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So, in today’s lecture we will learn about what is known as Chernoff Bounds ok. So, the

question that we will address in this lecture is the following:  let us say we toss 1 lakh

coins and we will get some number of heads and some number of tails. What is the

probability that the number of heads is greater than 75000. So, we look at the following

problem toss n coins, compute the probability that the number of heads is greater than

say 3 n  by 4.  Clearly  we expect; so,  if  we denote  by  X the  number  of  heads  then

expectation of x is equal to n by 2.

So,  now  here  in  this  case,  the  random variable  takes  a  value  much  larger  than  its

expectation ok. What is the probability of such a thing happening. So, this is a question

of the following form; compute the probability that X is greater than a. We already have

some tools to address these kind of questions, the first one the Markov inequality. If we

use Markov inequality probability that X is greater than 3 n by 4 will be less than or

equal to expectation of x divided by 3 n by 4. So, this is equal to n by 2 into 3 n by 4. So,



that is equal to 2 by 3 ok. So, we can just conclude that the probability that the number of

heads is significantly greater than n is going to be less than 2 by 3.

If you use Chebychev’s inequality’ so, this is the probability that X minus expectation of

x greater than a this is going to be less than variance of x divided by a square. So, here

expectation of x is n by 2. So, we have probability that X minus n by 2 to be greater than

n by 4 ok. Whenever n is greater than 3 n by 4 X minus n by 2 is greater than the

absolute value of that is going to be greater than n by 4. This happens with probability

less than variance of x divided by n by 4 the whole square ok. Now variance of this

particular random variable is going to be n times p into 1 minus p where, p is the bias of

the coin. So, that is going to be equal to n by 4. Therefore, here we will get this as n by 4

into n square by 16.

So, this probability is going to be 4 by n much better than 2 by 3 ok. So, if you toss say 1

million  coins  the  probability  that  the  number  of  heads  is  greater  than  0.75  million

probability  that  the number of heads  is  greater  than 0.75 million that  is  going to be

something like 4 divided by 4 million ok.  So, 1 in a million chance whereas earlier

bound would have told us 2 by 3. So, this is a Chebychev’s inequality is already a much

better bound Markov inequality. We will try to get a significantly better bound in both of

these bounds and that is what we will look at in this class.
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So, first in order to understand what is Chebychev, Chernoff bounds we will look at

moment generating functions ok. So, let X be a random variable; so, clearly tx is also a

random variable for any value of t and e raise to tx are so, clearly tx and e raise to tx are

random variables; now we can compute the expectation of e raised to tx. So, moment

generating function of this variable x is defined as the expectation of e raised to tx. So,

look at this particular random variable; its expectation is going to be called the moment

generating function. Note that the moment generating function is a function of a variable

t; for each value of t we will get a different random variable e raised to tx and those

random variables can have their own expectations that expectation is called the so, that

expectation is the value of M x t.

So, this expression expectation of e raised to tx that is going to be dependent on t that

function is called as a moment generating function. So, e raised to tx we can alternatively

alternately write as expectation of 1 plus tx by 1 factorial plus t square x square by 2

factorial plus t cube x cube by 3 factorial and so on. And, by linearity of expectation, we

can write this  as expectation of 1 plus t times;  t  is a constant expectation of x by 1

factorial plus t square into expectation of x square by 2 factorial plus so on ok; so, this is

your M x t.  So,  you can verify that  if you differentiate  M x t  with respect to t  and

evaluate this function at t equals 0 you will get expectation of x.

So the  moment  generating  function  has  in  itself  the  value  of  the  expectation  of  the

random variable embedded. Similarly, if you look at the second derivative of the function

M x t and evaluated at t equals 0 you will get this to be equal to expectation ofx square.

In general, if you differentiate it n times then you will and evaluate this at t equals 0 what

you will get is the expectation of x raised to n. So, these expectations are what are called

as the moments  and that  is  the reason why M x t  is  called  as a moment generating

function.
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So, now let us just look at the; let us look at this moment generating functions more

closely. If you have two random variables X and Y such that they are independent then,

when you look at the random variable X plus Y so, this will have moment generating; if

whenever  it  has  a  moment  generating  function  ok.  So,  what  will  be  the  moment

generating function of X plus Y ok; so, this will be the moment generating function of x

times the moment generating function of y ok. In other words the moment generating

function of x plus y is equal to M x t times M y t when X and Y are independent not too

difficult to see. So, if you look at the random variable X plus Y its moment generating

function is nothing, but e raised to t times x plus y and the expectation of this.

So, this  is  the moment generating function of x plus y. This is going to be equal to

expectation of e raised to tx times e raised to ty, e raised to tx and e raise to t y are

random  variables  in  their  own  right.  And,  those  random  variables  are  going  to  be

independent  random variables  because  x  and  y  are  independent.  When  you  look  at

independent random variables and you want to compute the product of these random

variables those I mean the expectation of the product that will be just the product of the

expectation. So, this will be equal to expectation of e raised to tx times expectation of e

raised to ty. So, this is because expectation of x y is equal to expectation of x times

expectation of y when x and y are independent ok.



So, this quantity is nothing, but moment generating function of x and this quantity is

nothing, but moment generating function of y. So, the moment generating function of x

plus y is just the product the individual moment generating functions. Now let us look at

the  moment  generating  functions  of  indicator  random  variables  some  particular

examples.
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So, let us say X takes X is a random variable which takes value 1 with probability say

alpha and 0 with probability 1 minus alpha. What will be the expectation of x sorry, what

will be the moment generating function of; so, we want to calculate expectation of t e

raised to tx this is the moment generating function of x ok. So, this is equal to e raised to

tx can take 2 values  e  raised to  tx is  equal  to  either  e raise  to  t,  this  happens with

probability alpha and this is when x is equal to 1 the value of e raised to tx is equal to e

raised to t and this is equal to e raised to 0 this with probability 1 minus alpha and that

happens when x is equal to 0.

So, the 2 values that it can take are e raised to t and 1. So, the expectation of e raised to

tx is alpha into e raised to t plus 1 minus alpha into 1. So, this can be written as 1 plus

alpha e raised to t minus 1 ok. So, this is clearly less than e raised to alpha t minus 1 ok.

Now, let us look more closely at the problem that we were interested in; you toss a coin

many times what is the probability the number of heads is much larger than the expected



value ok. So, in that the individual toss we will set up as indicator random variables

whether a head has appeared or not and we will look at this sum of these ok.

So, that is and we will  look at  the moment generating function of these independent

random variables. So, let us say that we have all these random variables X 1, X 2 up to X

n they are all random variables which takes 0 or 1 value ok. So, this takes value let us say

X 1 takes the value 1 with probability mu 1, X 2 takes the value 1 with probability mu 2

and X n takes the value n with probability mu n. So, clearly expectation of X i is equal to

mu i because this is 0 and random variable their expectation is same as the probability

that they take the value 1 and if you look at this random variable X is equal to X 1 plus X

2 plus  X n  the  moment  generating  function  of  X is  going to  be  equal  to  these  are

independent random variables. So, your moment generating function is just going to be a

product of the individual moment generating functions ok.

So, if M x i t is the individual random variable sorry if m if M if x i is the individual

random variable M x i t will refer to the moment generating function of the i th random

variable and this is equal to product i going from 1 to n this will be less than or equal to e

raised to. So, here 1 plus alpha e raise to t minus 1 is less than e raised to alpha e raise to

t minus 1 ok. So, here this product is going to be less than e raised to alpha instead of

alpha you have mu i e raise to t minus 1 and this is nothing but e raised to the product

will translate into summation in the exponent summation over i mu i e raised to t minus 1

and summation of the individual mu i s will be equal to the mean of the entire random

variable.

So, if you denote expectation of X to be mu which will be equal to mu 1 plus mu 2 up to

mu n then this will be equal to e raised to mu e raise to t minus 1 ok. So, we know that if

we look at these random variables X 1 to X n which takes value 0 or 1 with probability

mu i each when mu 1, mu 2, mu i then, the moment generating function of the sum of

these random variables is going to be less than or equal to e raised to mu e raise to t

minus 1. These random variables have a name they are called as Poisson Trails ok. When

all these random variables are identically distributed this is also known as Bernoulli trials

ok.

So, in our experiment what we have is, we have these coin tosses or them having the

same bias. So, we have identical coins being tossed. So, we have a sum of Bernoulli



trials. So, our random variable is a sum of Bernoulli trials and we know that in case of

these kind of trials the moment generating function has to be less than the quantity that

we have derived here ok. So, we will use this fact later on, but right now let us just try

and see how we to put these things together and obtain what is known as the Chernoff

bound ok.
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So, we were interested in questions of this kind probability that X is greater than a ok.

Now this is same as this probability is same as probability that e raise to tx is greater than

e raise to t a where t is greater than 0 ok. So, we had an arbitrary random variable x, we

have converted that into a positive valued random variable this applies only when t is

greater than 0. And therefore, once we have converted this into a positive valued random

variable we can apply Markov inequality. And therefore, we will get this to be less than

or equal to expectation of the random variable e raise to tx divided by a, a here being e

raised to t a. Now this statement is true for any value of t in particular we can choose that

t which minimizes this expression.

So, probability that X is greater than a is going to be less than minimum chosen over all t

greater  than 0 expectation  of  e  raised  to  tx  divided by e  raised to  ta.  Note  that  the

numerator and denominator are both functions of the variable t ok. So, you can try and

optimize depending upon the random variable X and how its distribution is e raised to tx

its expectation is going to have some functional form dependent on t and so, numerator



and denominator both has t in them you can try and figure out what is the best value of t,

but is the smallest value that you can choose, so as to minimize this expression and even

for that value this probability will be less than that ok. So, these kind of bounds are in

general known as Chernoff bounds.

Now, this is not a very useful form of Chernoff bound, but we will convert this into a

nice form when X is when we know something more about the distribution of x. We

could also look at inequalities of the form I mean we want to compute the probabilities

that X is less than a particular a now this is going to be equal to the probability that

minus let us say we choose a negative number t. So, then this probability is going to be

equal to the probability that tx is greater than ta here we will choose where t is less than 0

and this probability is going to be equal to the probability that e raise to tx is greater than

or equal to t a. Now e raised to tx. So, this is e raise to ta. 

Now e raised to tx is going to be always a positive valued random variable and therefore,

we can say that this probability is less than or equal to expectation of e raised to tx by e

raised to ta. Again we can minimize. So, this is less than minimum over all values of t of

this expression ok. So, these bounds are what is called as Chernoff bounds, it can apply

both in the case where X is greater than a and X is less than a and for any random

variable X ok. So, now, what we will do is we will convert Chernoff bound into a more

useful form ok.
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So, we will try and obtain the Chernoff bound for these kind of events X greater than say

1 plus delta times mu. So, delta is a parameter that is given to us and mu let us imagine

that it is the expectation of the random variable we want to compute the probability that

X is greater than 1 plus. So, you expect it to be around mu but, what is the probability

that  it  is  greater  than  mu by an  amount  delta  mu ok.  So,  and we will  also  look at

probability that X is less than 1 minus delta mu and together we will also look at we will

combine  these  two things  together  and compute  the  probability  that  X minus mu is

greater than delta times mu ok.

So, these will be special cases of what known as tail bounds ok. We will do this for the

case where,  X is  a sum of Bernoulli  trials  or even Poisson trials.  So,  we know that

probability that X is greater than 1 plus delta mu is going to be less than expectation of e

raised to tx e raise to tx divided by e raise to 1 plus delta times mu t minimized over all

values greater than or equal to 0. Now if X is the sum of Poisson trials of n Poisson trails

then this quantity on the numerator expectation of e raised to tx we know is surely less

than some quantity we had derived this. So, this is the moment generating this quantity

here is the moment generating function of X we had shown that that is going to be less

than e raised to mu e raise to t minus 1.

So, we will use this result. So, we have this to be less than e raised to mu e raised to t

minus 1 by e raise to 1 plus delta ok. So, this is going to be this is equal to e raised to e

raised to t minus 1 divided by e raised to 1 plus delta the whole raised to mu ok. So, what

is the value of t that we will choose in order to make this quantity on the LHS sorry the

RHS we need to make as small as possible what is the value of t that we can choose.
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So, probability that X is greater than 1 plus delta times mu shown this is equal this is less

than or equal to e raised to e raised to t minus 1 divided by e raised to 1 plus delta the

whole raised to sorry there is a t here e raised to the expectation is this quantity and this

probability that the probability that X is greater than 1 plus delta times mu is going to be

less than this quantity ok

This is because this probability that X is greater than 1 plus delta times mu is going to be

less than expectation of e raised to tx divided by e raised to t times 1 plus delta times mu.

So, that is how the t comes in the denominator ok. So, this is our expression we need to

choose a value of t ok. So, any positive value of t would be fine. So, 1 t which can

simplify things is choose t equals. So, let us say we choose e raised to t to be equal to 1

plus delta ok. So, this quantity e raised to t we will choose it to be 1 plus delta clearly.

So, choose the t satisfying this expression and clearly that t is going to be positive t is 0

you will get 1. So, little greater than 0 you will get 1 plus delta as delta is delta some

positive number ok.

So, now this so, if we had chosen this as our value of t we know that probability that X is

greater than or greater than 1 plus delta times mu is going to be less than or equal to e

raised to 1 plus delta minus 1 divided by 1 plus delta the whole raised to 1 plus delta the

whole raised to mu and this is equal to e raised to delta by 1 plus delta the whole raised



to 1 plus delta the whole raised to the power mu. So, this is the probability that X is

greater than 1 plus delta times mu.

Now, let us look at this expression closely in our scenario, we had X to be the sum of n i

i d  random variables and the expectation of X was n by 2. We wanted X to be greater

than 3 n by 4 and we wanted to determine the probability of this probability that X is

greater than 3 n by 4. Now in this case, delta would be 1 half. So, probability so, we were

interested in probability that X is greater than 1 plus 1 half times the expectation n by 2

and this by Chernoff bound is going to be less than or equal to e raise to delta here is half

divided by 1.5 the whole raised to 1.5 the whole raised to mu and mu is going to be n by

2 ok. So, this is equal to so, so, this is root e divided by 1 point five whole square sorry

1.5 raised to 1.5 you can verify that this quantity is less than 1.

Computation will tell you that this quantity is less than 1 and therefore, the probability of

this happening is some quantity less than 1 the whole raise to n by 2. So, when n was

something like 4 million this  is some quantity  less than 1 the whole to the power 2

million. So, it is a much smaller number than whatever we had computed before 1 by 1

million ok. Chebychev bound gave us the probability to be less than 1 in 1 million, but

here were getting a probability some number which is less than 1 the whole raised to 2

million ok. Now this number is it really a small number is it very close to 1 ok. So, in

some sense this formula is not really easy to work with does not really tell us how far is

this away from 1, if this was let us say half and we readily know if this is less than half

we readily know that this is a this gives a very good bound ok. So, let us try and convert

this into a more workable form ok.
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So, we have this probability to be e raised to delta divided by 1 plus delta the whole raise

to 1 plus delta this is same as e raised to delta divided by e raised to log 1 plus delta

times 1 plus delta and that we can write it as 1 by e raised to 1 plus delta log 1 plus delta

minus delta ok. So, if we can show that the exponent here let us call that as T. If T is

greater than 0 for any value of delta then, we have some number which is strictly less

than 1. So, this quantity this entire quantity will be less than 1 ok. So, this will be less

than 1 ok; so, will try to show that. So, if you look at this expression 1 plus delta 2 log 1

plus delta and minus delta you can plot the curves of these. 

So, this is a curve delta and 1 plus delta times log delta if that curve lies to strictly above

this curve then, we know that 1 plus delta log 1 plus delta minus delta is going to be

always positive ok. How do we show that? At 0 the function f 1 and the function f 2 are

both 0 because this is 1 plus 0 log 1 and this is 0. So, log 1 is 0. So, the both of them are

0. So, f 1 and f 2 agree at 0 and if you look at the derivative of f 2 that is so f 2 prime is 1

f 1 prime is going to be 1 plus delta into 1 by 1 plus delta plus log 1 plus delta that is

going to be 1 plus log 1 plus delta. So, f 1 as a function which grows faster than f 2 and

they agree at 1. So, clearly this is going to remove this is going to lie above the so this is

a curve of f 1, f 2 and this is the curve of f 1 ok.

So, this difference is always going to be positive ok. Since it is always going to be a

positive a positive number we can write this is 1 by f delta where f delta is going to be



always greater than 1 ok. So, this entire this tells us that this is going to be some f let us

say. So, the probability of success or the probability that X is less than 1 plus delta times

mu is going to be always less than some let us say g delta raised to mu and g delta is a

number less than 1. Now we will determine the form of g delta.
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So, we have this expression 1 by e raised to 1 plus delta log 1 plus delta minus delta. So,

this we can write it is. So, if you look at 1 plus delta into log 1 plus delta if you just

expand this is going to be 1 plus delta into log 1 plus 1 plus delta we can write it as delta

by 1 minus delta square by 2 plus delta cube by 3 minus delta raised to 4 by 4 and so on

ok. So, this if we just multiply the terms delta minus delta square by 2 plus delta cube by

3 minus delta raised to 4 by 4 and so on, when you multiply the delta you will get plus

delta square minus delta cube by 2 plus delta raised to 4 by 3 and so on. So, this is going

to be equal to delta plus this is going to be delta square into 1 by 1 minus 1 by 2 minus

delta cube into 1 by 2 minus 1 by 3 plus delta raised to 4 into 1 by 3 minus 1 by 4 and so

on ok.

Clearly this is going to be equal to delta plus delta square into 1 by 1 into 2 minus delta

cube by 2 into 3 plus delta raised to 4 4 and so on and what we were interested in this 1

plus delta into log 1 plus delta minus delta. So, this term goes away. So, this is going to

be equal to delta square by 1 into 2 minus delta cube by 2 into 3 plus delta raised to 4 by



3 into 4 minus delta raised to 5 into 4 into 5 and so on ok. How large is this is the

exponent of this term ok. So, if we call this as T how large is T ok.
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We will show that T lies between delta square by 2 and delta square by 3 [FL]. So, we

will show that T lies between delta square by 2 and delta cube by 3 ok. So, T if we know

is equal to delta square by 2 by 1 into 2 minus delta cube by 2 into 3 plus delta raised to

4 by 3 into 4 minus delta raised to 5 by 4 into 5 and so on. Now, if you look at, if you

combine any 2 of 2 terms if you look at delta r raised to n the first term is going to be

negative term delta raised to n divided by n minus 1 into n, the next term is going to be a

positive term delta raised to n plus 1 divided by n into n plus 1. 

We can take what is common delta raised to n divided by n and then what is remaining is

minus 1 by n minus 1 plus delta by n plus 1. The denominator is larger and the numerator

is smaller because delta we may assume is between 0 and 1, if delta is between 0 and 1

when delta is between 0 and 1 these sum of terms taken 2 at a time this is going to be a

negative number because, this is smaller than this quantity if you call it as b and this as a

minus a plus b. So, this if you call this entire thing as a then a plus b is going to be less

than 0 because 1 is greater than delta n minus 1 is smaller than n plus 1.

So, the sum of all these terms all these are all these terms are going to be negative terms

and their sum is going to be negative. So, T is going to be at most delta square divided by

1 into 2. Now if you take the summation in a slightly different way that is if you take



these two together and the next two together and the next two together you can see that

each of these terms are going to be positive ok. So, T so, therefore, T is going to be

greater than delta square by 1 into 2 minus delta cube by 2 into 3 and this is equal to

delta square by 3 into 3 by 2 minus delta by 2. So, this is equal to delta square by delta

square by 3 into 3 minus delta by 2 the maximum value that delta can take. So, this delta

the maximum value that it can take is 1 and even in that case this expression is going to

be 1. So, this is no less than 1. So, the entire value of T will lie between. So, that T

should surely lie between delta square by 3 and delta raised to 2 by 2.

Now, let us look at this expression slightly more carefully. We did this analysis for delta

lying between 0 and 1. But 1 plus delta log 1 1 plus delta minus delta this is of course,

always positive. Since it is always positive, the value of this expression at 1 is going to

be I mean whatever is the value of the expression at 1 that is going to be smaller than the

values at all higher delta ok. So, if delta is greater than 1 greater than or equal to 1 then

this expression p, p is going to be less than the value at 1 which is going to be 1 by e

raised to 2 log 2 minus 1 ok.

We could have just simply written this as e raised to delta divided by 1 plus delta the

whole raised to 1 plus delta and delta equals 1 this is e divided by 2 square. So, that is e

by 4 it is less than 3 by 4 ok. So, when delta is greater than 1 we can readily substitute

this by 3 by 4.
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So, 3 by 4 raised to mu and when delta is less than 1 we have so, when delta is less than

1 we have the following theorem. So, for any delta between 0 and 1 probability that X is

greater than 1 plus delta times mu is going to be less than e raise to minus delta square by

3 the whole raised to mu ok.

So, this is e raised to minus mu delta square by 3 ok. So, this is a form in which we are

going to use Chernoff bound. When delta is greater than 1 of course, so, if delta is greater

than 1 then probability that X is greater than 1 plus delta times mu is less than 3 by 4

raised to mu ok. We can also derive a similar  bound for any delta  between 0 and 1

probability that X is less than 1 minus delta times mu this we can show is less than or

equal to e raised to minus delta square by 2 times mu. Now here, if you assume that X is

a positive valued random variable delta cannot  I mean  there is no sense in choosing a

delta less than I mean let us say greater than 1 if delta is greater than 1 then 1 minus delta

is going to be let us say a negative number ok.

So, we can combine these two theorems and say probability that X minus mu is greater

than mu times delta is going to be less than 2 times e raised to minus mu delta square by

3 ok, we take the smaller of these quantities or smaller or larger. So, this probability is

going to be the sum of these two probabilities and mu delta square by 3 is going to be a

smaller quantity than this. So, we can say that this probability is less than twice; this

twice e raise to minus mu delta square by 3 ok. So, when we try to prove this statement,

we just have to retrace the steps of the previous theorem. But, instead of log 1 plus delta

has  expansion  we  will  have  to  work  with  log  1  minus  deltas  expansion  and  then

everything else is the same and we will get this as the bound ok.

We will stop here for the time being. This concludes our discussion on Chernoff bounds.


