
Multicore Computer Architecture - Storage and Interconnects
Dr. John Jose

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati, Assam

Lecture – 05
Instruction Pipeline & Performance - I

Welcome to the tutorial session, we have already completed 3 lectures that talks about

the fundamentals of computer architecture as well as the basic principles of instruction

pipeline. Today’s session is planned such that you will be familiar with the certain

numerical problems on the topics that these already covered in lecture1, 2 and 3. I will be

solving these numerical problems, so that you will get a better idea of how to understand

the topic in depth. We will be covering topics related to performance of processor design

including Amdahl’s law and then some fundamental concepts in instruction pipeline and

the certain aspects related to the hazards and about multi cycle floating point pipeline

operations.

So, we will be having such kind of similar tutorial exercises every week, this will help

you in deeper understanding the topic. So, I request you to go through the sample

questions that is been already posted in the forum and get familiarized with those

questions. The assignments that are plotted every week will be somewhat in sync with

the kind of questions there we solve in tutorial exercises. So, let us move to the first

question.

(Refer Slide Time: 02:01)

Consider a code fragment A equal to D star B plus C minus E; where, A, B, C, D and E

are memory locations. So, we have to execute this code on a processor called TITAN.

Now we have to write down the sequence of instructions, the instruction sequence that is

generated for this code fragment; if TITAN is going to be a stack machine or it is going

to be an Accumulator machine and the third one if it is a Load and the Store machine.

(Refer Slide Time: 02:36)

So, this is the code that is given A assigned equal to D star B plus C. So, if this is going

to be the code how a Stack machine is going to operate on it? We know that in the case

of a stack machine, we have a stack that is from memory, you have to push the operands

into the stack and whenever we wanted to perform an operation, the operation will be

carried out on the top of the stack and the very next element after the top of this stack.

So, when you look at this particular, example, we know that A equal to D star B plus C

since a bracket is given B star C is to be done first and we know that we cannot directly

perform any add or subtract operation. Any operation that is done on a stack machine, the

operands are implied they are on the stack. The two top elements on the stack will be the

operands. So, the B plus C is the first operation to be done. So, before doing this plus

operation, we wanted to make sure that both B and C are there in the stack.

So, the first operation that we will do is we have to push the value of D then we have to

push the value for B. So, now if you look at this stack, the stack may contain D then

followed by the stack may has B unit then we are going to push the third operand C. So,

now your top of the stack is C and top minus 1 is B. Now, we have sufficient operands to

perform the operation, so we can perform the operation, the operation is plus. So, we

here going to perform an add operation.

Once add is done, then what happens is you are going to push out these two elements and

we are going to perform B plus C and the sum of B plus C is going to be added into the

stack.

(Refer Slide Time: 04:55)

So, B plus C, once you perform A that B and C adding operation, the adding operation

then B plus C gets stored into the stack. So, the top of the stack is know B plus C. Now,

we know that as per the sequence that is given we have to perform D star the sum of that.

So, that is operation to be performed. So, if you wanted to perform that operation, then

we have to work on the multiplication aspect.

So, next is the product operation that is to be done. So, you when you perform

multiplication these two elements are popped out and the star operation is carried out.

So, in this context let us try to see that D star B plus C that the product is going to be

added into this stack.

(Refer Slide Time: 05:41)

So, we have now the latest value in stack is, D star B plus C which is already saved in

the stack and there is only one element in the stack. So, we have to understand that when

you perform any operation, let us say it is an add operation or a multiplication operation

that top of this stack is defined as top of the stack operator, top of the stack minus 1; that

is the operation that is carried out here. So, now we have to push the next element.

(Refer Slide Time: 06:09)

So, our next operation is going to be push E. So, the result of this is A E is going to be

pushed on to this stack and now we have this is going to pop out that is what we get and

we get the product value and then product minus E that is what this we going to do. So,

when you perform a subtraction operations, E is going to be popped out the product

value that is D star B plus C is going to be popped out and then you perform the

operation and then we are going to push the result back.

So, and then at the end once this is over at the end of this subtraction operation the

resultant value is stored into that. Now our final value should be available inside A. So,

the last operation that we need to carry out is pop of A. So, that completes our code

generation for the stack machine. Now we try to understand as given in the question

what is going to be for an Accumulator machine.

(Refer Slide Time: 07:07)

Let us try to understand what is an Accumulator machine? Accumulator machine means

for every operation one of the operand, the first operand is going to be the accumulator

and the resultant is also going to be Accumulator, the second operand can be a memory

location and there are operation called Load and Store. Load operation means, Load of x

means condense of memory location x is copied to accumulator; similarly, store of x

means condense of accumulator is stored into memory location x.

So, in the question we have this been specified that A D B C and E, all are memory

location. So, we have to make sure that before performing an operation in we have to

load one of the operand into the Accumulator. So, the first operation that we will do is

load B. So, B is the value that we have. So, now, with this means B value is copied to

Accumulator. So accumulator now carries the value of B and now we are going to

perform add of C. So, then this means accumulator assigned is equal to whatever be the

value of accumulator plus C because it is an add operation. So, already we have value B

in the Accumulator. So, it is B plus E. So, and the resultant value of B plus C is stored in

the Accumulator.

And now since this portion is already done, I can perform a multiplication operation with

D and that is what is going to happen. So, with this we are going to have accumulator is

equal to accumulator star D that is going to be the operation in multiplication. So, we get

now D star B plus C in the accumulator and now we are going to subtract E, so, then

accumulator C equal to accumulator minus E. So, the resultant value is now in

accumulator and towards the end we are going to store the value. So, then; that means, A

is assigned to the value of Accumulator.

So, in this way first you load the first operand into the accumulator that is what we see

with the help of load B instruction the content of B is getting loaded to accumulator and

when you perform add C whatever is there in accumulator that is added with the

condense of memory location C. So, any operation let say it is add multiplication or

subtraction whatever the operand that we have it is a memory operand.

So, one of the operand is an accumulator the other one is in memory location and their

name of the memory location is specified in the instruction. So, once you perform add

and C then you perform the subtraction operation and the final result is going to be

stored into A. So, this is how the code there is been generated for the accumulator

machine.

Now, the third category of instruction type that we have to generate is for Load Store

machine.

(Refer Slide Time: 10:07)

We have to understand that in the case of a Load Store machine, arithmetic operations

can be performed only between two registers. So, in the case of stack architecture both

the operands are in the Stack, in the case of accumulator architecture one of the operand

is an accumulator and the other one is in memory. In the case of Load Store architecture

both the operands, both the source operand should be there in the register and then only

you can perform operation. So, no operation is allowed with a memory operand in it.

So, let us try to see what happens, In this case we have to define few registers. So, one of

the one that we are going to use is R 1 R 2 R 3 are going to be kind of the register

naming that we use in this example. So, the content of D is loaded to R 1,content of B is

loaded to R 2 and C is loaded to R 3. So, now, I have these three operand values already

available in the registers.

Now, the first operation we need to carry out is B plus C, we know that B is available in

R 2 and C is available in R 3. So, an add operation is performed on R 2 and R 3 and the

resultant value is now available in R 4. So, this whole value is now available in R 4. Now

R 4 value should be multiplied with R 1 value, we know that R 1 is having the value of

D. So, multiplication of R 1 and R 4 and that will give you the complete, product of these

things in R 5.

So, now we have this much component available inside R 5. Now we have to load the

value of E into one more register. So, load R 6 into that is value of E is loaded to R 6 and

once we have the result then we have to subtract the value of R 5 and R 6 and the

resultant is stored in R 7 and then the last property is store the value of R 7 into A.

So, when you look at this sequence of instructions it is easy for us to understand that all

the operands has to be loaded into registers. In this case we are using all new registers in

every context for better reuse of registers. If you know that value of a register is no

longer required then I can reuse the register. So, depending on the underlying

architecture let us say it is a stark architecture the code that the compiler has to generate

is different. If it is an accumulator architecture the code that compiler is generating is

different and for a Load Store architecture it is yet another code.

So, given the same sequence of instruction what we have seen A is equal to D star B plus

C for the same instruction the kind of code that is generated by the compiler is different

because hardware understands different language. So, this is an initial problem with

gives you a deeper understanding about in what way the code that a stack architecture

and accumulator architecture and a Load Store architecture is working with.

 (Refer Slide Time: 13:20)

Now, I request you to consider the second problem. This is an pipeline associated

problem, time delay of a four segment pipeline in different segments are t 1 equal to 35

nanoseconds, t 2 is equal to 30 nanoseconds, t 3 is equal to 40 nanosecond then the t 4 is

equal to 45 nanosecond. The interface register delay time is t equal to 5 nanosecond.

How long would you take to complete 100 instructions in the pipeline? Assume there is

no dependency between the instructions.

So, this is a case where we are going to understand about how to design a pipeline. So, to

get better clarity let me try to explain, these are the 4 segments inside your pipeline and

the first one is taking 35 nanosecond, the second one is taking 30 nanosecond, third is

taking 40 nanosecond and the last one is taking 45 nanosecond. We have learned in the

pipeline that even if different segments in a pipeline is going to take different amount of

time pipeline can advance only together.

So, we are going to add the interface registers between them and interface register is

going to consume 5 nanoseconds time. So, the content of this will be returned to the

interface register and that is going to be used by the second one and that is a way how the

pipeline is going to proceed, but we have to make sure that all the values are taken at the

same time since the delay associated with each of the segment this varying we have to

find out which is the one that is dominating.

So, out of this four segments this is the segment which is having the largest time unit. So,

my pipeline time is going to be governed by there is pipeline cycle time is maximum

among or the cases plus the interface time that is 5. So, it is 45 plus 5; that is 50

nanosecond is the timing at which this pipeline is going to operate.

So, when we get different time units for different segments we have to pick that one

which is the maximum or which is a dominating one and then add the interface time. So,

at every 50 nanoseconds you are going to read from the interface register perform the

operation in the segment and going to write the result but you may write the result early

because the first unit may write the result in 35 nanosecond where a second will write in

30 nanosecond whatever time you are going to write the next triggering will happen only

at 50 because a last unit will be able to complete writing by 45 nanoseconds. So, 50

nanosecond is the time at which we are going to operate the cycle.

Now, we will do about how will you take care of the pipeline aspect of 100 instructions

100 independent instruction by what time these instructions are going to be completed?

So, we will try to understand what is the context here.

(Refer Slide Time: 16:47)

Let us say clock cycle number 1, 2, 3, 4, 5, 6, 7 like that it is going. It is a 4 stage

pipeline and we know that every clock cycle, one clock cycle is equal to 50 nanosecond

that is what we have found out now.

The first instruction because it is a 4 segment pipeline first instruction get complete at the

forth clock cycle. So, it goes through the 4 stages and it gets complete in the forth clock

cycle, the second instructions in this pipeline it is going to start at the second clock cycle

it get over at the fifth clock cycle, the third instruction is going to start at the third clock

cycle and it gets over at the 6th clock cycle. This is going to be the sequence in which the

instructions are going to progress.

So, if you try to generalize this we have 100 instructions, the first instruction is getting

over at the forth clock cycle and thereafter everyone clock cycle one more instruction is

getting over. So, we have another 99 instructions more out of the 100 instruction first

instruction is getting over at the fourth clock cycle because it is a 4 segment pipeline and

thereafter for every clock cycle one more instruction is getting over. So, 100 instructions

get over in 103 clock cycles and we know that one clock cycle is going to be 50

nanosecond then 103 instructions will get over at 5150 nanosecond.

So, it will take 5150 nanoseconds to complete this operation. So, that is a way how we

are going to deal with pipelines of varying time segments.

(Refer Slide Time: 18:47)

.

Now, this is a case of a typical True or False question. Which of the following statements

is or are True? There are four examples given. So, only if you clearly understand the

pipeline concept you may be able to tell this. Let us try to understand each one of them.

Which of the following statements are True? There are four statements given, the first

one is RAW hazard, RAW data hazard could be reduced by operand forwarding that is a

first statement that we have.

(Refer Slide Time: 19:19)

So, if you look at that this is the concept of operand forwarding whenever we have a data

hazard let us say in this case we are going to write the result into r 1. So, r 2 and r 3

context are going to be added into and stored in r 1 and that value of r 1 is needed in the

subtraction instruction and the add instruction. So, operand forwarding is something

where whenever the result is ready the content of r 2 plus r 3 is ready here that is

forwarded into ALU such that the subtraction instruction can progress.

So, in this way whenever we do operand forwarding the stalls are eliminated. So, what

we see here is a RAW data hazard could be reduced by operand forwarding. So, that is a

true statement. A normal in order 5 stage MIPS pipeline can achieve an IPC larger than 1.

So, what do we, we have to understand what do you mean by normal in order 5 stage

pipeline and what is the meaning of IPC? So,

(Refer Slide Time: 20:21)

If you look at an in order pipeline it is the 5 stage in order pipeline. So, each instruction

will go through 5 different stages IF, ID, EX, MEM and write back. Since it is an in order

pipeline, the second instruction will start only after the first instruction is fetched issued.

So, the sequence is never violated.

Now, how many instructions are getting complete, we can see that in the fifth clock cycle

one instruction is getting over in 6, one instruction is getting over in 7, one instruction is

getting over. So, in every cycle one instruction is getting over leading to a CPI value of

one. If there are hazards then CPI cycles per instruction will be slightly larger than one.

So, IPC is the value which is the reciprocal of CPI instructions per cycle. So, number of

instructions completed per cycle is equal to 1 in the case of a normal in order ideal

pipeline.

(Refer Slide Time: 21:20)

So, the statement is mentioning that a normal in order 5 stage MIPS pipeline can achieve

an IPC larger than 1, Instruction Per Cycle larger than 1. Can we complete more than 1

instructions per clock cycle? That is not possible in the case of an in order 5 stage

pipeline, such cases are possible only if it is an out of order superscalar pipeline. So, the

second statement is faults.

Now, we look at the third statement for a MIPS instruction store R2 16 of R 3, some

condense stored in its ID EX pipeline register will bypass the EX unit directly to the EX

MEM pipeline to register.

(Refer Slide Time: 22:04)

To understand that let us revisit the pipeline diagram, we have a store instruction R 2 16

of R 3. Let us try to understand what happens in each of the pipeline stages in the

execution of this instruction. So, in the instruction fetch stage this entire instruction the

binary value of the entire instruction is loaded into the IF ID register.

Now, any reading from the register has to be performed in the register fetch stage that is

a second stage. So, in this case we have two registers R 2 and R 3. The meaning of the

instruction is the content of register R 2 should be written to a memory address that is

pointed by 16 of R 3. So, content of R 2 is red similarly in order to compute address

content of R 3 also has to be red. So, values of R 2 and R 3 are now in the ID register and

this value 16 will also be there 16 will come through this. 16 would not go through the

register file this is the path by which 16 is going to travel.

Now, R 2 value is not needed in the ALU stage that is needed in order to write into the

memory. So, R 2 value is directly going to come into this stage. Whatever is the value of

R 3 it is added with 16. So, R 3 plus 16 is carried out here whereas, R 2 is going to

bypass the ALU for in the case of a store instruction the value to be stored is going to

bypass the ALU that will reach the ID EX register. So, some contents of the ID EX

register is going to bypass the ALU into the EX MEM register.

 (Refer Slide Time: 23:59)

Now, if you look at, will bypass the EX unit directly to the EX MEM. So, from the ID

EX pipeline register, the value of R 2 is going to bypass the EX unit, the value of R 2

will not go to the EX unit that is what we are going to see. So, this is true.

Now let us try to understand what is the fourth instruction.

(Refer Slide Time: 24:25)

A normal 5 stage in order RISC pipeline without operand forwarding can have RAW and

WAR hazards. So, what do you will see here is we have a there is no operand forwarding

here so can we have RAW hazards? If you look at this case RAW hazard means you are

going to write the value into r 1 and that value 1 is going to be red. So, writing into r 1

happens here and we need the value of r 1 at these stages. So, you have to forward this

value. So, you are going to have a hazard here in the case of RAW because we are not

using operand forwarding. Whereas, on the right side we see it is a WAR hazard you are

going to read a value from r 3 and the second instruction is going to write a value into the

r 3.

(Refer Slide Time: 25:20)

So, when we work on WAR hazard, these are typical cases of WAR hazards right after

read, you are going to read from r 3 that happens here in the second clock cycle and you

are going to write the value into r 3 and that happens here.

So, in the normal 5 stage in order pipeline reading from r 3 for the first add instruction

happens in clock cycle number 2 and writing into r 3 by the subtraction instruction

happen in clock cycle number 6. So, it is not going to have any kind of violation. So, this

would not create any issue as of now. Now try to understand what happens in the case of

r 4. So, r 4 you are going to write the value, you are going to read the value of r 4 here

and we are going to write into r 4 by the and instruction. So, that is a place where you are

going to r.

So, WAR, hazards are not there, there is no WAR hazards,, but there can be RAW

hazards.

(Refer Slide Time: 26:17)

So, a normal 5 stage in order RISC pipeline without operand forwarding can have RAW

and WAR hazards, this statement is faults you can have RAW hazards but you will never

have WAR hazards, so, altogether if you look at statement number 4, that is wrong. So,

what is correct is question number 1 and three option, these are the two options that are

correct in this scenario. So, the correct answer is 1 and 3 that is already mentioned.

(Refer Slide Time: 26:51)

So, only if you have a deeper understanding about the various operations that is

happening inside an instruction pipeline then only you will be able to solve this.

(Refer Slide Time: 27:05)

Now, we have one more true or false case, which of the following statements are False?

For a MIPS multi cycle floating point pipeline the initiation interval of floating point

multiplication is larger than floating point addition. So, how will you tackle this

statement? There is a floating point multiplication which we have seen that it has 7

pipeline stages; M 1, M 2, M 3, M 4, M 5 like that these is the floating point pipeline, M

1 to M 7 and floating point adding as A 1, A 2, A 3, A 4.

(Refer Slide Time: 27:39)

The initiation interval of floating point multiplication is it larger than floating point

addition for that we have to understand. What do you mean by the term initiation

interval? Initiation interval means what should be the minimum gap between two

operations; that is going to use the same functional unit, let say I am giving an operation

in floating point multiplication and clock cycle 100, in clock cycle 100 a pair of floating

point numbers are multiplied are we are going to start multiplication.

Initiation one interval of floating point multiply is given as 1, the meaning is at 101,

another no pair of numbers can be added into the unit, at 102 another no pair of numbers

can be given in the multiplier unit. Since the multiplication unit is pipelined as long as

there is no data dependency between the numbers that are going to be multiplied and the

numbers that are there already in the multiplication unit; that means, any new pair of

numbers can be given to the multiplier unit in adjacent clock cycles that is what the

initiation interval of one.

Whereas if you look at the division unit you have an initiation interval of 25; that means,

you can give the next number to be divided only after the 25th clock cycle similarly

when you look at adding also since adding unit is also a pipeline that every cycle new

pair of numbers, new pair of floating point numbers can be given in the floating point

adder. So, initiation interval of floating point add also is 1 and floating point

multiplication is also 1.

(Refer Slide Time: 29:34)

So, the statement for a MIPS multi cycle floating point pipeline initiation interval of

floating point MUL is larger than that of floating point add is wrong because both has

initiation interval of one. So, statement number 1 is false. Look at statement number 2,

WAW hazard cannot happen in MIPS multicycle floating point pipeline, what you mean

by WAW hazard write after write hazard if the second instruction is going to write on a

value where the first instruction is also going to write.

(Refer Slide Time: 30:09)

So, consider the case that let us say you are going to write on a number add is going to,

let say add is going to write on the register F 2 and multiplication is also going to write

on a register F 2, add is issued after the multiplication add comes after multiplication

because of long multiplication stage multiplication get over only here whereas, adding

gets only will be done before that.

So, we are able to complete the adding operation before the multiplication operation is

over that is exactly WAW hazard. When you have an instruction J and instruction let say

instruction I is going to write into a register R instruction J is also going to write into a

register R. If j happens after i then if j writes before I is going to write into R that is

called WAW hazard. So, in a multi cycle floating point operation WAW hazard cannot

happen that is false because WAW hazard will surely happen.

(Refer Slide Time: 31:11)

Now, the third statement in a MIPS multicycle floating point pipeline that supports

operand forwarding there will be 7 stalls between a pair of adjacent multiplication

instruction that has a raw dependency between them.

(Refer Slide Time: 31:33)

So, this is the floating point the pipeline. Now we are going to talk about a case where

two adjacent adding operation let us say we are going to add two floating point numbers

F 1, F 2 and F 3 are going to be add. So, the result is going to be obtained in F 1.

Similarly, there is one more add where there is a raw dependency; that means, F 1 is one

of the operand and let say this is F 6. So, if you try to correct the value of F 1 with a for

easy grasping.

(Refer Slide Time: 32:15)

So, the first instruction is going to write into F 1, second instruction is going to read from

F 1, now if you look at in a MIPS multicycle floating point pipeline that is supports

operand forwarding there will be 7 stalls between a pair of adjacent multiplication

instruction that has a RAW dependency between them.

So, let me correct rather than this adding operation they are basically multiplication

operation floating point multiplication operation. So, F MUL is the operation.

(Refer Slide Time: 32:41)

So, two multiplication between them there is a dependency, there is a RAW dependency

read after write dependency. So, only if the first one produces the result when will I get

produce a result F 1 will be written only at this point, now the value of that is to be used

by the second instruction.

Now, if you try to re visit the instructions we are going to see what happens here. Let us

take the first clock cycle, this is clock cycle 1,2,3,4,5,6, 7,8,9,10, 11 and you are in the

instruction fetch state that is IF ID then it is m 1, m 2, m 3, m 4, m 6, m 7 then this is

going to be your normal MEM stage and this is the write back. So, this is your first

instruction, the second instruction is dependent on the first one.

So, when you go to the second instruction, we know that the second instructions, since it

is dependent on the first one this is a second instruction IF ID. Now I cannot start the

multiplication because the multiplication can be started only after getting the result and

the result is obtained only at this point. So, M 1 can start only here even if operand

forwarding is there. So, this is the point of M 1, M 2. So, how many stalls I have to put

1,2,3,4, 5, 6.

So, I am going to introduce only 6 stalls in this case. So, even if I have a dependency

between them IF and ID lines will be completed like in the previous case. So, this is what

we have seen.

(Refer Slide Time: 34:34)

 (Refer Slide Time: 34:38)

IF and ID is going to be completed since I cannot start multiplication because this second

line, this is line number 1 and line number 2, line number 2 has a dependency with the

result that is produced by line number 1. So, the result is obtained only at the end of the

ninth clock cycle, it is 7 stage of floating point multiplication operation. So, I can get the

data only at this point only at the clock cycle 10 I can start my M 1. So, till then I have to

include stall. So, stall is there at clock cycle 4, 5, 6, 7, 8, 9. So, only there are 6 stalls that

are going to happen.

(Refer Slide Time: 35:15)

So, in the statement it is mentioned that there should be 7 stalls between them that is

wrong. So, the third statement is also wrong. Now, we go to the forth statement if 32 bit

value which is represented in hexadecimal zero x 1 2 3 4 5 6 7 8 is stored in memory

byte addresses. So, there are the byte addresses in which we are going to store this value.

So, each of this memory location 2000, 2001, 2002 and 2003 can store 1 byte of

information. So, totally I have 4 bytes of information where two of this hexadecimal

number will represent a byte. So, 4 byte value is going to be stored in 4 adjacent memory

locations in a Big Endian format. Then location 2001 holds the value 56.

(Refer Slide Time: 36:05)

Let see whether it is true or false will try to illustrate the concept of Big Endian and

Little Endian. So, in little Endian format let see this is the number what you are going to

store from a register. So, these are the 4 bytes the least significant byte is going to be

stored in the memory address a then the more significant address will be stored in a plus

3. So, the least significant byte is stored with the lower address, more significant byte is

stored in the higher address. When you come to Big Endian format the more significant

byte is stored in the lower address.

So, in this case of an example we have memory location 2000, 2001, 2002 and 2003,

these are the 4 memory locations that we have mentioned and we have the value that is

the represented by zero x 1 2 3 4 5 6 7 8 that is the number what we are going to operate.

So, it is zero x 1 2 3 4 5 6 7 8. Now it is in which format what we are trying to

understand it is in Big Endian format. So, in Big Endian format the most significant byte

is going to be stored at the lower address A. So, in this case 1 2 to get stored here 3 4 get

stored here 5 6 will be storing it here and 7 8 is stored here. Now the question is, asking

whether location 2001s holds 56? So, 2001 is holding 34. So, the statement 2001 holding

0 x 5 6 is faults.

(Refer Slide Time: 38:09)

So, the last statement this also faults. So, the question was which of the following

statement this faults? All the four statements1, 2, 3 and 4 are faults. So, that completes

our problem number 4.

(Refer Slide Time: 38:21)

Now we are moving into the fifth problem, this problem has two sub divisions, a new

floating point units speeds up floating point operations by two times in an application

one fifth of the instructions are floating point operation what is the overall speed up. So,

we have to understand that your floating point unit is going to improve your performance

by 2 times.

So, every floating point operation gets is speeding of two factor 2 and there are one fifth

of the instructions that are floating point; that means, 0.2 percent was 0.2 is the fraction

of the instructions that are to be used by the floating point unit what is a overall speed up,

this is governed by Amdahl’s law which tells that the speed up is defined as 1 by 1 minus

alpha plus alpha by n where alpha is the fraction enhanced and n is the speed up of

enhancement for that fraction.

Let us try to define the number. So, here n is equal to 2,value of alpha is the percentage

of fraction that gets improvement. So, only floating point instructions are getting the

benefit. So, 0.2 is the fraction. So, once we substitute it 1 by 1 minus 0.2 plus 0.2 divided

by 2. So, when we solved is we are going to get the answer as 1.11.

(Refer Slide Time: 40:07)

So, when you use a floating point unit that is going to improve the performance by two

times for floating point instructions, let us say the floating point instruction is only 1 by

5th of the total instruction then what is a overall speed up, the overall speed up is 1.11

times.

Now, the question has a second component. So, we will try to revisit the second

component what are we going to get from this. So, second component is an extension to

the first problem. So, whatever applicable on the first problem that should be considered

in the second problem also. Assume that the speeding up of floating point unit mentioned

above slowed down data cache access resulting in 1.5 times slowdown.

(Refer Slide Time: 41:03)

So, your data cache is going to be slowed down by 1.5 times. Assume the load

instructions constitute 15 percent and store instructions constitute 9 percent of the total

instruction.

So, when you go to data cache whenever there is a Load instruction whenever there is a

Store instruction we are going to go to data cache, so 25 percent or data cache

instructions. These 25 percent instructions are getting slowdown by 1.5 times. So, what

is the overall speed up that we are going to get.

(Refer Slide Time: 41:39)

So, we know that we have to slightly rephrase because there are two factors that is

coming, one is for floating point operations and one is for data cache instructions. So,

floating point operations are 1 by 5th and data cache instructions are 25 percent and if

you look at the value of n 1 you get the speed up of 2 and n 2 it is 1 by 1.5, because it is

getting slowed down by 1.5 times.

So, the previous example we have seen that floating point instructions are speeded up by

2 whereas, data cache access is slowed down by 1.5,slowdown by 1.5 times means it

getting a speed up of 1 by 1.5,speeding up and slowdown are this reciprocal to each

other. So, the speed up that you are going to get 0.66. Now because we have two

elements that is coming 1 by 1 minus alpha 1 plus alpha 2, these are the percentage

fraction of instructions that are impacted and alpha 1 time that is a percentage

improvement is n 1 and alpha 2 times the percentage improvement is n 2.

So, if you substitute the value 1 by 1 minus 0.2 plus 0.25, alpha 1 value is 0.2 divided by

2 plus 0.25 divided by 0.66. Once you solve this you are going to get 1 by 0. 978; that

means, a speed up I am going to get is 0. 022. So, this is a classical problem where due to

a change in one of the unit you are getting certain instructions getting speeded up.

But incorporating that unit how slowdown some other component. So, in this example

the floating unit that we newly added is improving the performance of floating point

instruction by two times whereas, it is making your data cache work a bit slow. So, data

cache is going to be slowed down by1.5 times. So, what is overall speed up that you get

in that way if you substitute the values properly in Amdahl’s law you are going to get this

solution.

(Refer Slide Time: 44:23)

Now, we move into problem number 6. So, in problem number 6 you are given the

comparison between a non pipelined architecture as well as a pipelined architecture. So,

given a non pipelined architecture running at 1 Gigahertz that takes 5 cycle to finish an

instruction you want to make it pipelined with 5 stages the increase in hardware forces

you to run the machine at 800 Megahertz.

So, the only stalls are caused by, so you will get a memory stall for what 30 percent of

total instructions are memory and you get 70 cycles stall for 2 percent of total memory

instructions.

Similarly, for branch conditions which are roughly 20 percent of total instructions are

branch and out of the branch 20 percent of the branch instruction you incur a two cycle

stall. So, what is the speed up that you are going to get. So, we have to understand that in

the case of an unpipelined design. So, for unpipelined design of CPI cycles per

instruction for unpipeline.

(Refer Slide Time: 45:45)

So, we can put it UPS, UP is equal to 5 because a non pipelined architecture is going to

take 5 cycles to finish an instruction. So, you take 5 clock cycles per instruction.

So, CPI of that is 1 and clock cycle time is equal to the 1 Gigahertz is going to 1 as 1

nanosecond. Now when you go to the pipelined architecture our basic assumption is CPI

is going to be 1. So, in the case of a pipelined architecture for every cycle one more

instruction is getting over in our pipeline. So, the CPI of the pipelined architecture is

base CPI; that means, every instruction if there is now dependency or a now stalls

between them that is called base CPI called ideal CPI plus stall CPI.

You are going to stall for certain instruction. Base CPI is always 1 because every pipeline

assume that the clock cycles per instruction is 1 and now we have stalls here they are

memory stalls as well as branch stalls. Now memory stalls are happening for the memory

instructions alone and it is mentioned that you have 30 percent of your total instructions

are memory instructions, out of that 2 percent of the memory instruction only will result

in a stall. So, typically this memory instruction stall happen whenever it is a cache MIS.

So, 30 percent of the instructions are memory instructions and out of the memory

instruction 2 percent of them will stall for how many cycles 70 cycles. Now branch, 20

percent of them are branch instruction that is what is being mentioned and out of the

branch instructions only 20 percent of them will result in stall and the stall we are going

to get is only 2. So, this we will solve how to 0.42 plus 0.08 the value is 1.5. So, the CPI

under the pipelined version is 1.5.Now let us try to understand what is the clock cycle

time of the pipelined version? It is going to work under 800 Megahertz. So, that 800

Megahertz corresponds to 1.25 nanosecond.

So, we have obtained what is the CPI value in the case of an unpipelined design and

what is the CPI value in the case of a pipelined design? Now, while solving this what is

the speed up, the overall speed up we are going to get.

(Refer Slide Time: 49:15)

So, speed up can be defined as CPI of the unpipelined into clock cycle time of

unpipelined divided by CPI of the pipelined processor into clock cycle time of the

pipelined. So, if the clock cycle time of the pipeline is going to be larger because for

implementing a pipeline you have to add the interface registers.

(Refer Slide Time: 49:47)

So, the CPI of unpipelined is equal to 5 and clock cycle time is 1 nanosecond divided by

CPI of the pipelined is 1.5 into clock cycle time is 1.2 nanosecond and you are able to

get 5 divided by 1.875. So, the overall speedup is 2.66 times. So, when you make this 5

stage pipeline which takes 5 clock cycle to complete an instruction which is operating at

1 Gigahertz when you make into pipelined version it is going to improve your

performance by 2.66 times including the overhead for the pipeline.

So, in this way we are trying to understand what happens in a pipeline what is impact of

stalls. So, on that completes today’s the tutorial lecture. So, I hope this session was useful

for you to understand then grasp about the subject. So, I request you to go through

similar problems; that is there at the end of the textbook, the prescribed reference text

book. We will have more such tutorials which we will give you more grasp in solving the

questions.

Thank you.

