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Welcome to the first lecture on Randomized Algorithms. The textbook for this course

that we will be following is the textbook by Michael Mitzenmacher and Eli Upfal that

name of the book is Probability and Computing. And the second textbook for the course

will be Randomized Algorithms by Motwani and Raghavan.
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So, before we study randomized algorithms, let us first try and understand in what way

does randomization help. If we have a deterministic algorithm, one possibility is that for

every deterministic algorithm, the adversary could choose a particular input which could

make our algorithms perform extremely poorly. So, for such adversaries, randomization

can probably help that is after taking the input we do not mind you, we are not choosing

a random input, but let us say we take the input given by the adversary and modify it in a

certain sense in a random way over which the adversary has no control. 

So, this is possibly one way in which randomizations could help in a wide variety of

computations. We will see a more examples of how randomization helps, but let us first



begin by looking at a randomized algorithm that all of us are very familiar with which is

the randomized quicksort.
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So, let me just write down what are the inputs input and output for this algorithm. So,

input we will assume is a set S of n integers, we will assume for the time being that these

are distinct integers ok. And as output we will expect the sorted version of S. So, if S was

equal to a 1, a 2, a n, then the sorted version would be let us say a i 1 followed by a i 2

followed by a i 3 followed by a i 4 so on up to a i n, so that is what we expect as the

output, now, deterministic algorithm which does this.

For randomized algorithm let  us first  understand:  what  are  the requirements  that our

algorithms must need. So, we could ask and solve these following questions. Does the

answer always have to be correct? This is the requirement; second, if the answer to this is

no, then is it that for all but a few inputs, the algorithm work correctly? Think about

these  questions  and  that  will  help  us  understand:  what  exactly  is  input-output

characteristics that must be satisfied by a randomized algorithm.

Let me describe the randomized quicksort algorithm and then we will again revisit these

issues. So, the first step is choose a number y uniformly at random from S. So, each a 1

to a n is equally likely to be chosen in this step. The second step: construct the subsets S

1 containing  all  elements  of  S  which  are  less  than  y. And construct  the  subset  S 2

containing all elements of S which are greater than y. And then the third step would be



the recursive step, recursively sort S 1 and S 2, and then output S 1 that is a sorted

version of S 1, followed by y followed by S 2, so that will give us the sorted version of

the set.

Now, what is the randomness, how does it affect the input-output characteristics of this

algorithm? The only place where we are using randomness here in this algorithm is in the

choice  of  the  random element  from it.  We know that  for  this  algorithm,  the  answer

returned will always be a sorted input, but the running time for this particular algorithm

the running time is a random variable, the running time is a random variable.

Now, when we say that the running time is a random variable, does it depend on the

initial set of integers or does it depend upon the choice of y? You can see that it is just a

function of the choices that we make inside the algorithm; it is not really dependent on

the input integers. So, this is going to this algorithm is going to give a random running

time. What we are interested in is the expected running time of this algorithm. We could

also look at the probability that the algorithm fails to complete its task in a given amount

of time ok. So, those are the kind of questions that will be that we will be looking at

when we study randomized algorithms.

So, here we mentioned that the running time is a random variable, and it depends only on

the choices made inside the algorithm. In particular, if you look at let us say bubble sort,

there are certain inputs on which the algorithms could do particularly bad, but here there

is no input on which we can guarantee that the algorithm will do poorly. In fact, for every

input, no matter what the input is the running time is only a function of the choices that

we make inside the algorithm depends only on the random choices that we make inside

the algorithm.

So, when we get the expected running time, it means on every input the expected running

time is such and such as supposed to we are not saying that for the average input the

running time is such and such. We are saying for a every input the running time must

going to be a certain or the expected running time is going to be a certain value. So, let

us do an example of this randomized quicksort.
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So, let us say our set of numbers is following 1, 8, 5, 3, 11, 12, 6, 97, 33 ok. Suppose, the

first element that we pick is 3 ok, so let us say 3 is the first element that we picked. When

we split this, we have one set of numbers namely one and everything else is greater than

1 namely 8, 5, 11, 12, 6 97, and 33 again this is already sorted, so nothing to be done

there single element set.

From here we again choose a random element. Let us say if we had chosen 6 then this

again gets split into two parts. If 5 will be on one side, let us say this time we will choose

11 instead of 6. So, if we chose 11 on the left side would be 5 sorry 8, 5, 6 and on the

right side will be 11 sorry 12, 97, and 33 and let us say here we had picked 6, this gets

split into 6 and 8. And here if we had picked 33 and this get split into 12 and 97 ok. So,

this is how the algorithm works.

And basically I have drawn the answer the computation in a tree format, so that consists

of these nodes. So, if we do a in order traversal of this tree, I will get the sorted list 1, 3

5, 6, 8, 11, 12, 33 and 97. So, this is how the algorithm works. If we had instead of 3,

chosen a different number at the start we would have got a different tree. And depending

on that tree the running time the algorithm could vary. What we are interested in is on

and on the average how much time does this algorithm take, what is a expected running

time of this algorithm. We do that analysis ok.
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So, let us introduce some random variables, but before that let  us say S i denote the

element in S with rank i. So, the i i th is smallest element in S, we will denote it by S i

and let us. So, this is not a random element this is a fixed S i is a fixed element if you are

given a particular input S i is the is the i th smallest element in S. Now, let us introduce a

random variable X i j which we will define to be one if S i and S j are compared during

the course of the algorithm and equal 0 otherwise ok.

So, if you look at any particular element S i and S j if they are compared during the

execution of the algorithm then we will have X i j equals 1, otherwise we will have X i j

equals 0. You can note that X i j equals 1 would imply that these are compared and that is

the only I mean any element i and j are compared at most ones; certain elements may not

be compared at all. So, the total number of comparisons gives us a bound on the running

time of the algorithm. So, if you look at summation X i j or all i less than j ok, this can be

written as summation i going from 1 to n summation j going from i plus 1 to n X i j ok.

So, this is the number of comparisons.

We want to estimate how much is this? So, let us see when will X i and X j be compared.

So, here you can see that anything in the left sub tree will not be compared with anything

on this right sub tree. For example, if you look at 11, based on 11 so all the elements

below 11 were compared with 11 that is how we split it into two parts. But 6 is not going

to be compared with 33 ok, because they fall in different sub trees. Similarly, one is not



going to be compared with 11 everything got compared with 3, but they are not going to

be 1 is not going to be compared with 12

So, S i we can write this fact as S i and S j are compared if and only if S i is a parent of S

j or vice versa. If they fall in distinct sub trees, they are not going to be compared one

element is a parent of the other that is the only case in which they will be compared. So,

now, this is when X i j is equal to 1. So, let us call this number of comparisons as X.

What we are interested in is so our aim is to compute the expectation of X by linearity of

expectation  we  know  that  this  summation  this  expectation  is  just  the  sum  of  the

expectation on the individual random variable.  We can write that expectation of X is

equal to sum over say i less than j expectation of X i j, X i j being an indicator random

variable its expectation is going to be just its the probability of the event that indicates.

So, expectation of X i j is equal to 1 into probability that X i j is equal to 1 plus 0 into

probability that X i j is equal to 0. So, this we will call this as P I j. The probability that X

i j is equal to 1, we will indicate it by P i j. So, therefore, expectation of x is going to be

summation over i less than j P i j ok. Let us compute that probability how much is P i j

going to be. So, we can also write it as summation over i going from 1 to n, j going from

i plus 1 to n P i j.

So, let us look at the element S i and the element S j. When will they be compared? So,

there are i minus 1 elements here, in between there are certain elements and after this

there are certain elements.  Now, in our algorithm, we are randomly choosing various

pivots. In this interval, from i to j there are precisely i minus j plus 1 elements ok. So, if

this is the 10th element and this is the 20th element then in between up from 10 to 20,

including  10  and  20,  there  are  11  elements  in  our  algorithm  at  each  stage  we  are

randomly choosing a an element y which we may call as a pivot element.

So, if an element in between S i and S j is being chosen as the pivot element before S i

then S i and S j will not be compared. For example, let us say if this element it is called

this is alpha, if alpha was chosen before S i and S j, then what we can say is alpha will be

compared to this side it will go into one subtree and as S j will go into another subtree,

and there is no possibility of comparing S i and S j. The only case in which they will be

compared is when out of these elements, these i minus j plus 1 elements either S i or S j

is picked before every other elements inside this ok.



So, I will write this as a fact S i and S j are compared if and only if S i or S j is chosen

ahead of the elements in between S i and S j ok. So, we can imagine the entire algorithm

in  the  following  way. We choose  a  random permutation  of  1  to  n  that  tells  us  the

elements that we are going to pick as pivots in each stage of the algorithm ok. So, in

amongst these permutations, we need to find out the number of permutations in which S i

or S j appears before an element in between S i and S j.
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So that happens with the so probability that S i and S j are compared is equal to be

denoted this by P i j, this is equal to 2 divided by j minus if you assume i to be the larger

element, assume i to be the smaller element, then this becomes j minus i plus 1. While

considering a random permutation pi, let x be the first element chosen from S i to S j by

symmetry each element in the set S i to S j is equally likely to be x. 

But if x is anything other than S i or S j, S i and S j will not be compared during the

sorting process. So, the probability that S i and S j are being compared is equal to the

total number of favorable choices for x which is 2 divided by the total number of choices

that we can make which is j minus i plus 1. So, P i j becomes 2 divided by j minus i plus

1.
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So, therefore, summation i less than j P i j will be equal to summation i going from 1 to n

summation j going from i plus 1 to n 2 by j minus i plus 1 ok. So, when j equals i plus 1

this quantity is summation i equals 1 to n, this will vary from k equals 2 2 n 2 by k ok.

So, this summation is at most. So, this is less than the inner summation is less than H n.

So, this part is H n. So, we can say that the whole summation is less than i going from

one to n H n, where H n is the nth harmonic number its equal to 1 by 1 plus 1 by 2 plus

up to 1 by n, this is approximately log n ok.

So,  the  overall  summation  is  going  to  be  less  than  n  log  n.  What  you  can  say  its

approximately n log in ok, so that tells us that randomization can help us come with very

simple algorithms with very good running time. We will now look at yet another problem

in  where  randomization  helps  us  which  is  the  problem  of  matrix  verifying  matrix

multiplication.
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So, let us take the problem. The input is three matrices. So, we can assume that A, B, C

are n cross n matrices or some suitable field. The elements come from a field f you can

think of them as real numbers ok. Now, what we are interested in is the output should be

yes if A times B is equal to C; and this should be no otherwise ok. So, if the matrices A

and B multiply and give us the matrix C, then they our answer is yes; otherwise the

answer is no.

Let us think of an algorithm to do this we could simply multiply the matrices a and B and

then compare it with the matrix C that is going to take us this multiplication if we do a

Naive multiplication we will require n cube steps, and then we can compare it with C

that  is  going  to  be  taking  n  square  steps.  So,  the  running  time  of  this  algorithm  a

deterministic algorithm is bounded by n cube, you need you require no more than O n

cube of course, we could do faster multiplications of the matrices in which case we will

get  something  like  n  raise  to  omega,  where  omega  is  the  exponent  of  matrix

multiplication ok. Let us say something like 2.5 whatever is the value of omega it is still

greater than the input size.

The input size is n square. There are three matrices of size n cross n which means the

input is of size three n square. So, can we get an algorithm which will do this task better

than let us say these algorithms by I mean instead of can we do it without multiplying out

matrices A and B, is there some other way?



That was a simple technique ok. So, write down the algorithm choose a vector. So, we

will think of this as a n cross 1 matrix randomly. So, all possible n cross 1 matrices or

vector s are equally likely. Compute so this vector let us call it as x compute A B x and

compute C x, return yes if A B x is equal to C x, return no otherwise. This is a better

algorithm than the previous algorithm where and we just computed A, B and C and then

compared them. But this algorithm could give incorrect answers, there are certain inputs

on which the algorithm could give incorrect answers, but there are certain inputs the

algorithm will never give in incorrect answers.

For example, if A B is equal to C, no matter which random vector you take, you are

always going to get A B you are going to get the answer yes ok. But there are certain

inputs on which the algorithm could give incorrect answers. For example, if a we are not

equal to C, then there are certain Xs that you could choose which could result in the

answer, yes, when the correct answer would have been no. For example, when if you

have two matrices says that A B is not equal to C, and the random vector that you chose

was unfortunately let us say the all zero vector. If you multiply that with A B, you will

get 0. And if you multiply it with C, then also you will get 0. And zero being equal to the

zero vector being equal to the zero vector, the answer would be yes whereas, the correct

answer would have been no ok.

So, clearly this algorithm does not have some properties that the earlier algorithm did not

have. For example, it gives incorrect answers ok, some certain undesirable properties.

But what have we gained out of this I mean by introducing I mean we now have a chance

of committing mistakes, what did we gain by doing that. Well, the running time of this

algorithm  is  much  better  than  the  previous  algorithm,  because  here  the  matrix

multiplication we will compute it in the following way A times B times x.

Now, B being an n cross n matrix and x being an n cross 1 matrix, the multiplication only

takes O n square because we could just take the matrix this is a matrix B and multiply it

with so these elements are multiplied with these elements ok, so that is that takes O n to

compute one element we have let us say n elements to compute each of them can be

computed in linear I mean oh n order of n time. So, total running time is O n square. So,

this is this computation can be done in O n square, and you will get n cross 1 matrix

which again can be multiplied with a which is an n cross n matrix and that also takes O n

square.



So, this entire computation can be done in O n square time and then you have to compare

it with you to compute C x and compare with it. So, the total running time is O n square

ok. So, this computation this computation takes only O n square time. So, we have saved

on computation computational effort, but we have introduced errors. So, we will try and

analyze how bad is the error ok.
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So, let us look at the matrix A B times x being equal to C x. This is the only case sorry.

So, if A B is equal to is not equal to C, the algorithm could return two answers. If A B is

equal  to  C the  algorithm will  always  return  the  answer,  yes,  and that  is  the  correct

answer. When A B is not equal to C, the correct answer should have been no, but the

answer  the  algorithm returned could  be  yes.  So,  we want  to  compute  the  following

probability, probability that A B is not equal to C and the algorithm returns yes as the

answer.

So, when does this happen? So, since A B is not equal to C we can look at the matrix A B

minus C let us call this is the matrix D ok. So, the algorithm returns yes only when is D

times x is not equal to this is equal to 0. We know that D is not equal to 0, but D times x

is  equal  to  0.  So,  we will  look at  this  probability  that  D x  is  equal  to  0  under  the

condition that D is not equal to 0 ok. So, D is this matrix which contains lot of elements

let us say d 11 d 1 n the d n 1 to d n n ok. So, this times x 1, x 2, x n is equal to 0.



We want to look at what is the probability of. So, this is our matrix D which is known to

be a nonzero element at least one of the elements inside this is nonzero element. And we

want to look at the amongst the choices of x 1 to x n, how many of those choices would

result  in  making  this  product  0  that  will  basically  give  us  a  bound  on  the  error

probability. So, let us we can we can assume without loss of generality that d 1 1 is the

nonzero element. If d 1 1 was not the nonzero element, we could carry out this entire

analysis by shifting rows of D and columns of d to make d 1 1 d first element and then x

1, x 2, x n has to be chosen appropriately.

So, let us say that d 1 1 is nonzero. Now, if we get this entire matrix to be 0, clearly one

requirement is that the first element in the column vector d x the if you consider the

column vector  d x,  the first  element  inside that  should be 0 that  would give us this

equation d 1 1 into x 1 plus d 1 2 into x 2 plus d 1 n into x n should be equal to 0. So, let

us imagine that these choices the choices for the random variables x 1, x 2, x i mean x 2

up to x n. So, these random variables let us say that their choices were already made ok,

that gives us some particular vector with x 1 not yet being chosen.

Now, once you fix these x 2 to x n, this expression d 1 2 up to d 1 n they get fixed and let

us say that value is alpha ok. Now, we can look at this as a linear equation d 1 1 times x 1

plus alpha equals 0, therefore, x 1 is equal to minus alpha times d 1 1. In other words,

there is precisely one value of x 1 that you can choose which will result in d x being 0.

So, if the random vector was chosen in such a way that each elements x i was chosen

from a field of size let us say f, then only one choice out of mod f choices would result in

the algorithm returning an incorrect answer ok. 

Even if the field was of size two the probability of error is less than half because the

probability of error is going to be less than one by size of the field which is certainly. So,

this  quantity is certainly less than half  ok. So, we know that the probability  that  the

algorithm makes a mistake is no more than half, but is that good enough. So, we will do

something that we will be using again and again which is the notion of repeated trials.
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So, we have an algorithm which checks if A B equals C, and it returns the correct answer

with probability greater than half ok. So, probability of success is greater than half or in

other words probability of failure is less than half. By success what we mean here is that

the algorithm returns the correct answer, this is an algorithm which returns the correct

answer  every  time when A B is  equal  to  C.  And it  returns  the  correct  answer  with

probability greater than half then A B is not equal to C.

Now, let us just repeat the algorithm 100 times. And we will note down the answers

returned by the algorithm. If the first time the answer is no, and the next is yes and no

and so on ok, what can we say. If A B where equal to, so we can we just repeated the

algorithm 100 times,  so the  running time is  just  C n square where C is  an absolute

constant here it is let us say we repeated it 100 times. So, 100 n square as the running

time. If now if this was the output we know that if A B we are equal to C, then the

algorithm would never return the answer no ok, because on all inputs A and B where

which are equal. So, if A B is equal to C, every, for every x, A B x is equal to C x. If A B

is not equal to C, there might exist x such that A B x is not equal to C x ok.

So, here if it says if the algorithm says no, that means, the algorithm has found out some

x such that A B x is not equal to C right. So, even if there was one such the answer is

going to be we can conclude that A B is not equal to C. So, even in this 100 repetitions

after processing this we will say the answer yes only if all 100 trials resulted in yes; and



we will say no when all trials meaning so we will say no otherwise ok. So, you know we

could also just stop at the first time a no appears that is equivalent, instead of doing it

100 times we can continue doing 100 times if all the previous runs resulted in yes.

Now, what is the probability of success of this algorithm well each of these repetitions

being independent of each other if A B were equal to C, we will we will our algorithm

will be correct with 100 percent probability. If A B is not equal to C, each trial the failure

probability is less than half each style be argued that the success probability is greater

than half. Therefore, in each trial the failure property sorry the failure probability is less

than half. Therefore, for 100 trials the failure probability is less than half to the power

100, only if each of the trials fail, we will be giving the answer no ok.

So therefore, this is this very small number. So, we still have a O n square algorithm with

very small error probability or in other words we have very high error probability high

success  probability.  We will  stop  here  for  today;  continue  our  study  of  randomized

algorithms in the next lecture.


