So, this is 10 raise to 6 by 40. So, you can think of as two point 25000

and approximately 25000.

So, if we looking at a 20-SAT expressions in which no variable appears in more than

25000 clauses, so that is a good bound in the sense and if you have very long expressions

I mean to imagine that there will be some variable which appears 25000 times that is the

huge number. So, if that requirement is met that is no variable appears more than 25000

times,  then  we  can  guarantee  that  the  expression  is  satisfiable,  then  the  K-SAT

expression is satisfiable ok.



The proof is simple. The first let us think about possible proof. So, if you think of all

these clauses I mean there are let us say m clauses ok, each of these clauses had some

number of variables. If you had randomly assigned true or false to the literals in to the

variables in each clause, then the probability that a particular clause, this is satisfied. So,

we will denoted by A k when we say that the event A k has occurred that means, clause

number k is satisfied ok. So, the bad event would be that that clause is not satisfied.

So, probability of A k bar is going to be 1 by 2 power k. So, the bad event happens with

probability if we just think of A k has the bad event. So, when A k occurs it means that

clause is not satisfiable that happens with probability 1 by 2 raise to k because there is

only one assignment which can make the formula go wrong.

So, when we use this we automatically place a bound on the number of clauses. Even if

if  we  placed  union  bound,  it  means  that  the  probability  that  one  of  the  clauses  is

unsatisfied that happens I mean v i mean it is a by applying union bound we will get

something like m times 2 raise to k ok. So, the number of clauses that, you could have a

something like 2 raise to k, but here we have a much more relaxed requirement. We do

not bother about how many clauses are there, but if no variable appears in more than

these many clauses, then we know that the they surely way satisfying assignment, how

do we prove that. 

So, again or events are the same A k means the k-th clause is not satisfied, We need to

say the probability of A k bar intersection overall k is going to be greater than 0 or 1

minus 1 by d plus the whole raise to n that is what the lemma say states. In order to apply

the lemma, we need to show that the preconditions are true. So, first condition was the

probability of any A k, we know it is exactly 1 by 2 2 to the power k this we will called

as our p ok.

If you look at the dependency graph, look at two particular clauses being satisfied or

unsatisfied now if that exactly k literals in it. So, the number of other events to which

these could be connected ok, the maximum number is  if you look at two clauses they are

connected only if there is some kind of dependency between them, if they are variables

were completely different then there cannot be any connection.

, but we have a bound on variable sharing ok, each variable can occur in at most two

raise to k minus 2 clauses. And there are k variables in each clause, so each clause can be



connected to at most k times 2 raise to k minus 2 divided by k clauses. So, this is a bound

on the number of other events on which the event A k could be dependent ok. This k and

this k are not really related, let me just call it is A r ok, so that means, d is equal to 2 raise

to k minus 2 ok.
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Now, the condition that we wanted was E times p, p is 1 by 2 2 to the power k times 2

raise to k minus 2 that is 2 raise to k by 4 this should be less than or equal to 1, which it

is because E is less than 3. So, 3 by 4 less than 1, so we know that in this case, there will

surely be an assignment which satisfies all the clauses. We will stop here. This is the

final part of our lectures on probabilistic method.


