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Lecture - 03
Introduction to Superscalar Pipelines

Welcome to the third lecture of this course. In the last 2 lectures our focus was mainly on

the design of an instruction pipeline. In the last lecture we have seen couple of hazards,

which are circumstances in which normal execution of instructions will not happen. Or if

you do execution of instruction in its assigned slot, then we will get incorrect result. We

have seen structural hazard data hazards and control hazard. Today, we will see certain

features  of  slightly  advanced  class  of  processors  which  are  known  as  superscalar

processors. We will see some of the feature of its pipeline, and what are the architectural

support that is needed for a superscalar processor.

So, today’s lecture title is Introduction to Superscalar Pipelines.

(Refer Slide Time: 01:48)

This is the conventional 5 stage  architecture of the RISC instruction pipeline that we

have seen; where, you have an instruction fetch stage followed by an instruction decode

stage, and then we have the execute stage, memory access stage and the write back stage.

The basic assumption that drives this 5 stage pipeline operation is, that we need only 1



clock cycle to complete each of these pipeline stage; whether it is instruction fetch or it is

a decode operation, or let say it is an execute operation or mem operation or write back

operation, we assume that the operation gets over in 1 clock cycle.

This is slightly unrealistic when you come to the real implementation of these units in

hardware. We know that the first stage that is instruction fetch stage. And the 4th stage

the memory access stage, both the memory access stage and the instruction fetch stage;

these 2 are not completely inside the processor. The operations of instruction fetch and

memory access are not completely inside the processor, because we have to interact with

the memory. So, accessing the memory sometimes may not yield the result exactly at the

same time. Certain instructions and data may be present in memory, where are some

other instructions may not be present in the memory.

We will learn further about it when we discussed and explore about our cache memory,

which is found one of the main component of this course. We will try to focus on slightly

different aspect today. Let us focus on the execute side; decoding since it is completely

inside processor. It can happen in 1 clock cycle. We have to provide necessary memory

level support such that instruction fetch and memory access will happen in 1 clock cycle.

See in the second stage, there is the instruction decode and the last stage that is write

back.

Since  it  is  completely  associated  with  the  internal  registers  of  processor,  it  can  be

completed  in  1  clock  cycle.  We require  sophisticated  memory  support  high  speed

memory support to complete instruction fetch and memory access operation.

Now,  today  we  will  focus  on  the  execute  portion  of  the  instruction  pipeline.  Our

assumption while working with this RISC pipeline was execute stage will take only 1

clock cycle but we know that there are different types of instructions. Some will work on

integer operands, some will work on floating point operands, some will work on double

precision floating point numbers.

And  we  all  are  familiar  with  the  floating  point  operations.  And  when  we  do  these

operations in hardware with the help of a combinational circuit, in certain advanced data

types apart from integers like in the case of float and double, execution of the operation

that is working with this operands will not always be over in 1 clock cycle. We will see



about a few classes of such kind of instructions where execution stage itself require more

than 1 clock cycle. And let us see how this pipeline is going to work.

(Refer Slide Time: 05:44)

We will deal about multicycle operations.

Some  operations  require  more  than  1  clock  cycle  to  complete;  say,  floating  point

multiply operations, floating point divide operations and sometimes floating point add or

subtract operation. We all know that floating point numbers are being represented as a

mantissa component and an exponent. In order to add 2 floating point numbers, first we

have to perform some normalization, then we have to shift the mantissa accordingly such

that the exponent portion remains same. Once the exponent is same, then only we can

add the mantissa component. Let us say for example, consider the case that you are going

to have a number, 2 into 10 to the power of minus 7, and other number is 3.6 into 10 to

the power of minus 10.

While adding these numbers, you wanted to add these numbers it is not like adding the

mantissa portion. We have to shift the exponents first such that make sure that both the

numbers are having an exponent either 10 to the power of minus 7 or 10 to the power of

minus  10.  Once  you  make  the  exponent  same  then  we  can  add  the  corresponding

mantissa.  This  whole  operation  is  typically  involved  in  the  case  of  a  floating  point

arithmetic. So, to carry out such complex heavy operation, it may not be always possible



in a single clock cycle. So, these operations will take more than 1 clock cycle, and we

will see about this pipeline structure.

So, special hardware is available inside the processor for performing the specialized task

for floating point multiplication,  floating point division and floating point addition or

subtraction.

(Refer Slide Time: 07:46)

Consider this case, this is a classical architecture diagram of RISC pipeline with multi

cycle operations. The instruction fetch, the instruction decode, the MEM and write back

stages are not altered. Whatever pipeline we have seen in our last lecture was like this.

IF, ID, EX, MEM and write back. This is what we call it as the integer pipeline; where

the execution stage can be over in a single clock cycle.  When you have instructions

which consist of floating point operation, this single cycle integer unit may not be the

right functional unit to carry out the task.

So, we have 3 more additional pipelines. One for integer multiplication, one for integer

addition and subtraction or integer or floating point addition and subtraction and the last

one is for division operation. So, once you fetch the instruction; while you performing

the instruction decode operation, you will come to know whether this operation is on an

integer  operand  or  whether  the  operation  is  a  multiplication  operation  or  a  division

operation, or whether it is an addition or subtraction on floating point numbers.



Depending on the kind of operation, the appropriate EXE stage need to be called. So,

upon decoding if you come to know it is an integer operation where you are going to add

or subtract 2 integer registers, then it has to be carried out like this. The output of the ID

stage,  you have  to  put  the  values  inside  ID EX register. You have  another  pipeline

register which is called ID M 1 register if it is a multiplication operation, rather than

sending to EX it has to pass through this channel.

If it is a floating point adding or a subtraction operation, then it will carry out through

this  channel.  And  if  it  is  a  division  operation  it  is  going  to  carry  out  through  this

channels. Now, what are the peculiarity of these units? From the diagram it is clear that

the multiplied unit consist of 7 subunits M1 to M7. And each are separately connected by

arrows just like the other pipeline structure. Similarly, your integer your floating point

adding unit is also 4 independent units. This means that, the multiplier execution stage

itself is internally pipelined which consists of 7 substages; that means, at the end of 1

clock cycle the contents will move from M1 to M2 air for it moves from M2 to M3.

It moves from M4 to M5 like that it slowly moving. Similarly, in the case of an add

operation at end of 1 clock cycle, some kind of a processing will happen in A1 then it

moves to A2. So, A1 is free A1 can take a new set of data from ID. This means these 2

functional units the multiplier unit and the adder unit are internally pipelined; that means,

every cycle it can set a new set of operands. They will partially process the result and

pass it on to the next sub stage; that means, the multiplication operation after the decode

stage the multiplication operation itself will take 7 clock cycles. M1, M2 etcetera up to

M7.

So, if the instruction fetch happens at clock cycle 1 decode happens at 2, 3, 4, 5, 6, 7, 8,

9.  At  the end of  the  9th clock cycle  multiplication  is  over  and 10 and 11. You will

complete  the  remaining  2  stages  of  MEM  and  write  back.  So,  essentially  your

multiplication operation will take 11 clock cycles. Whereas, all the instructions we have

seen in our last lecture where basically integer instruction, they all will get over in 5

clock cycles. If you consider this case, then our adding operation will get over in 8 clock

cycles. Like already mentioned your multiplication unit and the floating point addition

unit both are internally pipelined; that means, every new cycle I can say a new set of

data, but each of this has to move through all the stages one after another.



But there is one small difference in the case of the division unit. The division unit itself is

an unpipelined unit; which carries total of 24 stages. This unpipelined unit means once

you put a data into the division unit, for the next 24 cycles division unit cannot take any

more operands, division is in progress. Or once you give the result it takes 24 cycles to

produce the result of this. Division during this 24 cycles no more operands are permitted

to enter into the division unit. Or we can say that, the division unit is having a structural

hazard for the remaining 24 cycles.

To sum up, we have now 4 parallel layer units; one is called the integer unit which is

called EX, then you have floating point or integer multiplier unit which consists of 7

stages in the EX, we have A4 stage floating point adder. And we have a 25 clock cycle

unpipelined  division  unit.  Few more  details  are  given  here  that  is  pertaining  to  the

latency and the initiation  interval  of these units.  2  parameters  are  mentioned,  one is

called a latency and the other one is called the initiation interval. We will look into what

is the peculiarity of this.

For an integer ALU, if it going to produce the result, then another value which is going to

use the result should not be delayed any cycle more. That is called a latency of 0. So,

latency of 0 indicates  that  for an integer  ALU if  the very next instruction is  also an

integer  ALU  operation,  I  can  use  this  value  without  incurring  any  delay.  What  is

initiation interval? Initiation interval means if I produce the result somebody is going to

use  the  result.  Or  there  should  be  one  cycle  difference  between  2  adjacent  pair  of

operands.

That is going to work in this integer ALU. Now we will see 2 important parameters

defined as latency and initiation interval. For every operation there is a latency that is

associated. For an integer ALU operation that is carried out in the EX unit, the latency is

defined as 0; that means, any other instruction who is going to use this result,  that is

produced by this integer unit it have to wait additional 0 cycles.

That means if you work in a pipelined instruction the first instruction is going into a

integer  EX  unit.  The  second  instruction  wanted  to  use  the  result  produced  by  the

previous instruction. And the result is available in EX unit by operand forwarding we can

directly get the result. There is no additional delay that is been involved for example,



consider the case you have an ADD instruction R 1 R 2 and R 3.  Now you have a

subtraction instruction, that is to R 4 and I am going to work with R 1 and R 3.

Now in this case we have a common operand, first instruction is going to write into R 1

that happens inside the EX stage. Second instruction is going to read from R 1 that is

also going to happen inside the EX stage.

So, it is basically an EX unit to EX unit operand forwarding. And there is no delay or no

extra stalled that you have to provide for the second instruction. Second instruction can

run in it is assigned pipelined unit.  Basically between these 2 instruction there is A1

cycle normal shift, that is happening in pipeline, no extra shifting is required. That is

what is called latency of 0. Now we will see what is the next unit  the next unit  for

discussion is the data memory. So, if you access the data from the data memory, and if

you wanted to use the data in any other instruction, minimum there should be 1 cycle

delay.

And that is what is called this latency. We have seen that, whenever you have a load

operation immediately after the load operation if you have an ADD even though we use

operand forwarding there is A1 cycle delay. This is what we have seen in our last lecture.

That  is  been defined as the latency of data  memory. Similarly, the initiation interval

concept means, what should be the minimum cycle delay such that the same functional

unit can be used again. So, since it is been pipelined, the very next cycle that is the next

cycle I can use the integer ALU. That was coming to data memory also. The very next

cycle  I  can  use  the  data  memory. Now coming  to  floating  point  add we know that

floating point add is this. So, if somebody is going to produce the result, the adjacent

instruction need to have 3 cycled delay. Because since you have 4 stages the adjacent

instruction will start anyway 1 cycle less. That is because of the normal pipelined shift.

So, since I have to wait for 3 more cycles to get the result, then we define the latency was

3.

Similarly, you get 6 and 24 in the case of floating point multiplication and floating point

division. You can see that since all the units are pipelined the initiation interval is only

one. When you have an unpipelined unit the initiation interval is going to be 24. That is

the normal latency plus 1. So, latency and initiation interval will help us to understand

how long the subsequent instruction has to wait in order to use that functional unit. To



repeat once again,  latency of a functional  unit  means if a functional  unit  is going to

produce a result, how much extra delay should be there for another instruction that is

going  to  use  this  result.  An  initiation  interval  means;  after  how  many  cycles  this

functional unit can be used for operating on another set of operands.

Now, consider the case we are using an example.

(Refer Slide Time: 19:24)

Going  to  introduce  another  new set  of  the  instructions  MUL dot  D,  it  is  a  normal

multiplication operation, but it is happening on double data type. That is called 64-bit

operand. So, the first instruction is multiplication, like we can see that it has an IF ID and

then 7 stages of memory. It goes to M1 to M7 then you have MEM and write back. It

takes 11 cycles to complete this instruction. Consider the second instruction it is an ADD

instruction. It starts one cycle less that is a normal pipeline structure, but add is having

only 4 stages in the execution unit. And this instruction even though it started after the

multiplication instructions because of the difference in the execution unit add is slightly

getting before this multiplication.

Then we have load and store which works on the normal integer pipeline and they will

take only 5 stages. This load and store are going through the integer pipeline, where EX

unit is used for effective address computation, and memory access takes place in this

MEM stage. This shows that, when you work with multi cycle execution instructions,

then even though we start instructions in order, there is no guarantee that the instruction



execution will be completed also in order. Now what are the issues when you have long

latency pipeline like this?

(Refer Slide Time: 20:53)

The  first  issue  is  a  structural  hazard.  Since  your  floating  point  division  unit  is  not

pipelined; that means, for next 24 cycles, no other operation can use your functional unit,

your division functional unit.

That means the division functional unit is not available for any other operands for the

next 24 cycles,  this lead to a structural  hazard.  Already my functional  unit  is busy I

cannot  use  this  functional  unit  for  any  other  instruction.  That  is  that  will  create  a

structural hazard. So, once you start a division for the next 24 cycles no more division

permitted. So, if you write a sequence of code, if there are 2 adjacent division instruction,

the second one has to way even though there is no dependency of any data then second

one has to wait long.

And example can be let say division of A B C and the other one is division of D E F. The

first one is operating on operands B and C. Second one is operating on operands E and F.

There is no data dependency between the second instruction and the first instruction. But

if you are using our unpipelined division unit, let say, if this division starts at clock cycle

1, then this division can start only at clock cycle 25. This is because from clock cycle 1

to clock cycle 24, the second instruction cannot use the same resource which is already

been in use by the first instruction. And that is what is called a structural hazard.



Next point is instructions are wearing run times. We have seen in the previous case, when

you have a multiplication instruction it has 7 stages in the execution part. Whereas, an

add operations as only 4 stages in its execution part. So, when you have a multiplication

instruction that is issued in clock cycle 1, I am having a multiplication instruction and in

clock cycle 2 I am having an ADD instruction.

Then this  multiplication  instruction  will  take  longer  time.  And ADD instruction  will

complete before the multiplication is over. So, since the instructions are having wearing

runtimes there can be more writes per cycle after. Sometime this get over by 11th clock

cycle. Now you can have some other instruction which will start at some point, it can

also get over at the 11th clock cycle.

They may start the multiplication instruction. And let us say this can be a subtraction

instruction. The subtraction may start a little late, it may take only 5 clock cycles, but

both the multiplication and subtraction can complete in the saying clock cycle. That will

create  another  issue,  how  many  a  writes  I  can  perform,  both  will  reach  the  write

backstage exactly at the same clock cycle.

So, how many writes I can do that is another issue. We need to how more write ports,

this  course  will  not  go  into  deeper  regarding  these  issues,  I  am just  giving  you an

overview of what are the problems associated with multi cycle pipelines. So, if such a

kind of a problem what we previously discussed, you have a scenario where multiple

instructions reaches the write backstage, then how can I resolve?

Then at the decode stage itself I have to understand that there is first instruction I, that

will complete it is write back stage maybe at clock cycle n. After sometime I got one

more  instruction  that  is  also  going  to  complete  it  clock  cycle  n  that  should  not  be

allowed.  So,  the  second  one  I  have  to  properly  adjust  in  such  a  way  that,  no  2

instructions reaches the write backstage early.

This kind of an adjustment should be done as early as in the decode stage itself. So, I

have to add up some extra stalls, such that no 2 instruction will reach the write backstage

at the same time. Now third one is WAW hazard. What you mean by a WAW hazard?

WAW hazard is a scenario where the second instruction is going to write into a register

before the first instruction writes on it. So, consider the case, you have a multiplication



instruction, that is going to write into R 1, and then you have an ADD instruction that is

going to write into R 1.

Since the multiplication instruction even though it started before the ADD instruction, it

may be completing only in the 11th clock cycle. Whereas, your ADD instruction will get

over in the 9th. So, this gets over in the 8h clock cycle. So, I am actually waiting for a

scenario in which my multiplication instruction is completing only at clock cycle 11.

Whereas, my ADD is getting over a clock cycle 8 this is exactly what you mean by a

WAW hazard. Now we will see the next question is out of order completion. Out of order

completion  means,  even  though  I  issue  instructions  in  order,  since  they  are  taking

variable latencies, then certain instructions will complete out of order.

This out of order completion also will create us few issues; such that we have to manage

the memory and so,  register  consistency. So, we fetch instructions  in order we issue

instructions or decode instructions in order, we execute instructions out of order and that

result to out of order completion. So, consider this case we have a load instruction, it is

actually on a 64-bit data. So, the effective address is computed on integer registers 0 and

R 2 and the loaded value is loading into a floating point register; where F stands for a

floating point register.

So, we are loading a value into F4, and then you are using that value in order to find out

a new value F0 so, F0 is F4 into F 6. We can see that the first is a load instruction load

instruction  takes  only  5  cycles  as  it  uses  the  integer  pipeline,  and  then  we  have  a

multiplication instruction. Since it is going to use a data after load, I have a stall even

after operand forwarding I cannot run it in the normal slots. And since it is multiplication

it has 7 stages in the execution unit. So, the instruction gets over only at clock cycle 13.

Now, the peculiarity of this is the third ADD instruction is going to use the result of the

multiplication. So, you are going to produce a result in F0. Now this F0 value which is

produced by the multiplication unit is going to be used by the adding unit. So, the adder

has to wait until the result of multiplication is over the result of multiplication available

only at M7. So, using operand forwarding you can forward from M7 to A1. Till that

much time you are going to encounter stalls. So, we are going to have more number of

stalls in this scenario. This problem is not there if you work on normal 5 stage pipeline.



So, once you are going to approach, the real instructions it is a taking little bit longer

time, lot of design issues are going to come.

(Refer Slide Time: 28:29)

Now we will take one classical example of a deeper pipeline. Here we are going to work

with MIPS 4000 pipeline it is having 8 different stages. So, these are the 8 stages you

have 2 stages to fetch the instructions.  Then you are going to have the decode stage

which is also known as reading from the register. The EX stage then you have 3 stages

for accessing the memory, and one stage for the write back.

Here also we assume that all the instructions are getting over in execution in 1 clock

cycle. Now let us see what are the various sub stages? The IF stages is a first half of

instruction  fetch  PC  selection  happens  here.  Together  with  you  just  start  with  the

operation execution. And second one is the second stage of the instruction fetch so, the

first stage will get the appropriate value of program counter, you start the operation of

cache axis the instruction cache axis and only in the second stage. So, you how to go to

memory and then perform the corresponding word selection and then the word is being

transferred back to the processor.

So, it takes 2 clock cycle so complete the instruction fetch operation. And then you have

the register fetching the instruction decode and register fetch are happening in this stage,

any hazard checking whether it is a ROW hazard or WAR hazard. And you take the value

that is already a sheet in the instruction cache. So, to summarize the first 3 stages, it takes



2 cycles for fetching to get over it is take one cycle for instruction decode followed by

reading from the registers.

(Refer Slide Time: 30:10)

Coming into the subsequent stage the EX stage will take care of your normal execution,

if it is an ALU operation, or if it is a load or a store operation it computes the effective

address. If it is a branch instruction, then it computes the branch target computation and

condition evaluation.

And then you have  3 stages  to  access  the data  memory, you have  a  data  fetch  that

happens keep the MDR value ready, and then second half will take care of the second

portion of data access, and then you check it out the tag comparison and all. We will

learn more about a working of tax and all once we discuss about cache memory. So,

together 3 stages are required to access the data memory and 2 stages are required to

access the instruction memory, one stage for decoding, one stage for execution and one

stage for write back.

Now, if this functional unit this pipeline if it has to be suitable for multi cycle operation,

then this EX will be converted to M1 M2 up to M7 in the case of multiplication A1 to A4

in the case of floating point addition and 24 stages of division, and the last stage is W

back.
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Now, coming to what are superscalar processors. With the normal processors with the

instruction pipeline so far we have learned; we are fetching only one instruction. So, at

most one instruction is going to complete and the CPI what we are targeting Cycles Per

Instruction is 1; that means, with a normal scalar pipeline. We are trying to achieve one

instruction getting over in every clock cycle.

Can you improve more than this? And yes, it is possible. These category of processors

are  called  superscalar  processors,  what  they  do  is,  fetch  and  execute  more  than  1

instruction at a time. So, you can see that you are fetching 2, you get decoding 2, your

executing 2, you can perform memory access to 2 and you can complete writing. So, at

the end of every clock cycle, 2 more instructions are getting over. This is a case where

CPI  is  equal  to  0.5  means  we are  taking  one  an  average  only  0.5  clock  cycles  for

completion of an instruction.

Such category of processors which can complete more than 1 instruction unit time are

called superscalar processors.
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Now we are going to see certain kind of architectural improvements that is suggested, on

superscalar processors, in order to increase its performance. So, the first one is called

static  scheduling,  compiler  is  going  to  assess  the  hardware  in  improving  the

performance.  So,  what  compiler  does  is  find  and  overlap  execution  of  unrelated

instruction. We know that there are certain instructions which cannot run in the very next

clock cycle as that of the previous instruction; like, when you have a load instruction,

and then when you have an ALU instruction, that is going to make use of the result of the

previous load instruction even though if you used for operand forwarding, we require

minimum of one clock cycle gap between these 2 instructions.

Under this case there is a stall. So, if compiler could reorganize in such a way that, if I

can fit in some other instruction between this load and this ADD instruction, then there is

no stall that is going to happen. Such kind of reorganization done by the compiler to

reduce  the  stalls  in  the  hardware  is  known  as  compiler  scheduling.  So,  compiler

scheduling  means  you  are  going  to  separate  dependent  instruction  from  the  source

instruction by pipeline latency of this source instruction. In this case, when you have a

load and then when you have an add which is comes immediately after this load, we

know that there should be separated by minimum of one there is A1 cycle stall.

So, here what we have to do is, compiler has to separate this load and add by minimum

of one instruction; that means, a new instruction has to be added between this load and



(Refer  Time:  34:38)  a  new  instruction  which  is  somewhere  down  the  instruction

sequence, how to be found out and they has to put in between this load and that. So, the

second instruction can run immediately after load as it is not dependent on the load. And

since  load  and add are  sufficiently  separated  there  will  not  be any further  stall.  So,

consider this case, where I am going to have a chart which will help us in working with

the remaining examples.

(Refer Slide Time: 35:09)

So, consider this loop where you are going to store a scalar value into an element in the

array. Which is basically a program where you read from an array which is called x. Take

the value add a scalar value a constant value in to it, store it back. Let us say take a

number add 10 to it store it back. Go to the next number in the array add 10 to it store it

back. Go to the next number, again do 10 to it and store such a kind of program is that

we arranging the value of i from 999 all the way up to 0.

Let us say how the corresponding MIPS code will be. You are loading the first value into

F0. We will assume that the data is of double precision type. So, you are loading the

value into F0 and 0 plus R 1 will give you the effective address. Now once the value is

loaded I have to add. So, the value is F0, and I have to ADD an F2, this F2 corresponds

to your s. The value of s is stored in F2 I am going to add that constant value s into the

previously loaded value I get the result in F4.



Now, once I perform an add operation it is a floating point add operation, you can see all

the operands are floating point registers F4, F0 and F2. There should be minimum of 3

cycle stall if you wanted to use that value that is what you can see that. If a floating point

operation is going to produce a result. And if you want if the store operation wanted to

use the result there will be minimum of 2 stalls. That is what you can see this 2 stalls;

that means, only after 2 stalls, the store instruction can be issued. And then whatever is

the result in F4, you are going to store back into the same memory address what we have

previously computed.

So, with this the operation of one element is over. I will summarize once again. Take the

first number, add a constant to it you get the result in F4 store the result back into the

same address. So, with that one element in the array is over now I have to go to the next

element. You can see that this array is counting backwards. And each element will take 8

byte, because it is going to be stored in a double precision floating point number. So, I

am going to subtract whatever is the ALU of R 1; R 1 is equal to R 1 minus 8. Once I get

it, then I have to check whether the value of R 1 and R 2 is same this is the loop existing

condition.

So, if it not, now I have a new value of R 1 go one load that number perform the scaler

addition store it. Decrement the index to the next number, check whether I have reached

the exit state, and you are going to repeat this so, this is the code that you have. Now

what is the peculiarity of this code for each iteration I have 4 stalls. Now can compiler

help in rearranging this such that I can reduce the stall? That is what you are going to

see.
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So, this is the program that we have just discussed. Now in what way compiler is going

to help. You can see that, there is 2 cycle delay between your add and your store and

between this load and add there is one stall.

So, once you load a value, you have to insert one stall between any instruction that is

going to use the value, because of the dependency on F0. Now having said this how can I

go into get the benefit? What I will do is whatever was my this instruction that is R 1 is

equal to R 1 minus 8, that I will keep it in between your load and add. So now, load and

add is separated by one instruction already. And I am going to bring an instruction which

is  not  going  to  create  any  point;  it  is  not  dependent  on  load  because  in  the  load

instruction is going to read from R 1. This adding instruction is also reading from R 1,

and both the reads happened one after another so, it is not a problem.

So, why this rearrangements? So now, the value of R 1 is updated. Once you value of R 1

is updated, you have to see that rather than 0 of R 1, if you wanted to store into the same

location you how to do with 8 of R 1. Why? Previously, it is 0 plus content of R 1. That

is what is creating a load. Once it  come to store if you wanted to store in the same

location anyway my R 1 is reduced by 8. So, this instruction will so, reduce R 1 by 8. So,

if you wanted to get the same result, then I have to pay it as 8 of R 1.

So, since this R 1 and the branch instruction as sufficiently separated previously, there

was 1 minimum stall. Now this instruction is going up there is sufficient delay so, all



together the 4 stalls that we had is been reduced to 2 stalls. So, when compiler is going to

reorganize instruction without changing the meaning, then from 4 stalls we are able to

bring down the number of stalls to 2. Can compiler do more? In this context within the

single iteration of 4 loop compiler cannot do more. That is the case where we are going

to work with a concept called loop unrolling.

(Refer Slide Time: 40:47)

Compiler unrolls the loop so, that it will get more flexibility to work on it. So, this is the

normal instruction what we have seen. Now compiler is going to unroll this loop by a

factor of 4. So, this load add and store, you remove these 2 instructions, you go and find

out what is the next load in the next iteration. So, next load is load of minus 8 of R 1 then

you have to add you have to store. Then you go to the third iteration minus 16, then you

go to the 4th iteration.

So, in all this cases you have only load add and store this is iteration 1, this is load add

and store that is iteration 2. Again this is load add and store this is iteration 3, and you

have iteration 4. In each iteration even though I have 5 instructions, I could effectively

drop the  update  and the  branch  comparison  check.  Because  I  am myself  writing  or

adjusting my operands in such a way that, I am able to access the next iteration values.

And then you in one short you reduce the value of R 1 is equal to R 1 minus 32 then you

loop. This principle is called loop unrolling.



But we know that simply by unrolling, there is already a stalled at comes between this

load and add. So, every pair of load and add is going to have stalls. So, wherever I am

going to mark with this greening, there is going to be a stalled. Now can you get rid of

this? This is the place where compiler scheduling is going to help.

(Refer Slide Time: 42:29)

So, this is the unrolled loop. These are the places where we are going to have stalls. Now

if you unrolled a code all the loads are been put together, all these loads are going to be

put together, and the load and adds the corresponding adds this is the corresponding add

when you work on this load and this add is 1. Now if I put this load and the second add is

another 1, the third one is going to be dependent on the.

So, every corresponding dependent add and the corresponding load is been sufficiently

separated. So now, all loads altogether, all adds altogether by the time the add is over.

Now if you see this is an address which is going to produce the result in F4, and that add

and the corresponding store that is going to make use of F4 are sufficiently separated. So,

you do not have any stall in this case. In order to adjust is branch and the update value of

R 1, this is slightly put above. So, all the stores coming after that, this 32 shifting has to

be properly accommodated. 

For those students who find it difficult to graphs the concept, I request you to go through

the text books where there are lot of sold exercises that is being given. And feel free to

contact  us back if  you have still  doubts in this  topic.  So,  we have seen a couple of



techniques like rearranging the code, and then unrolling the loop rearranging an unrolled

loop, all these are compiler techniques also known as static scheduling. The peculiarity

of all these approaches the compiler has to know about the architecture, the number of

stalls  that is going to happen between ith and jth instruction has to find out using it

intelligence some instruction and how to reorganize.

Lot of intelligence has to be fed into compilers. And moreover the architecture should be

shared with the compiler. Then only so compiler and architecture will go hand in hand.

Only in this context we are able to get performance. We will see yet another class of

optimizations that is done on superscalar processors; where compiler is not involved let

us  compiler  generate  whatever  code it  wants.  The architecture  will  take  care  of  this

dependencies and find out solutions; this is called dynamic scheduling.

(Refer Slide Time: 45:01)

Dynamic scheduling is rearranging the execution order. And no longer rearranging the

instruction,  the  instructions  are  in  sequence,  but  rearranging  the  execution  order  of

instructions to reduce stalls while maintaining the data flow.

The  advantage  is  compiler  need not  have  knowledge  about  the  microarchitecture  or

architecture  company  should  not  reveal  its  internals  to  a  compiler  company. And  it

handle all the cases of dependency at the proper time. Now disadvantage is hardware is

going to become complex. Your hardware need to have intelligence that has to detect



dependency has to resolve it, has to take care of operand forwarding, has to take care of

control hazards and has to take care of structural hazards.

(Refer Slide Time: 45:46)

Now, how dynamic schedule in works? There are certain limitations of a simple pipeline

When you have in order instructions and in order executions you fetch in order, decode

in order, execute in order and complete in order that is your normal 5 stage pipeline. The

problem with this an in order pipeline is instructions are always issued in program order

if an instruction is stalled in the pipeline this very, very important. If an instruction is

stalled in the pipeline no later instruction can proceed, no later instruction can proceed.

So,  if  I  have  the  tenth  instruction  that  is  going  to  have  a  stall  because  of  a  data

dependency.

Then even though the 11th or 12th instruction is not having any dependency issues they

are prevented this is the problem of in order pipeline. So, if instruction j depends on a

long running instruction i,  currently in execution in the pipeline,  then all instructions

after j must be stalled until i is finished then only j can execute. Consider the case of this

course you have a division which is going to produce the result on F0. You have an ADD

instruction that is going to make use of the value in F 0, and then you have a subtraction

instruction which is independent of the division and the addition instruction.

In the case of an in order pipeline, that is what we have seen in order execution. The

ADD instruction is dependent on division. So, the division takes 24 cycles. Until the



division is over the ADD cannot proceed because it is a data dependency. No operand

forwarding is possible in this case. So, ADD will be having 24 stalls because it is waiting

for a data which is still in the pipeline. The division unit is producing the data it may take

24 more clock cycles.

But see the subtraction instruction, subtraction instruction is not dependent on add. So,

why should the subtract weight,  that  is the problem of an instruction pipeline which

works in order sequencing. So, this can be adjusted if you go for out of order execution.

(Refer Slide Time: 47:52)

So,  consider  this  case  how  dynamic  scheduling  is  going  to  work  the  problem  is  a

subtraction instruction which is independent which is not having any data dependency,

maybe subtractor is free. So, there is no structural hazard, there is no data dependency

then why should the subtractor be waiting.

So, an adjustments modifications where suggested on in order pipeline to make it out of

order pipeline. So, how will you make out of order to work? Separate the issue process

into 2 parts. So, issue means your second stage of the pipeline; instruction decode which

consists  of  you  check  whether  there  is  any  structural  hazard.  If  this  is  a  division

operation rather than subtraction, if that would have been a division operation on F 10 F

11 and F 12. There is no data dependency, but because of it division, and division unit is

already busy, it is a structural hazard.



In this case it is a subtraction operation there is no structural hazard. My functional unit

is free. So, check whether there is any structural hazard if there is no structural hazard,

see are you waiting for any data there is no data hazard. As long as there is no structural

hazard, as long as there is no data hazard, then we will not delay and instruction. We will

allow the instruction to execute. So, my previous instruction add is still waiting.

My subsequent  instruction subtraction is not waiting for anybody so; subtraction can

start execution. So, even though I fetch them in order I decode them in order, or I call it

as issue in order, but execution starts out of order. So, used in order instruction issue, but

we want an instruction to begin execution as soon as data operands are available. And

that extra facility that you provide is called out of order execution.

Out of order execution means your instruction can complete. So, when subtraction start

execution before addition, subtraction will always complete before additions. So, out of

order execution means out of order completion OOO in architecture community means,

Out of Order Execution it introduces the possibility of WAR and WAW hazards. We have

seen 3 different types of data hazards one is the row hazard which is the direct data

dependency, and then we had WAR hazard and WAW hazard, at the time of discussing

these hazards, we mentioned that such kind of hazard will not happen it in an in order 5

stage pipeline.

Now, we have  seen  larger  pipelines  which  takes  more  than  5  cycles  in  the  case  of

floating point division and multiplication. And we are now seeing out of order pipelines.

This can lead to WAR and WAW hazard, but dynamic scheduling architectures will take

care of it.
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So, how dynamic scheduling works. To allow out of order execution we have to split the

ID. The second stage into 2, one is called a issue stage, where you perform decode the

instruction and check for structural hazards.  So, if  you have a structural  hazard;  that

means, your functional unit is already busy, I cannot complete issue. So, completion of

issue means decoding is over and there is no structural hazard on the functional unit

where you are going to run the task.

The second one is you are going to read operands. So, wait until there is no data hazard

then read the operands. So, how it is going to work in dynamically scheduled pipeline.

All instructions passes through the issue stage in order so, if my previous instruction

cannot be issued the next instruction is stalled. Once issue is over, then the other portion;

however, they can be stalled or bypass each other in the second stage. Reading operands

and thus enter the execution stage out of order. So, you can have stages where issue is

over, but for a previous instruction it is waiting for a data it is having a data hazard.

But for the next instruction issue is over issue is over means decoding is over. And there

is no structural hazard. Means, the functional unit where the operation is going to be

carried out is available. So, once the decode is over once a functional unit is ready, and

then there is no data dependency I can run.  I can have a previous instruction where

functional unit may be free, but it is waiting for data this permit a later instruction to

execute  before the beginning of execution of a previous  instruction.  So, this  is  done



basically by score boarding technique. And those who wanted to know further about this,

they can work on this approach this is called a Tomasulo's algorithm.

In our course, the main focus is on storage and interconnects. These 3 lectures are giving

you a basic idea about how instruction pipeline works. And what are some of the design

issues like hazards and instruction pipeline. And how can you improve the performance

of instruction pipeline with the help of superscalar processors.

(Refer Slide Time: 53:04)

Before we conclude today’s session,  we will have a quick recap. Dynamic scheduling

principle  implies  out of order  execution,  out of order  completion.  And this  creates  a

possibility of WAR and WAW hazards; which the hardware has to take care of. And the

solution is Tomasulo's approach. So, what Tomasulo's approach do is, it try to see when

the operands are available. The moment the operands for an operation is available start

executing on it. And it introduces the concept of register renaming to care of WAR and

WAW hazards and it minimizes WAR and WAW hazards.

We are not going to learn deeper into a Tomasulo's algorithm. That is not coming under

the preview of this course. But I request those students who are finding interest in this

topic  to  read  further.  And  the  reference  book  is  used  this  computer  architecture  by

Hennessey and Patterson, which is already mentioned in my initial slides.
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Now  this  is  like  conventional  superscalar  processor.  This  is  a  logical  view  of  a

superscalar processor. This different colour indicates different programs which is stored

inside  your  main  memory. So,  you have  different  programs,  you are  going  to  fetch

multiple instructions together into the processor. This is your memory and this is our

processor.

So, multiple instructions are fetched from memory to processor. Their decoded together

or issued together. And then you have functional units which will take care of this. So,

these functional units can be compared, similar, you have different functional unit one

for add, one for subtraction, there can be many adders, there can be many subtractors.

So, whatever you have seen here this can be logically  mapped to different execution

course.
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So, a superscalar processor means multiple instructions are fetched; multiple instructions

are decoded, at the same time multiple instructions are also in execution.

(Refer Slide Time: 55:00)

Now, we learn about what is the concept of multithreading. Multithreading is slightly an

advanced version of superscalar;  where you are bringing multiple  instructions.  These

instructions  need  not  belong  to  same program.  I  am bringing one  instruction  of  the

yellow program and 2 instructions of the red program. So, if the hardware can bring

multiple instructions, but let them belong to multiple programs. And that is to be done in



the fetching unit, when it comes to decoding, let us say in 1 clock cycle I decode only the

red program or red instruction.

Next clock cycle I decode only the yellow instructions like that. So, given any time slot,

either I will be working on instructions belonging to program A or I will be working on

instruction belong to program B that is called 2 level multithreading. You can have 3 or 4

or multiple levels. So, the takeaways I am bringing multiple instructions, there can be

belonging to multiple programs. But when it comes to decoding and execution, if you

look at  this  horizontally, either  it  will  be blank means,  there is  no instruction in  the

pipeline or it will be having only one colour either yellow or red.

(Refer Slide Time: 56:20)

The advanced version of this is called hyperthreading. I can bring multiple instructions.

They can be from different programs. I can decode multiple instructions together this

instructions can be of different context, means different programs. At the same time I can

execute one of the functional unit may be working with the yellow program. At the same

time some other functional unit will be working with the red program. So, this is known

as hyperthreading or it is also known as simultaneous multithreading.
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This is a comparison which will tell about the terminologies that we have learnt. These

are  all  your  execution  units.  Superscalar  means,  wherever  you  see  blue  colour,  the

corresponding functional unit is busy doing some task of the instruction wherever you

see white colour that is an empty slot.

So,  in  superscalar, I  have multiple  instructions  see I  have 2 instructions  here I  have

multiple instructions, that is working in the functional units together. When it comes to

multithreading, I can have 2 types of multithreading, one is called fine grained, other one

is called coarse grained. See in fine grained this is one cycle, I am now working with the

blue program, next cycle I am working with the red program. Next cycle I am switching

back to the yellow program, then green program, violet program, again I come back to

the blue program. So, every cycle I contact switch between different programs.

So, that all programs will get a feel of they are getting executed. Now coarse grained

multithreading  means  the  concept  is  same,  rather  than  switching  across  same across

adjacent cycles. I use blue program or I fetched and decode from blue program for say 10

clock cycles. At the end of 10 clock cycle is switch to the red program I continue it for

another 4 or 5 cycles. So, the frequency of context switching is very high in the case of

fine  grained  multithreading  whereas,  it  will  be  slightly  lower  in  the  case  of  coarse

grained multithreading.



Now when you come to multiprocessing; that means, you have 2 processors let us say

one processor has 2 functional units. So, you have a blue program that is running in one

of the processor. And you have another red program that is running in another processor.

This  is  basically  the  concept  of  duel  cores,  where  you  have  2  independent  set  of

pipelines, both are capable of fetching decoding and execution.

One will take care of my blue program other will take care of my red program. Now on

top of this I can apply multithreading, where I can have 2 or 3 programs in one core itself

which will be context switching very fast. It can be fine grained or coarse grained or the

other concept is it can be simultaneous multithreading; where I have multiple programs,

it can be fetched in any order decoder and executed in any order. 

So, with this 3 lectures we have given a background of how a processor works. We have

not gone deeper into the processors. We have covered material which is required in order

to understand and appreciate the storage aspect of processors. Now our next day, our

focus will be more onto the memory side. So, in memory side, we will focus on how

instruction fetch happens, how memory access happens. Since, your instruction pipeline

is interacting with the caches, without covering pipelined it will not be good to go into

the storage aspect.

So, with this we are completing today’s lecture. I request all the candidates to go through

the textbook. Find there are enough reading material on this. And get back to us if there

are  any queries.  One assignment  is  already posted  in  the  modal  just  go through the

assignment and try to solve it by yourself.

Thank you.


