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Welcome to the tutorial session of the first week. In the last tutorial, we have worked out

few  numerical  problems,  pertaining  to  performance  improvement  of  processors  and

pipelining issues. We will continue today’s tutorial video also on the same topic. So, we

will go in to the first problem. So, here goes the problem.
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A company  is  releasing  3  modification  version  of  it  is  processor  architecture.  The

modifications  that  are  being  considered  have  multiple  ramifications  to  the  3  major

components X Y and Z of the processor. The ramifications are outlined in the following

table, in which each entry denotes the factor by which the speed up of their component in

the column header will be affected.

The fractions of total execution time for these 3 components X Y and Z are 30, 45 and 25

percentage respectively. Identify the speed up or slow down that are to be expected from

each of these 3 modifications. So, we are supposed to rank these 3 modifications in terms

of speed up. So, the question that is given here is; I would write to redraft, a company is



releasing 3 modification versions of it processor. So, these are the 3 versions that are

mentioned.

Now, version A if you try to implement version A. The component X in the processor

there are 3 components A X Y and Z 3 components are there. X will be speeded up by

1.4 times. Y will be speeded up by 0.8 times. And Z will be speeded up by 1.5 times. So,

any number less than 1 means it is actually slowing down. If you apply version B, then

we can see that these are the speeding a factor correspondingly on X Y Z. And for ,C,

these are the speeding a factor.

So, we can see that when you make or when you going to use version A, component X is

going to be speeded up by a factor of 1.4 whereas, component Y and component Z are

going to have a different kind of a speedup. Similarly, for version B and version C also

appropriate changes are there. And we it is already mentioned that the fraction of usage

of X Y and Z. There are 30 percent of the code is going to work with X, 45 percent of the

code is going to work with component Y. And 25 percent of the code is going to work

with component Z.

So, what is the overall speed up that you are going to a chain. So, there are basically 3

components that we are going to divide X Y and Z. All this code will either go to X or go

to Y or go to Z. Let us try to solve this problem.
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This is the way by which the summary of the task is been given. And we know that the

Amdahl’s law is going to apply here, because we are going to have some kind of a speed

up. So, the speed up for version A can be defined as 1 by since the first version is 1

minus alpha plus alpha by n; where alpha is the component that gets affected. Now in

this case if you look into 1 minus alpha 1 plus alpha 2 plus alpha 3. So, alpha 1 we can

see that it is 30 percent. So, it is 0.3 and alpha 2 it is 0.45 and alpha 3 it is going to be

0.25.

If you add up all this 3 you will get 1. So, essentially it is 1 minus 1 equal to 0. So, there

will not be any component which is not going to be affected by the change. So, we can

redraft the Amdahl’s law in this way.

(Refer Slide Time: 04:26)

It is 1 by alpha 1 by n 1, plus alpha 2 by n 2, plus alpha 3 by n 3. There is a way we are

going to define this. So, it is 1 divided by, what is first portion? It is 0.3 divided by 1.4. A

component X is going to be affected by 1.4 times. And the percentage fraction of the task

that is going to be using axis 30 percent plus, that of Y it is 0.45 is diffraction. And the

speed up that is going to impact the miss 0.8. And the third one is 0.25 divided by 1.5.

So, if you sort out this you will get a value 1 divided by 0.942 and that is 1.06 times. So,

this  is the summary of the first  performance.  The version A, if you are going to use

version A, you are going to get a speed up of 1.06 times. Because each component this is

the fraction that you are going to get the benefit. So, let us try to summarize the result.



Whatever we are getting in version A so, if you apply version A then the result at that we

are going to get is 1.06 times.

(Refer Slide Time: 06:03)

So, version A has 1.06 times. Now we will try to work up on version B. The speed up

that you are going to get for version B is 1 divided by it is 0.6 that is a alpha 1. So, it is

going to be 30 percent. So, 30 percent divided by 0.6. 0.3 divided by 0.6. So, 0.3 comes

from the 30 percent factor, divided by n 1 is 0.6. Now the second component is 0.45 that

is  alpha 2,  this  is  the value of alpha 2,  and this  is  n 2 it  is  1.6 times,  plus the last

component is 0.25, divided by n 3 n 3 is 1.8.

Upon solving we get the value 0.919. And that will be equal to 1.08 times. So, it is 1.087

times is the speed up that we are going to achieve if we operate on version B. So, from

this we can see that, first version that is version A is getting a speed up of 1.06 times

whereas, version B is going to get if going to give us a speed up of 1.08 7 times. Now we

will work into the third version, and see how much it is going to affect the performance.

So, when you substitute the values of the third one. We have 1.3 as the first speed up.



(Refer Slide Time: 07:56)

So, 1 divided by 0.3, that value you will get from here, by 1.3 plus 0.45 divided by 1.4

plus 0.25 divided by 0.9. And this will add up to a result of 0.828. And that is equal to

1.20 times. So, the last one is going to give us 1.20 times performance.

So, this is a standard application of Amdahl’s law. We have learnt in Amdahl’s law that

the speed up that, you are going to obtain is given by the equation 1 by 1 minus alpha

plus alpha by n. Now if you look at this, in order to get a clearer concept of this let me

redraft it once again 1 by 1 minus alpha plus alpha by n. That is been given by Amdahl’s

law,  it  states  that  alpha  is  the  component  that  is  not  going  to  be  affected  by  the

enhancement. And n is the number of times the performance is going to improve on the

enhancement applied section.

So, if you work on this you can see that in this application; since 30 percent plus 45

percent  plus 25 percent  added together  to  100 percent,  then this  1 minus alpha  will

essentially become 0. That is why we are using only this component alpha 1 by n 1 alpha

2 by n 2 and alpha 3 by n 3. These are the 3 versions that we are trying to use. So, in the

question it is asking there we have to put this speed up. So, the best performance we are

getting in version C. The second best performance comes in version B, and the third

worst performance is going to be there.

So, C is the best, and followed by B and then we are going for A. So, this is how we

solve the first question.
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We will move into the second problem. Assume that an original machine is a 5 stage

pipeline with a 1 nanosecond clock cycle. There is a second machine which is at 12 stage

pipeline with 0.6 nanosecond clock cycle. The 5 stage pipeline experiences a stall due to

data hazard for every 5 instruction whereas; the 12 stage pipeline experiences 3 stalls for

every 8 instruction.  In addition,  branches constitute 20 percent of the instruction and

misprediction rate for both the machines is 5 percent.

If the branch misprediction penalty for the first machine is 2 cycle. And for the second

machine is 5 cycle. What is the speed up of the stalls 12 stage pipeline over the 5 stage

pipeline taking into account only data hazards, and both data hazards and misprediction?

Let us try to understand what the question is here we are given data of a 5 stage pipeline

as well as a 12 stage pipeline. Now the 5 stage pipeline it has a data hazard issue where

for every 5 instruction there is s stall. So, the meaning is completion of 5 instruction will

take 5 plus 1 that is 6 clock cycles.

Similarly, for the 12 stage pipeline, you have 3 stalls for every 8 instruction. So, when

you do 8 instruction there are 3 more stalls, the meaning is 8 instruction will take 11

cycles level means, 8 plus 3 11 cycles to complete. So, that is the aspect of data hazard.

So, from this we can get CPI cycles per instruction. Now both the machine if you go for

this branch hazards, due to misprediction of branches, they both are going to have some

kind of stalls. So, we have 20 percent of the instructions are branches. Now out of the



branches only 5 percent of them are mispredicted. These 5 percent of branches are going

to take 2 cycle stall in the 5 stage pipeline machine and 5 stalls or 5 cycles stall in the

case of a 12 stage pipeline.

So, considering all these factors, the question that is asked is how much speed up the 12

stage pipeline has over the 5 stage pipeline.

(Refer Slide Time: 12:49)

So, I am just trying to summarize what we have discussed so far. The 5 stage pipeline is

going to work at 1 nanosecond and the 12 stage. This is not 2 stage it is 12 stage pipeline

is going to work on 0.6 nanosecond. So, 5 stage pipeline has a data hazard. It takes one

cycle for every 5 instruction; that mean, 6 cycles are required to complete 5 instructions.

Whereas, this will take 11 cycles are required to complete 8 instruction.

Let us try to find out what is the stalled at these both these are going to encounter if it is

only data hazard. So, the CPI of the 5 stage pipeline is you require 6 cycles to complete 5

instructions. So, it is 6 by 5 is basically the value. Now this is going to be 1.2. Now the

CPI of the 12 stage pipeline is it requires 11 cycles to complete 8 instruction. So, it is

going to be 1.375. These are the CPI values. Now the question is how much speed up

you are going to get if you revisit the question, what is the speed up of the 12 stage

pipeline over the 5 stage pipeline by taking into the data hazard.



So, if you look at the speed up that you are going to get in the 5 stage pipeline, speedup

is defined as execution time of the 5 stage pipeline divided by execution time of the 12

stage pipeline; that is, CPI of the 5 stage pipeline in to clock cycle time divided by CPI

of the 12 stage pipeline into it is clock cycle time, clock cycle time of 5 this is clock

cycle time of 12. This will take us to 1.2 nanosecond 1.2 is a CPI into 1 divided by 1.375

into 0.6. This is going to give us a speed up of 1.454 that is a speed up we are going to a

chain.

So, the answer for the first component is the 12 stage pipeline has a speed up of 1.454

times over the 5 stage pipeline. Let us try to revisit what we have done. From the given

question, considering only the data hazards the 5 stage pipeline is going to have. It is

take 6 clock cycles to complete 5 instructions. So, 6 by 5 1.2 is a CPI. And the CPI for

the 12 one it is going to take 11 clock cycles to complete 8 instruction. So, it is 1.375

they both are operating at a different clock the 5 stage pipeline is having a 1 nanosecond

clock whereas, a 12 stage pipeline is going to have a 0.6 nanosecond clock.

So,  the  CPI  into  clock  cycle  time  is  the  execution  time  per  instruction.  So,  each

instruction  will  take  1.2  nanosecond  to  complete  in  the  case  of  a  5  stage  pipeline

whereas, in the case of a 12 stage pipeline we are going to take 1.375 into 0.6. Let us say

clock cycle time getting an average speed up of 1.454. Now let us try to visit the second

portion  both  data  hazard  and  misprediction  are  taken  together,  how  much  is  the

performance that you are going to get.

So, in the second case along with the data hazard, we have to add the stalls that are

incurred by the pipeline when there is a branch misprediction and we how to find that the

branch misprediction happens how frequently. The branch misprediction happens in 20

percent of the branches.
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And 5 times it will going to mispredict. So, there are total of 20 percent is branches, and

out of the branches 5 percent of the branches as misprediction.

So, the CPI of the first machine we have seen that with the data hazards it is 1.2, plus

there are 20 percent of branches. Now each branch out of the 20 percent branches [noise,

only 5 percent of them are going to be mispredicted. And so, this much is the stall that is

called by the branch. And the value is so, this value 1.2 is the stalls that are incurred by

the data hazard that is basically a 6 5 by this 6 by 5 is 1.2. So, this will give you a value

1.22.

Now, when it comes to the 12 stage pipeline, the value that they were having is the initial

CPI was 1.375, plus 0.2 that is a total percentage of branch instruction. And out of the

branch 0.05 is misprediction, but 12 stage pipeline for every misprediction it is going to

take 5 cycles. So, this will give us a value 1.425. Now when you are going to find out the

speed up, then the speed up can be mentioned as the ratio of the execution time.

So, when you consider the execution time. The execution time is defined as CPI into the

corresponding clock cycle of one machine divided by other.
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So, it is execution time of the 5 stage pipeline divided by the execution time of the 12

stage pipeline. So, it is 1.22 into 1 divided by 1.425 into 0.6. And the value is 1.426. So,

when you consider the misprediction, then the speed up obtained is slightly less, because

it is going to have 5 cycles for the branch misprediction.

So, the answer for this one is, when you consider only data hazard, then the speed up that

the 12 stage pipeline is having over the 5 stage pipeline is 1.454. And when you consider

both data hazard and the branch hazard then it is 1.426.
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Moving into the third problem assume a standard at 5 stage pipeline IF ID EX MEM and

write back, how many cycles it will take for the following code to get complete? So, by

what end execution will get over, if you are using a normal pipeline without using an

operand forwarding. So, let  us considered this one, the first add instruction.  So, it  is

going to perform fetching on clock cycle one fetch,  decode execute MEM and write

back.

So, there is no operand forwarding. So, you have to wait for the result. Second one there

is a raw dependency. You can see that this is R 1, this is also R 1. So, you are not going

to perform the decoding because there is no operand forwarding. So, decoding can be

done only here. So, these are stalls, why decoding is done only there? Meaning is, the

first instruction is going to write into R 1 only at clock cycle 5. So, then only I will get

the value. So, here only I can perform decoding. So, that lead to is case that X, this is

MEM and this is write back.

Now, what we have to do is, in this case now fetching of the third one that is going to

happen only here, fetch. The third one is also having a dependency on R 1, but now the R

1 value is ready. So, fetch decode execute MEM and write back. And the last one is also

having a dependency, but since we are using a normal simple pipeline, this is the order in

which  the  instructions  are  getting  over.  So,  if  you  revisit  what  happened?  The  first

instruction get over it 5. Second instruction can perform decode only at clock cycle 6,

because second instruction has to read from R 1. And R 1’s value is available only a

when the first instruction is complete. So, second instruction can perform decoding at

clock cycle 6, and that gets over at 9 and thereafter your 10 11 and so, you are going to

complete by clock cycle number 11.
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Now, the same question is being redrafted what happens if it is with operand forwarding.

So, the same question is there we are trying to understand what will happen if it is with

operand forwarding. So, we will work out the same problem. So, fetch decode execute

MEM and write back. These are the 5 stages now operand forwarding is permitted so, I

have fetch here, I will perform decode. From the output of ALU that is a value of R 2

plus R 3 is forwarded to the input of ALU.

So, in this case forwarding happens. So, what is forwarding here? The value from the

output of ALU is forwarded to the input of ALU. So, it is an ALU to ALU operand

forwarding. So, there is no stall that happens, data will reach at the correct time now.

When you go to the next instruction, it is fetch decode and execute. So, this wants the

same R 1 data, and that R 1 data is to be forwarded, but this time the forwarding happens

from the MEM stage. So, this is how the data will reach the execution stage and if you

go to the last instruction. So, it is fetch decode execute MEM and write back. Here also

the value is copied into the ALU.

So, we have 3 operand forwarding, the value from output of ALU is given to the input of

ALU. Here from output of MEM stage it is given to the input of ALU. And here from the

output of write back stage it is given to the input of ALU, such that the second third and

the 4th instruction can work in its assigned time slot. Because ALU will get the data by

appropriate operand forwarding.



So, here we can see that first instruction complete by 6. And there after every instruction

is going to complete at the same time. So, the whole thing will get over at 8 clock cycles.
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Now, let us go for another pair of instruction this is also, but the code is changed. And we

have an add instruction  followed by a  load  followed by a  store,  and then  you have

another  add  this  is  also  without  operand  forwarding.  So,  if  it  is  without  operand

forwarding  here  you have  fetch,  decode,  execute,  MEM and write  back.  Let  us  see

whether there is any dependency. Here there is a value R 1 and that R 1 is used in the

address computation for load.

So, R 1 will be available here. So, it is fetch decode R 1 plus 8 has to be used. So, it is if

it is without operand forwarding, I can perform. So, if it is without operand forwarding,

then the decode stage cannot be complete.  Because my id state is possible only after

value is written to R 1 because a load instruction has to read the value of R 1. So, reading

of R 1 is possible only the writing of R 1 by the previous instruction is over. So, at this

point only we can perform the second instruction.

Now, whatever you are going to load the value that loaded value has to be written by

this. So, the next instruction store, value of will be written to R 4, only at this point only

at clock cycle number 9. So, store can read the value only at this. So, fetch, decode,

execute, MEM and write back. So, these are the stalls, I will repeat what happens for the

store instruction. The store instruction has to read the data that is written by the load



instruction previously. The load instruction will complete it is operation. That is value

will be written to R 4 only at clock cycle number 9. So, store can perform the register

read only at clock cycle 10 these both are dependent, that is a dependency here then it

completes.

Now, you have to perform add of R 1, R 4 and R 5. So, if you look at that it is dependent

on R 4, but R 4 value is already available. So, it can run it is assigned time slot. So, if it

is  without  operand  forwarding,  what  are  we  trying  to  see,  the  first  instruction  get

complete  by  5.  Second  instruction  decode  stage  cannot  happened  before  the  write

backstage of the first instructions. So, there exist a dependency like this. Similarly, the

second instruction after it writes then only the third instruction can read. So, it happens

like this and the last instruction happens.

So, in this case, the instructions are getting over at the 14th clock cycle. So, the question

is, how many cycles it will take for the following code to get complete. So, this code will

get over only in 14 clock cycles. Let us try to do this problem with operand forwarding.

The same question is with operand forwarding. So, if it is with operand forwarding.

(Refer Slide Time: 27:36)

The first instruction will run in it is assigned time slot. Now if you look at the second

instruction there is operand forwarding there. And the value to be written to R 1 can be

forwarded to the input of ALU for address computation.



So, in this case it will run in it is assigned time slot. Because I could forward the value of

R 2 plus R 3 from the ALU to the input of ALU such that R 1 can be used for effective

address computation. And now we are going to store the value so, by what time the value

will be available? The value is available at this point. Now if you have a store operation,

the store operation will decode, but 12 of R 1 is the address computation the address

computation happens in it is normal slot because we want the value of R 4 only before

storing. So, it is actually a value from the input of MEM stage.

So, at this point the data is ready the loaded. Value is ready and that loaded value is to be

copy to other location. So, if you look at these 2 addresses, I load a value into R 4 and

whatever is there in R 4, I am storing into a different address. So, the value that is read

from the memory is forwarded to the input of memory units such that you can complete

the operation. So, this will be your write back stage. And then we have an R 1, R 4 and R

3. There is now dependency issue there. So, fetch, decode execute, MEM and write back.

So,  this  shows that  in  this  case with 8 clock cycle,  we are able  to  complete  up the

operation. So, the first instruction get over at 5. Because of effective operand forwarding,

second instruction will complete at 6 because from the output of ALU the data is copied

to the input of ALU. And from the output of MEM stage data is copied to the input of

MEM stage. So, then the third instruction also will get over in it is a same time slot. So,

overall this instruction with operand forwarding it is going to complete in 8 clock cycles.

Whereas, you can see that without operand forwarding in the previous example it was

taking 14 clock cycles.
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Now, let us goes to another set of code; where we have a load instruction followed by a

couple of ALU instructions. This is also without using operand forwarding. We will try

to see how we can do that. So, fetch, decode execute, MEM and write back. These are

the 5 stages for the first instruction. Since there is no operand forwarding, and there exist

a  data  dependency  between  the  first  and  second  instruction.  Second  instruction  can

perform register read only if the first instruction is going to complete. So, this is; second

instruction has to read from R 1 value of R 1 will be available only at the end of the fifth

clock cycle. So, we are going to have stall like this.

Now, we have the next instruction is and is dependent on the output of subtraction. So, if

you look at  that,  we will  fetch will  happen here,  decode can happen only this  point

because R 4 is needed. Value will be written to R 4 only at this point; that is, at clock

cycle number 9 only we are going to write the value into R 4 and that R 4 is needed. So,

R 4 can be read only after the ninth clock cycle, these are the stalls. Now if you look at

the last one. There is no dependency issues there. So, they can be assigned in it is normal

time slot.

So, the whole instructions will get over at clock cycle 14. So, if you try to conclude first

instruction will  over at  5.  Second instruction decode is  possible  only at  6 because it

should happen after 5. So, thereby second instruction getting over at 9. There exist a row

dependency  between the  second and third  instruction  for  the  value  R 4.  So,  second



instruction completes writing into R 4 at clock cycle 9. So, third instruction can do it is

register reading or decode operation only at 10. Third instruction will complete at 13.

There is no issues between the third and 4th. So, the last instruction is going to complete

at 14.

So, this code will complete at clock cycle number 14.
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Let us see what will happen if we are going to enable operand forwarding. So, if you

enable operand forwarding so, fetch decode execute MEM and write back. Now the first

instruction  will  get  it  is  data  to  R 1 only at  clock cycle  number 4.  So,  execution is

possible only at this stage. So, we have A 1 cycle stall. The meaning is, whenever you

have an ALU instruction immediately, after a load instruction then there exist A 1 cycle

stall.

So, from this memory stage only we can copy, because the value that is taken from 0 of

R 3 is accessed from memory, only at the end of the MEM stage. From the MEM stage

you are forwarding it to the input of ALU because there exist a data dependency. So, this

is the way how you compute this subtraction instruction. And then when you go to the

and  there  is  a  data  dependency  between  them,  but  if  you  use  an  effective  operand

forwarding, then without a stall we could manage. From the output of ALU so, at this

point the value of R 1 plus R 5 is computed, and that is to be written to R 4 that can be

forwarded to the input of ALU such that the next instruction can work. And then go for



the last one. Decode, execute, MEM and write back. Here we can see that there exist no

data dependency between them. So, it will complete in the assigned slot.

So, these are the places where you get the stalls. So, one stall is propagating, and if you

look at the completion first instruction completed 5. Second instruction it will have a

stalled  so,  it  get  complete  only  at  7.  So,  whenever  you  have  an  ALU  instruction

immediately after a load instruction. Then there is a stall, even with operand forwarding,

and then all the instructions will complete after one cycle each. So, at the end of the ninth

clock cycle we are able to complete all the instructions.

So, this gives you a fair id about how things work when operand forwarding is enabled

or when operand forwarding is not enabled. Now let us try to understand what happens

when we go for a floating point pipeline, consider the following instruction sequence

executed on a MIPS.
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Floating point pipeline operand forwarding is implemented. R indicate integer register

and F indicate floating point registers. Find the clock cycle in which store instruction

reaches the MEM stage. So, we have a load instruction. So, the meaning of this load

instruction is from the address you are copying the value into F 4.

Now, that F 4 is used to multiply with F 2. So, that you store the result in F 0. Now that F

0 is used to get the result in F 2. So, you get this value F 0 and F 2 are added to do store



the result in F 3. And F 3 value is stored back into the memory location. Now this is how

your floating point unit looks like. So, the load operation is carried out by the integer

unit. That is by the load. Now the second instruction gets the multiplication instruction is

carried out by the multiplication unit that is called FMUL floating point multiplication.

Now, the third instruction is carried out by the floating point add unit. So, it is FADD and

the last instruction is again carried out by this unit and that is called is store. And we

have  to  understand  that  the  floating  point  multiplication  floating  point  adders  are

pipelined, but there exist a dependency between them we are going to write the result

into F 0. And that is to be used by floating point add. So, there is a dependency this is

going to write a value into F 3 that is going to be used to by the store. So, there is one

more dependency. And the first dependency exist we are going to write a value into F 4

that is to be used by this multiplication.

So, there are 3 dependency at each stages.
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Let us try to fill it. For the first instruction we are going to fill it up it is a normal integer

operation. So, it take only 5 cycles fetch, decode, execute, MEM and write back. Since

operand forwarding is permitted, if you look at what stage M 1 can start? You are going

to load a value and your M 1, this amount stands for multiplication has 7 stages so, this is

your M 1. M 2, this is M 3, now M 4, M 4, M 6 and M 7. And here comes the MEM

stage and this is the write backstage.



Now, let us try to understand why we are starting M 1 are clock cycle number 5. The first

instruction is a load instruction. So, 8 and R 2 are added at the execution unit. And the

value will be available in the memory unit at the end of MEM operation. So, by operand

forwarding, multiplication can start as early as the fifth clock cycle. Now there exist a

dependency between the second instruction and the third instruction. 

So, your value is available only at this point. So, even if you apply operand forwarding.

The adding unit can start it is up adding only here. So, it is A 1, A 2, A 3 and A 4 can

happen only at this point. So, when are you going to fetch. You could fetch here, you

could decode here. So, this is a stall now then you have to wait. Because your A 1 can

start only at this point. This is due to data dependency.

So, these are the 7 stages of multiplication, the 7 stages of multiplication. And these are

the  4  stages  of  the  addition.  So,  we  are  trying  to  forward  from  the  output  of

multiplication is forwarded to the input of adding and if you continue the operations it is

MEM and write back. So, the add operation get over at the 17th clock cycle.

Now, you  have  to  perform a  store  operation  on  F  3.  So,  if  operand  forwarding  is

permitted store can perform it  is  memory operation,  but  2 memory operation cannot

happen together. So, this is MEM and write back. So, this is the process where fetching

can do. So, you fetch and then you have a decode because the store operation is cannot

proceed, because it is dependent on F 3. So, until the add operation is over, store cannot

proceed with the operation and with operand forwarding you can forward the value.

So, essentially at the end of the 18th clock cycle, this floating point operation is getting

over this is the dependency between them.
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Now, let us move into the final problem for today. The fifth problem; the fifth problem

reads like this consider 2 programs A and B that solves a given problem. A is scheduled

to run on a processor P1 operating at 1 gigahertz and B is scheduled to run on processor

P2 running at 1.4 gigahertz. A has total 5000 instructions out of which 20 percent are

branch  instructions,  40  percent  are  load  store  instructions  and  the  rest  are  ALU

instruction. B is composed of 25 percent branch instructions. The number of load store

instruction in B is twice the count of ALU instruction.

Total  instruction count of B is  6000. In both P1 and P2 branch instructions have an

average CPI of 5 cycles per instruction of 5. And ALU instruction has an average CPI of

1.2. Both the architectures differ in the CPI of load store instruction. So, CPI of load

store instruction for P1 is 2 and that of P2 is 2.4. Given the set up the program A on P1 or

the program B on P2 will solve the problem faster. So, this is a question of whether there

are 2 contacts. 2 programs A and B are there A is going to run on P1 and B is going to

run on P2.

Now, the question is whether A 1 P1 is more faster in solving or B 1 P2 is more faster on

solving.  A and  B  are  2  different  programs  so,  the  instruction  count  of  A and  B  is

different. Since they are running on different architectures the cycles per instruction for

each of these architecture is also different that is being given and the clock cycle of P1

and P2 is also different. So, you are trying to compare with 2 different design scenarios.
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Let us try to summarize the data that is given A is running on P1. So, and P1 is A 1

gigahertz processor. So, the clock cycle speed is 1 nanosecond. B is running on P2, it is a

1.4 gigahertz. So, 1.4 is 1 divided by 1.4 it is 0.714 nanosecond.

Program  A has  5000  instructions  whereas,  program  B  has  6000  instruction.  The

instruction count is different. Now there are 3 category of instructions, they are branch

instruction, load store instruction and ALU instruction. It is mentioned in the question

that there are 20 percent of branch instruction in program A and 40 percent of them are

load  store  instruction  the  balance  is  ALU  instruction.  So,  out  of  the  100  percent

instruction  if  20 percent  is  branch and 40 percent  is  load  store  then  the  balance  40

percent is your ALU.

When it comes to the fraction of instructions in the case of B they are mentioning that 25

percent  of  them are  branch  instruction,  the  remaining  are  load  store  and  ALU.  The

peculiarities  the number of load store instruction is  doubled that of ALU and that  is

satisfied only if this is the load store instruction that is doubled. So, load store instruction

has to be 50 percent and ALU has to be 25 percent. The CPI is given the CPI of branch

instruction is 5 in both the case. The CPI of load store instruction is 2 in the case of P1,

and 2.4 in the case of P2 and CPI of ALU instruction is same.

Now, let us try to understand what is the average CPI of program A. So, CPI of program

A on P1 so, we have 0.2 that is 20 percent of the instructions are branch. So, 0.2 into 5,



plus 40 percent of them are branch instruction. So, 0.4 into 2 plus remaining 40 percent

are ALU instruction. So, they are having in CPI of 1.2.

So, what are we trying to do here is, different instructions as different CPI, let us try to

find out what is the CPI of the program A. A has different mix of instruction; it has

branch instruction it is load store instruction and it has ALU instruction. So, with the

percentage fraction we are trying to combine all these. So, the value that you get here is 1

plus 0.8 that is the second one and the third one is 0.48.

So, ultimately we get the value 2.28 so, the CPI is 2.28. So, the CPI for A is 2.28. Now

let us try to work on the CPI of program B on P2. So, there the fraction is 25 percent of

them are branch instructions, plus 50 percent of them are load store instruction; which

will take a CPI of 2.4 plus remaining 25 percent of them are ALU instruction which will

take a CPI of 1.2.

So, this upon solving you will get the number 2.75. So, the CPI of the second problem is

2.75. Now with CPI; how will you find out the execution time? So, program A there are

5000 instruction, each instructions average CPI value is 2.28. And for program B there

are 6000 instruction, each instruction CPI value is 2.75. The instruction count is varying;

the CPI is varying as well as the clock cycle time is varying.
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So, execution time of A on P1. Then is CPI into instruction count into clock cycle time.

So, that will come to 2.28 into instruction count is 5000 into clock cycle is 1 nanosecond.

So, the final value that you get is 11400 nanosecond. So, the first 2 program is going to

solve our problem in 11400 nanosecond. Now let us try to see what is the execution time

of B on P2. So, same equation apply CPI. So, CPI here the found out CPI is 2.75 into

instruction count is 6000, but the clock cycle time is little lower, it is 0.714 only. And this

will give us a value 11785.

So,  2.75  is  the  CPI,  6000  is  the  IC  value,  and  clock  cycle  is  0.714  because  P2  is

operating on a different clock. So now, we will  write what is the execution time for

program B on P2. It is 11785 nanosecond. Now you compare your 2 designs. Your first

design is going to solve the task that is program A 1 P1 will take 11400 nanoseconds, and

program B on P2 will take 11785.

So, then smaller the execution time the better. So, A 1 P1 solves the problem faster than

B 1 P2. So, in this way given 2 designs, 2 processors of different frequency, 2 different

programs running on these 2 processors and what is approximate time that you are going

to take effectively it is going to be managed by this.

So, with this we come to the end of today’s tutorial  session. I hope this session was

useful  to  you,  because  you got  familiar  with  some numerical  exercise  pertaining  to

pipeline.  We have taken few examples and 5 to find out what is the role of operand

forwarding how much is a change that happens in terms of number of cycles. 

And then we worked out what happens for a different 5 stage and a 12 stage pipeline, and

the stalls that are happening. And this is basic performance equation. And we also see

what is how this Amdahl’s law is helpful for us in order to efficiently manage our given

constraints of different modification versions. So, with this we conclude today’s tutorial.

Thank you.


