
Multi-core Computer Architecture - Storage and Interconnects
Dr. John Jose

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati, 

Lecture – 02
Introduction to Instruction Pipeline

Welcome to the 2nd lecture of the course. Today, we will be focusing our attention to

Instruction Pipeline. Even though our course’s main focus is on the Storage Aspect and

the  Communication  Aspect  on  Multi-core  devices.  We  have  to  have  a  sufficient

background,  how instruction  execution  is  taken care of inside a processor. Typically,

instant  execution  is  been  driven  by  the  instruction  pipeline  circuit  we  will  try  to

understand how a basic instruction pipeline works in the case of a RISC processor.

(Refer Slide Time: 01:22)

We have seen in our last lecture that the main job of a microprocessor is to execute the

task, and we represent the task as a sequence of instructions, and the stars are stored in

the memory. Now, these are the various stages that an instruction will go through in order

to  get  it  executed.  Now, these  are  all  done by separate  combinational  blocks  in  the

hardware. We have a separate unit, that take care of the instruction fetching, we have a

separate unit  that takes care of the instruction decode, operand fetch,  then execution,

finding out next instruction and all. Today, we will try to understand how these units are



connected each other, and how can you improve the performance of the system with the

help of instruction pipeline mechanisms. 

(Refer Slide Time: 02:14)

Before drawing into the details and architectural features of instruction pipeline, let me

draw  your  attention  to  a  common  example  that  is  being  used  while  teaching  the

instruction pipeline. Consider the case that we have four loads of clothes to wash, and

every load or every unit  of cloth has to go through basically three different types of

operations, namely the washing, then the drying, and then the folding. Your washing will

typically takes 30 minutes,  drying will  take 40 minutes,  and the folding will take 20

minutes. We have four such operation that need to be carried out.



(Refer Slide Time: 03:06)

So, we will  try to understand how this  particular  task can be done in the case of an

unpipelined process. So, we have four loads of work that is to be done that is A, B, C,

and D. Now, each of the work has three sub operations; washing, which will take 30

minutes of time; and then we have drying, which will take 40 minutes of time; forward

by folding, which will take another 20 minutes of time.

In the case of an unpipelined work flow, the basic idea is to start the work only when the

previous work is fully over. So, let us start with A, we spend 30 minutes in completing

the  washing,  followed  by 40  minutes  in  the  drying,  followed  by  20 minutes  in  the

folding. The peculiarities these three sub operations are carried out by three different

units.

So, once the washing is over, we have to take your clothes into the next unit, and ones

that is over, we will take it into the next unit. Once the work of A is over, which will take

30 plus 40 plus 20 that is 90 minutes. We take the work of B, and that also will take 30

plus 40 plus 20, another 90 minutes is gone. Once B is over, then we start with C; and

followed  by  D.  This  is  the  way,  how  we  typically  carry  out  a  work,  if  this  is  an

unpipelined work flow. So, we call it as a sequential laundry that will takes roughly 6

hours for completion of 4 loads of work.  Now, we will  try to see how pipelining is

applied on this.



(Refer Slide Time: 05:05)

The  concept  of  pipeline  is  start  work  as  soon  as  possible.  So,  since  we have  three

independent units, the washer, the dryer, and the folding; we can parallelized these three

activities. When you are drying the clothes of unit A, your washer is free. So, we can

start the work of B that is what is happening here. We can see that the first 30 minutes, it

is only the washer that is working; once the washing is over, the clothes from A is moved

to the dry; at the same time, the washer is free, I can start with the work of B.

So, even though A is not completed, I am trying to start B thereby making sure that the

dryer is taking care of As clothes; at the same time, the washer is busy by washing Bs

clothes. This is called the pipelined structure. So, we are going to do a work as soon as

the unit in which the work is carried out is idle. So, pipelined laundry will take only 3.5

hours of time in order to complete these 4 loads.



(Refer Slide Time: 06:28)

So, what are the characteristics, let us sum up the characteristics of this pipelined work

flow structure. The first feature is pipelining does not reduce the latency of a single task;

it tries to improve the throughput of the entire workload. So, when you consider each of

the unit, then the total time taken by them is still the same, rather slightly higher that we

will see. Effectively what are we gaining here, it is a throughput the number of task that

is completed in unit time.

The second feature of pipeline is pipeline rate is limited by the slowest pipeline stage.

So, here 1 unit is taking 30 unit of time, 2nd one is 40 and the 3rd one is 20, the slowest

that which takes more amount of time is called; is defined as slowest. So, the 2nd unit

that is the dryer will take more amount of time. So, the advancing of the pipeline from

one unit to other is restricted to dryers time. So, pipeline rate is limited by the slowest

pipeline stage. Now, how much speed up you are going to get from this pipeline. The

speed up is subjected to maximum of the number of pipeline stages.

Now, what are the other issues with respect to pipeline? Since, these stages are having

unbalanced length, amount of time the clothes spend in each of the stages is not saying,

we were spending 30 minutes on the washer, 40 minutes on the dryer, and 20 minutes on

the folder. Since, the time that the clothes are being kept inside these stages are different.

We have an unbalanced pipelined stage, so the this will reduce the pipeline speed up.

And the  time to fill  the pipeline  and time to drain the pipeline  will  also reduce the



performance. So, what do you mean by filling? I have to put your clothes from one unit,

once it is over, I have to take away the clothes from that unit into the next one that is

called filling and draining of each of this unit.

(Refer Slide Time: 08:56).

Now, coming to pipelining of circuits. Ideally, from this example, how can we correlate

the concept into the pipelining that is being implemented in hardware circuits. Pipelining

partition the system into multiple  independent  stages with added buffers between the

stage. And performance gained in the pipeline is proportional to the depth of the pipeline.

And pipeline can increase the throughput of system, we have already seen that.

So, consider the case, we are going to do a task of execution of an instruction that is

fetching, decoding, operand axis, executing the task, and then producing the result. This

entire activity, which is carried out by a set of combinational circuits, we can assume that

let there be n the combinational circuit is having an n gate delay. When if you could

divide this n units into two independent sub task of n by 2 gates, then that is called a first

level of partitioning the circuit. And these independent unit, we call this as a pipelined

stage. We have two pipeline stages, and they are separated or interfaced by enlarge. If

you can further divide them into n by 3 stages rather than n by 2, then we call it as a 3

stage pipeline. So, here we are going to have a 3 stage pipeline.

So, ideally the concept is whatever is the operation that, we are going to carry out in the

execution of an instruction. If you could split the operations into independent sub task,



carry out an operation in one combinational  unit,  ones that operation is done in that

particular unit, pass it on to an interface register, which we call it as pipelined register,

and then you go and take the next instruction. 

In this way, all  the stages inside the pipeline are busy with different instructions; all

instructions are making forward progress, even though we are not able to increase the

performance of a single instruction or we are not able to reduce the execution time of a

single instruction. Overall, when we consider the throughput, we are going to gain much.

(Refer Slide Time: 11:11)

Now, we will see a specific case of a pipeline. For our case study, today we are going to

consider the RISC five stage instruction pipeline. RISC stands for Reduced Instruction

Set Computer. Now, in the case of RISC architectures, the instructions are designed in

such a way that every instruction will take at most five stages. Today we are going to

learn about these five stages; what are the operations that are carried out in these five

stages that will give us a better understanding about how pipelining works.

The first stage is known as instruction fetch. So, what happen is us, the instructions are

stored in the memory, we have to fetch an instruction and then only we can carry out the

remaining operations on it. So, it is a program counter a register that contains the address

of  the  next  instruction  to  be  fetched.  So,  the  contents  of  program counter  from the

contents of program counter, go and fetch the instruction from the memory.



And once the instruction is fetched, the instruction fetch unit has a special adder, which

will increment the program counter to the next linear address. In the case of this RISC

stage architecture, we assume that we are using a word length of 4 bytes that means,

every instruction is stored as 4 bytes 32 bits. So, the next instruction is stored in program

counter plus 4. So, PC is equal to PC plus 4, it is been done.

This will be the logical diagram of the unit. So, you are having an address. So, based

upon the program counter, you go into the memory, access the contents. So, the fetch the

instruction is going to be typically kept in the IF ID register, whereas this unit is called

instruction fetching unit. And you have an another adder that will increment the PC. To

summarize,  the  instruction  fetch  unit  is  capable  of  bringing  the  instruction  from the

memory, and it will update the value of program counter, so that it  will be ready for

fetching the next instruction from the memory.

(Refer Slide Time: 13:30)

Moving out to the second stage of the pipeline, this stage is known as instruction decode

or register fetch operation. Here, two operations are being carried out; the first operation

is  you  have  to  understand,  what  the  fetched  instruction  is,  whether  it  is  an  ALU

instruction, whether it is a memory instruction, whether it is a branch instruction or not.

Along with that, once you understand what the instruction is, once you decode what the

instruction is. The next task is if there are some operands that are kept in registers, then

we have to access these registers; that is why, it is known as register fetch operation.



So, the first task is decode the instruction, and then read the registers. And the RISC

instruction pipeline basically uses a fixed field decoding. Out of the 32 bits that we are

having,  there  are  certain  prefix  to  positions.  So,  for  example,  first  n  bits  represent

opcode, the next m bits will represent my first operand, next p bits will represent my

second  operand  like  that.  So,  once  you  get  the  instruction,  since  it  is  fixed  length

decoding, it is very easy that you could work, one unit will be trying to understand what

the opcode is, parallely another unit is trying to work what the operands are.

Considered an example,  let us say we have an instruction add R 1, R 2, R 3, which

means R 1 is equal to R 2 plus R 2. In this case, we try to understand, what how this is

encoded. Let us say assume this is the encoding in hexadecimal, let us say this is a 32-bit

value that is going to be used. So, since we use fixed length encoding, one example is,

first 8 bits can represent, it will tell an add operand; this is the first operand; then second

operand; and the third operand like that.

Let us say if it is going to be a load operation, this is a typical syntax of a load word

instruction in the case of a MIPS RISC processor. Load word is the opcode; and this is

one of the operand that is called destination operand R 1; 8 and R 2 are used to find out

the address from which the load has to happen. So, we will see about what is the working

of load later, but even if it is a different instruction other than an ALU instruction, still

we can use the fixed length decoding that will tell the first 8 bits can always find out

what is going to be the first 8 bits can tell what it is an opcode is load. Then this can tell,

it is R 1; this can tell, it is R 2; and this portion can tell the value 8. So, this is what is

known as fixed length encoding and decoding.

So, this is the register, where the output of the fetch instruction is being kept. Now, from

the IF ID register, once you come into the second stage that is called instruction decode

and register fetch unit, you can either read the register file, such that the contents of R 2

is  been taken,  and it  is  past  to  the  next  pipeline  register  that  is  called  ID and DX.

Sometimes,  for  these  kind  of  instruction,  all  the  operands  may  not  be  registers,

sometimes we may have an immediate value like 8, then I could use this possibility of

finding out the sign extended version that is a sign extension version of it, and that also

can be stored in the ID EX registers.



(Refer Time: 17:01) To sum up in this unit what we are trying to do is once you have

completed the fetching of an instruction, go and take this entire 32 bit, split into smaller

pieces, first n bits will tell what is a opcode, next n bits will tell what is the first operand,

what is second operand, whether it is an immediate value or not. So, this can be done in

parallel with the decoding. And once the decoding is over, one of this combinations can

be properly taken and work with coming into the third stage.

(Refer Slide Time: 17:30)

The third stage is known as execution stage or it is also known as an effective address

computing stage. If the instruction is going to be an ALU instruction like add, sub, or

increment kind of thing, then this unit will perform the corresponding operation. But, if

the instruction is a memory operation like a load instruction or a store instruction, then

the third stage that is a EX stage is performing computation of effective address.

So,  if  it  is  a  memory  reference,  then  we  are  doing  effective  address  computation.

Consider the case that you are using a load word instruction, the meaning of this one is, I

have to take a data from a memory, whose address is given by R 2 plus 8. So, contents of

R 2 plus 8, let us say this value correspond to 2008, go to location 2008, fetch the data

that is present, and that is being loaded into R 1. So, the contents of R 2 will be red in the

ith stage that is a second stage of the pipeline, the value 8, and the contents of R 2 will be

forwarded. So, you will get the value 8  here, and the contents of R 2 will be coming



through this, and then you effectively add. So, at the end of ALU stage what you get is,

the address. So, effective address reaches here.

But, if it is going to be an add operation like ADD R 1, R 2, R 2 like that, then the

contents of the registers R 2 and R 3 whatever be the case, they will be taken to ALU. In

that case, this section may not be used, you will be directly taking two values, these

values are added. In this case, what the result you get from ALU is not an address, it is an

output value. So, your EX stage is capable of performing two task; if it is a memory

instruction like load or a store instruction, it will compute the effective address; if it is

going to be an ALU operation or a branch operation, it will perform the corresponding

operation and get the result.

(Refer Slide Time: 20:08)

Going onto the fourth stage, this is called MEM stage. This stage is used only by two

instruction, in the case of a RISC architecture; 1st one is a load instruction, 2nd one is a

store  instruction.  For  all  other  instruction,  this  will  simply  bypass  the  value  that  is

available in the EX MEM register into the MEM right back register. So, the MEM stage

is used only for those instructions, which are going to access your memory that is the

load and store instruction.

So, load is an instruction, it will load the contents from memory and store into a register.

And store is instruction that will store the data from a register into the memory. These are

the syntaxes of load and store instructions. So, the effective address that is 8 plus content



of R 2 will be computed in the EX stage. So, by the time you reach the MEM stage, you

are already having the effective address with you with the effective address you go to

memory, so this will pass on the effective address. Once you have the address, you go to

memory, get the data and that is being kept in the next pipeline register that is a MEM

right back register.

There is a special naming convention for this pipeline registers. So, MEM write-back

pipeline register means, one end of this pipeline register is the MEM unit, the other end

is the write-back unit. Here in the case of this pipeline register, one end is the execution

unit, and this end is the memory unit.

(Refer Slide Time: 21:27)

Going  into  the  next  stage  that  is  called  a  write-back  stage  this  is  used  by  those

instructions,  where the results are written into the registers. When you have an ALU

operation like add or sub, the result is written in their register. When you have a load

operation, there also the result is written inside a register whereas, in the case of a store,

we  are  not  writing  the  result  into  a  register,  because  the  effect  of  the  operation  is

reflected on the memory, not on the register.

So,  in  this  case,  whenever  you  have  a  register-register  ALU  instruction  or  a  load

instruction,  then  the  write-back  stage  is  been  used.  The  logical  diagram,  this  is  the

second stage, which access reading of the registers. So, all reading of registers happened

in the second stage; all writing of registers happen only write-back stage. So, whatever is



the output of MEM stage, you get the value, and that value is written into the appropriate

so registers. These are two different stages, but they act upon the same register file that is

why, I have shown the diagram like this.

So, these are the five stages of the RISC pipeline. So, the first stage is instruction fetch,

which is responsible for fetching the instruction and updating the program counter. The

second  stage  is  called  instruction  decode  and  register  read,  where  you  decode  the

operation and apply fixed length the decoding to find out,  what are the opcodes and

operands are. The third stage is the execution stage, which can carry out two task if it is a

load or a store instruction, the effective address is computed from the base register and

the immediate value; if it is an ALU instruction, the corresponding task is being carried

out in the arithmetic logic unit.

The forth stage is called MEM stage, which is used only in the case of a load and a store

instruction.  Whatever  is  the  effective  address  that  is  computed  by  the  ALU  in  the

previous stage from the effective address (Refer Time: 23:29) to the effective address,

the load or a store operation is been happening. The last stage is called a write-back

stage, where whatever is the result of ALU operation or the memory operation, it is being

reflected.

(Refer Slide Time: 23:52)

Now, this is the unpipelined RISC data path, where you can see the instruction fetching

operation, it as an instruction decode the execute, the memory, and the write back stages.



If it is an unpipelined, this whole structure is going to be a single combinational block,

where one task is over; it is given to the other combinational block.

(Refer Slide Time: 24:17)

When you are going to pipelined structure, what you see is in between each of these

independent combinational blocks, we are going to add pipelined registers. So, at the

end,  and  this  is  been  given  to  a  common  clock.  So,  the  beginning  of  a  clock,  the

instruction fetch unit will work, at the same time, instruction decode unit is also working,

maybe on a different instruction.

At the end of this clock cycle, the operation instruction fetch will fetch the instruction

and store it in the IF ID register. Whatever was been taken by the IF ID register in the

previous cycle, the instruction decoder will produce the decoded output in the ID EX

register. And whatever was available in the ID EX register, the ALU unit will perform

this task, and it will produce in the EX MEM register. Similarly, it is from the EX MEM

register into the MEM and write back register also.

So, for a pipeline to effectively work, we actually need a pipeline register. So, every

pipeline stage, at the beginning of a clock cycle will take the input from one pipeline

register, perform the activity, and keep the result in the next pipeline register. So, when

the clock ticks again, this pipeline register goes into the first pipeline register, which

might be already (Refer Time: 25:32) with the new set of task by its previous unit. So,



that every unit will take from one pipeline register, perform the task, and put the result in

the second pipeline register.

(Refer Slide Time: 25:52)

Now, coming to visualizing the pipeline, this is how basically a pipeline works. Let us

say and clock cycle 1; I am going to fetch the ith instruction. The fetching operation is

over in the first cycle, second cycle I perform the decoding, third cycle I will perform the

execution, forth cycle memory operation, and fifth cycle, it is a write back operation. In

the unpipelined case, your i plus 1th instruction can only start in the 6th clock cycle.

Now, we see what happens in pipeline. The i plus 1th instruction will be fetched in the

second clock cycle that is the main advantage; the fetching happens in the second clock

cycle. At the same time, the decoding is in progress for the first instruction. When the

first instruction moves to the execution stage, then the decode unit is free. So, already

fetched i plus 1th instruction will move to decode unit. So, the decode unit, this is the

way, how the decode unit works, this is the way how a pipelined is been visualized.

Now, if you look at clock cycle 5, we can see that the write back stage is busy with the

ith instruction, the memory stage is taking care of the i plus 1th instruction, the EX stage

is taking care of i plus 2th instruction, the ID stage is taking care of i plus 3th instruction,

and the IF stage is taking care of i plus 4 instruction. After clock cycle 5 write after clock

cycle 5, you see the first instruction is completing in clock cycle 5. 6th clock cycle, my



second  instruction  is  completing.  In  the  7th  clock  cycle,  my  third  instruction  is

completing.

Thereafter for every clock cycle, one instruction is getting over. So, the idea of pipeline

is one instruction is getting over in one clock cycle, on an average. Even though the 1st

four  cycles,  we  are  not  able  to  complete  any  instruction,  from the  5th  clock  cycle

onwards, one one instruction is getting over. So, pipeline increase this the throughput of

the system, it would not would not reduces the latency of a single instruction.

(Refer Slide Time: 28:04)

Now, this is yet another way of visualizing the pipeline. In clock cycle 1, we are going to

work on the instruction memory, where I am fetching the instruction. In clock cycle 2, I

read the value from registers. Clock cycle 3, ALU is been use in order to carry out the

task.  Clock  cycle  4,  if  there  is  any data  to  be  access  from memory, so  I  call  it  as

instruction memory in clock cycle 1; I call it as data memory in clock cycle 4. And then,

in the 5th clock cycle I am going to write the values into the registers.

So, similarly we can see that in pipeline, we are going to work with either memory. So,

memory is been accessed in the 1st clock cycle, and the 4th clock cycle. Register is been

accessed in the 2nd clock cycle, and the 5th clock cycle. And the functional units like

ALU is been accessed in the 3rd clock cycle. To understand the storages, how cache

memory works. This is the main area in which cache memory is been accessed. (Refer

Time: 29:03) fetching an instruction and while accessing the instructions from memory,



these are the two places, where performance of cache memory is also crucial. Now, these

are the pipelined registers that are been added in between them.

(Refer Slide Time: 29:21)

Now, consider this question, which is mentioning about what is overhead associated in

pipeline. In the case of an unpipelined unit, we have a set of combinational blocks, which

are one after another. Once you pipeline it, you have to independently divide them in

between a pair of pipeline stage; we have to include a pipeline register. And reading into

this register or writing into this register, all are going to create slightly extra overhead;

we call it as pipelined skew and timing.

So, this particular question, assume that a non-pipelined processor has a 1 nanosecond

clock cycle and it uses 4 cycles for ALU operations and branches, 5 cycles for memory

operation.  So, we have totally  3 category of instructions;  they are ALU, branch, and

memory  operations.  Assume  that  the  relative  frequency  of  these  operations  are  40

percent, 20 percent, and 40 percent, so respectively. Suppose, that due to clock skew and

setup, pipelining the processor adds 0.2 nanosecond overhead to the clock. Ignoring any

latency impact, how much speed up in instruction execution rate, we will gain from the

pipeline.

So, average execution time, in the case of a non-pipelined processor is clock cycle into

average  CPI.  So,  we have  40 percent  of  instruction,  which  will  take  4  clock cycle;

another 20 percent of instruction, which will also take 4 clock cycle. So, 60 percent of



instructions will take only 4 clock cycles, the remaining 40 percent of instruction will

take 5 clock cycle. This will give you how many clock cycles this particular program will

take,  and  one  clock  cycle  is  1  nanosecond.  So,  the  total  execution  time  for  one

instruction on an average is 4.4 nanosecond.

Once you come to pipelined design, you know that every instruction is going to get over

in  one  clock  cycle,  if  you  eliminate  the  first  few  clock  cycles  for  the  very  first

instruction. So, the idea of pipeline is CPI is equal to 1; cycles per instruction is equal to

1 that is a target, we are trying to achieve using pipelining. So, when CPI is equal to 1 for

a pipelined design, our average execution time for pipelined is one clock cycle, but in the

question  it  is  mentioned  that  due  to  pipelining  our  clock  cycle  is  stretched  by  0.2

nanosecond extra. So, already it is 1 nanosecond, now on top of this 1 nanosecond, we

are going to add another 0.2 nanosecond; that is why, it is 1.2 nanosecond.

Now, what is the speed up that you get, average execute; this is what we have learnt from

Amdahl’s law. Average execution time of non-pipelined divided by average execution

time of pipelined; so you will be getting 4.4 nanosecond divided by 1.2 nanosecond, and

that is 4.24 nanosecond by 1.2 nanosecond, so it will be 3.7 times is the speed up that

you get.

(Refer Slide Time: 32:32)

Now, we will see having said all  these five stages, we feel that pipelining will work

perfectly, but there are certain cases or certain design issues with respect to the pipeline;



we will  see,  what  are  them.  The  1t  one  ideally  we  feel  that  there  are  uniforms  of

computations, that is all the stages in pipeline will be of uniform stage. The computation

to be performed can be evenly partitioned into uniform latency sub-computation that is a

ideal case.

But,  in real  case,  we feel  that  not all  pipeline  stages may have uniform latency that

means, the time required to carry out your IF instruction fetch may not be equal to the

time required to carry out instruction decode. So, initially, when we discussed you told

that all five units are there, and all five units will take equal amount of time, but once

you write the combinational logic for them, we will understand that there will be taking

variable delay.

So, how can we deal with this? That is the impact of instruction set architecture. Memory

access is a critical sub-computation. So, wherever possible try to reduce memory access,

because while you go to memory, it is going to take more amount of time, because it is

not inside the processor, we have to go outside the processor to fetch from memory. So,

wherever possible try to reduce memory access and use fast memory, such that the speed

up access from on memory is proportional to or at par with the pipelined clock. Memory

addressing module should be minimized, that is the second point, and wherever possible

try to use fast cache memories.

(Refer Slide Time: 34:17)



Now, the second pipeline issue is we feel that identical computations are there on all

instruction combination. The same computation is to be performed repeatedly on a large

number of input data set, but the reality is some pipeline stages may not be used like we

have discussed in the case of the RISC pipeline, we are not using the MEM stage for all

the instruction. For ALU instructions, the MEM stage is just a bypass unit.

So, what can the instruction set architecture do, reduce the complexity and diversity of

instruction, and try to see that instructions can be designed in such a way that they will

go through the basic five stages. We remove to CISC architectures, such a kind of an

optimization  is  possible,  certain  instructions  will  take  five  clock  cycle,  certain

instructions will take ten clock cycle, some will take even more than ten, and some may

take even less than five. But, when you go to a RISC architecture, we try to see that

every instruction is taking uniform number of clock cycles.

(Refer Slide Time: 35:18)

And  the  third  issue  is  independent  computations.  Our  idealistic  assumption  is  all

instructions  are  mutually  independent.  We cannot  write  a  meaningful  program, if  all

instructions are mutually independent. It is the dependency between the instructions that

give  the  program a  logical  shape  and  the  meaningful  outlook.  But,  when  you  have

instruction that are dependent, how will pipeline works. The reality is pipeline will stall;

we  cannot  proceed  that  means,  a  computation  may  require  the  result  of  an  earlier

computation. So, sometimes the nth instruction can be executed, only if the n plus 1th



instruction is complete. So, in this case, parallely doing things, what we have discussed

in the pipeline, may not work.

So, the impact of instruction set architecture is you try to reduce memory addressing

mode,  such  that  your  dependency  detection  is  easy,  because  in  memory  addressing

modes, finding out whether the ith instruction is having a dependency between i minus

1th instruction is very difficult. But, if you use a register addressing mode, it is easy to

know, whether the source register of one instruction is the destination register of the next

instruction. So, using register addressing mode is slightly easy in this case.

So, we have seen there are basically three issues that the pipeline has to take care off.

Our 1st idealistic assumption is all the units will be of uniform latency, which is not true.

So, the instruction set architecture has to be designed in such a way that every instruction

will  have an uniform kind of or more or less uniform latency. 2nd one is that every

instruction need not go through all this sub-computation. And 3rd one is there maybe

dependency between different  stages in the pipeline,  so we have to take care of that

aspect as well.

(Refer Slide Time: 37:22)

Now, we will see certain other problems that the pipelines are having. So, they are the

limits to pipeline, we call it as hazards. Hazards are circumstances that would cause an

incorrect  execution if an instruction is fetched and executed in its pipelined slot. So,



hazards are certain scenarios in which our normal pipelining sequence would not would

not work well.

There  are  three  different  types  of  hazard.  The  1st  one  is  called  structural  hazard;

attempting to use the same hardware to do more than one operation at a time. Let us say

ith instruction and jth instruction, both wanted to use one particular unit at the same time.

Such a scenario is called structural hazard, where your resource cannot be shared across

two instruction. 

So, if you do that, that lead to an incorrect execution. The 2nd one is called data hazard;

the instructions depend on the result of the previous instruction. So, only if the previous

instruction  is  complete,  then  only  the  current  instruction  can  do.  So,  the  current

instruction fetch runs in its normal pipeline slot, then it is going to give us incorrect

answers, that is called data hazard.

And the 3rd one is going to be the control hazard. Control hazard is caused by the delay

between the fetching of an instruction and decision about changing the control flow.

When you fetch an instruction, the very next cycle the next instruction is fetched. Let us

say  the  first  instruction  is  going  to  be  a  branch  instruction,  only  if  you  know  the

condition of the branch, then only you will be knowing, whether the adjacent instruction

is fetched or a target instruction is being fetched. 

But in the normal case, the very subsequent cycle itself the next instruction is fetched.

So, if  you bring a wrong instruction,  then that  also will  create  issues so, these three

problem, structural  hazard,  data hazard,  and control  hazards,  will  create  issues while

working with pipeline.



(Refer Slide Time: 39:12)

Now, we will see what a structural hazard is. One of the classical example of structural

hazard is uniport memory. Consider the case; you have a first instruction that is load. The

load instruction is going to fetch the instruction from memory in the 1st cycle, and going

to take the data from the memory in the 4h cycle.

Consider  the  remaining  instructions.  When  it  comes  to  the  4th  instruction,  the  4th

instruction will perform fetching in the 4th clock cycle, the instruction will be fetched. At

the same time, memory has to be used for fetching data of the first load instruction. So,

this is actually same resource that is your memory is going to be used by two instruction,

exactly at the same time. Memory has to supply the instruction that is the 4th the 3rd

instruction has to be given, as well  as the data of the first instruction also has to be

supplied with memory. One resource shared by two instruction, this is called a structural

hazard.



(Refer Slide Time: 40:32)

Now, how will you resolved a structural hazard. Eliminate the use of same hardware for

two different things at the same time, there is a more simplest principle, but what are the

two ways in which you can do. 1st one, whenever you detect a hazard, you wait until one

instruction has used it. So, that in the next cycle or then subsequent cycles, the functional

unit which created structural hazard may be free for the current instruction, so that you

can use. 

So, detect whether there is a structural hazard, if so ask one of the instruction to wait, we

call it a stalling, the instruction will stall and subsequently try accessing this particular

functional unit at a later stage. Second solution is duplicate the hardware. That hardware,

which was creating structural hazard, create multiple instances of those hardware, and

that is way how we can do.



(Refer Slide Time: 41:10)

Now, detecting and resolving a structural hazard, the first mechanism with see in the

same example we have seen. First instruction is load, and then it followed by another

three instruction; so second instruction will work, third instruction will work. When it

comes to  the next  instruction  had it  been run in  the same slot,  it  is  going to  create

problem with this memory access. So, what we do is, we do not fetch the next instruction

that is going to create a bubble or a stall.

And so, we are trying to delay your instruction 3 to cycle number 5, rather than starting

instruction 3 at cycle number 4, now we are delaying it  by one cycle.  This is called

asking one of the instruction,  detecting a hazard and asking one of the instruction to

execute or to get its operation done after one cycle. So, if in this cycle also if that would

have been a problem then we will shift one more this is the first approach detect and

wait.



(Refer Slide Time: 42:49).

Now, second approach is by using design. So, we were having a problem like instruction

fetch  of  one  instruction  is  happening  at  the  same time  of  memory  stage  of  another

instruction. If instruction fetch and memory can be carried out from two different units,

then the problem can be resolved. This is called duplicating hardware. Can we have a

separate hardware that will store instruction, and can we have a separate hardware for

storing your data. This is your this led to the concept of having split caches; one cache

for  instruction,  and  other  cache  for  data.  So,  that  whenever  the  IF  is  happening

instruction fetch is happening, it is not conflicting with the data fetch.

(Refer Slide Time: 42:58)



Now, the second type of hazard is called data hazard, where there exist a dependency

between  the  data.  One  instruction  cannot  go  or  cannot  execute  cannot  start  until  a

previous instruction is over. Consider the instruction sequence, add, r 1, r 2, r 3 that is

your 1st instruction, where r 2 and r 3 are added together, to store the result in r 1. 2nd

instruction is sub r 4, r 3 and r 2, where the value that is produced in the first instruction r

1 is going to be used as a source operand in the second instruction. In the 3rd one is also

r 1 is a source operand, 4th one is also r 1 is a source operand, and in the 5h 1 is also r 1

is a source operand.

Ideally, this is an instruction, where first instruction will produce, the result be stored in r

1. All other instructions are going to use these instructions used to going to use the value

that is stored in r 1. So, let us this is your first instruction, which will produce the result

at the WB backstage; in the write back stage only, you will get the result. The second

instruction  is  supposed  to  run  in  these  time  slots,  but  you  can  see  that  the  second

instruction wants the value of r 1, at the ID stage that is the IF stage of just after IF the

ID stage.

Third instruction also has this problem, it also reads from r 1. But, if you look at the time

axis, r 1 value is ready only at this point. Whereas, somebody is trying to read r 1 at this

point that is subtraction instruction, the and instruction is trying to read the value of r 1.

So, whatever is be the value of r 1, in this points will be absolute values or old values.

So, sub instruction cannot read r 1, and instruction cannot read r 1, in its designated slots.

This is also another problem for r instruction also the same issue is there, you would not

get the correct value of r 1, if you try to read r 1 at this point, because you will complete

writing only at the stage. But, when it comes to the XOR instruction, you are going to

read the value of r 1 after the w backstage of the add instruction is over. So, this value

will be correct. So, this scenario, where which is marked with the red arrows, they if you

read the value of r 1 in those instructions, then it will lead to incorrect execution coming

a hazard. This is called a data hazard.



(Refer Slide Time: 46:01)

There are three different types of data hazards, we will see one after another. The 1st one

is called read after write, where instruction J tries to read an operation before instruction

I writes on it, we call it as a data hazard. First instruction is going to write a value into r

1, second instruction is going to read a value from r 1. If the second instruction read the

value  before  the  first  instruction  writes,  then  that  is  a  hazard,  so  second instruction

reading  has  to  be  delayed.  This  is  this  hazard  result  from  an  actual  need  for

communication. So, whatever the result obtained in instruction I has to be forwarded to

instruction J, in order to properly get the result.

(Refer Slide Time: 46:31).



The second category of hazard is called write after  read hazard also known as WAR

hazard.  Instructions  J  writes  operand  before  instruction  I  reads  it.  So,  consider  this

scenario, you are going to read a data, the second 1 is going to write a data into r 1. This

kind of a hazard is called anti-dependence, because we are going to use the same r 1; r 1,

which was the source operand, we are going to write on r 1.

But, in the ideal 5 stage pipeline of RISC, this is not a problem can happen in a MIPS

RISC 5 stage pipeline, because all instruction take 5 stages. Reads typically happen in

the  2nd stage,  and writes  happen in  the  5th  stage.  So,  if  Ith  and Jth instruction  are

executed in the normal sequence in the pipeline, then they are not going to create any

problem. But, when it goes to out of order processors, which we will see later, then this

kind of hazards can happen.

(Refer Slide Time: 47:36)

The next type of hazard is WAW hazard. When instruction J writes the operand before

instruction I writes on it. Considered this instruction, where I and J both are going to

write into r 1, and your instruction K is going to read from r 1. The program meaning is

the value that instruction K reads the value of r 1 should be the result of Jth instruction.

Ideally, we expect Ith instruction will write first followed by J, but if by chance, I is

delayed in out of order kind of execution we will see that.

If the order is violated, then what our the value K will read is a wrong value. And this is

called output dependence, this also result from the reuse of the name r 1. Add J use a



different name or (Refer Time: 48:18) I use a different name, then this problem would

have been there. So, compiler should have done this optimization, such that we can avoid

WAW hazards.  This  also  typically  (Refer  Time:  48:27)  happen  in  a  MIPS  5  stage

pipeline, because all instruction take 5 stages, and the write happens typically in the 5th

stage. But, as mentioned already WAR and WAW hazards can happen in out of order

processors.

(Refer Slide Time: 48:43)

Now, how will you take care of these hazards data hazards? Whenever there is a RAW

hazard,  read after write hazard that  can be taken care by a technique called operand

forwarding. So, consider this case, you have the first instruction add, you have the first

instruction add is there, where it is not the content of r 1 what we want, we want the sum

of r 2 and r 3 that is to be forwarded to the next instruction. And it is a ALU will produce

the sum of r 2 and r 3. So, from the output of ALU, I can give the value to the input of

ALU, such that the next instruction when it reaches, it will get the value.

So, even though the instruction says that we how to read from r 1, we are not specifically

looking for reading from r 1 rather than that, we are interested in the result of r 2 plus r 3;

r 2 plus r 3 is computed in the ALU. Once ALU produce the result, then that result is

forwarded to the input side of ALU, such that when r 3 is ready, it can be added with this

r 2 plus r 3, such that it will replace the contents of r 1; it can be used instead of contents

of r 1. So, wherever you see this green arrows, there actually forwarding the result and



result forwarding or operand forwarding, can happen only from one pipeline register to

another pipeline register. It can be from MEM stage to the input of ALU or it can be from

output of ALU to the input of ALU.

(Refer Slide Time: 50:17).

So, this is how it works. This is your the ID stage, this is your EX stage, and this is your

MEM stage. So, these stages can forward the appropriate (Refer Time: 50:29). So, these

are the pipeline registers, which connect the stages.

(Refer Slide Time: 50:37)



And now, what happens in forwarding is, the output of ALU is being connected to the

input  of  ALU by  a  proper  multiplexer.  Similarly,  output  of  the  MEM stage  is  also

connected to this multiplexer. And the control bits in the multiplexer will take a call,

whether the data should be taken from this pipeline register or the data should be taken

from one of the input of the multiplexer. This is the technique of operand forwarding.

(Refer Slide Time: 51:04).

Now, even with operand forwarding, still data hazard exist. This is a special case, where

is  the  first  instruction  is  a  load  instruction,  where  the  value  that  is  to  be  loaded  is

obtained not at the end of ALU. At the end of ALU, you will  get only the effective

address, and then you go and access memory. So, the data to be written to r 1 is available

only at  the end of  MEM stage.  But,  even if  we use operand forwarding,  we cannot

forward,  because  the second data  the  r  1  is  needed latest  by the  ALU stage for  the

subtraction instruction. So, when you forward a data from this pipeline register, it cannot

forward to ALU, because it is in the negative time access.

So, in this case, whenever there is an ALU operation that makes use of a value that is

been taken from a load instruction, then even with operand forwarding, techniques would

not work. But, in this case is the green arrow, whatever it is shown by this green arrow,

the operand forwarding will work, but this red one, it would not work. So, in this case,

our subtraction instruction cannot execute in its assigned slot, it has to be delayed.



(Refer Slide Time: 52:14)

So, this is what happens, your load will run with operand forwarding, you how to make

sure that the execution of the subtraction instruction happens after the memory stage of

the load instruction.  Execution  of  the subtraction  instruction  should happen after  the

memory stage of the load instruction. So, in order to facilitate that, we have to insert a

stall or a bubble, such that IF and ID will happen, the ALU stage will be happening only

one stage after that, subsequently the bubble is propagated for the remaining instructions

as well.

So, whenever there is a load instruction, and immediately after that when you have an

ALU instruction, then they cannot run in adjacent clock cycles, there has to be a delay

for one clock cycle that is what we can (Refer Time: 53:02). If this happens in n, ideally

we expect that n plus 1 the next instruction will get over this next instruction will get

over only at n plus 2.



(Refer Slide Time: 53:17).

Now, compiler also can play a very significant role. If it understands that, there is a data

hazard. So, compiler if (Refer Time: 53:23) reorganizes these instructions, when it comes

to  hardware,  a  add immediately  after  a  load  kind  of  thing  a  dependent  load  can  be

removed. We will see an example, where how compiler helps. Consider the case of a

simple fragment of code a equal to b plus c, and d equal to e plus f, where a, b, c, d, e,

and f, are in memory locations. So, how will be the machine code looks like. First, you

load the word into register Rb, the value of b is loaded into one of the registers. Value of

the second register is loaded into another register Rc. So, Rb and Rc are registers, then

you are going to add.

So, we have a load, and immediately after that we have a add, the red color indicates that

this is the data dependency. When it runs on hardware, these load instruction and add

instruction cannot run in adjacent clock cycles. Now, the second leg, then you store the

value of Ra into a. So, with this a equal to b plus c portion is over. And you repeat the

similar code, we have the value to be loaded into e and f, then we have to subtract, and

then you have to store.

Here also you can see that between this load and ALU operation, there is a delay. Even

with operand forwarding, this stall cannot be avoided. So, how can you reorganized this?

Compiler can schedule, we call it a software scheduling, compiler can reorganize them,

so we will keep the 1st two instructions as such. Now, what we do is we are going to take



the next  load  instruction into this  point,  and then so that  means,  these two are now

separated  by one  clock cycle.  We are  finding out  some other  useful  instruction  and

keeping it in between this load and add, such that there is no delay between them.

And then, we continue, then we are going to put the store value, whatever is available.

So, so this add and store is also sufficiently separated, and then we have the storing of

the remaining value into the d. So, compiler actually reorganizes this instructions. So,

compiler should have the intelligence that is available, such that compiler should know if

you run this instruction in the same sequence, it is going to create two delays; one at this

point,  and the other  one is  this  point.  So,  compiler  has to  reorganize them, find out

suitable instruction, such than they can be filled in this corresponding slots.

(Refer Slide Time: 56:01)

Now the third category is called control hazards. Consider the case that you have an

instruction  (Refer  Time:  56:04)  equal  to  r  1,  r  3,  36.  The  meaning  of  this  MIPS

instruction is if the value of r 1 and r 3 are equal, then we have to jump into instruction

36. So, how will you get it. If the value of r 1 and r 3 is equal, then I can to jump into 36.

But, how will I know r 1 and r 3 is equal, that I can know only at the ALU stage. So, till

then what instructions you will fetch, that is the tricky part of working with the pipeline.

So, by the time, I am decoding this instruction, the next instruction will be fetched. And

by the time, I am executing the OR instruction, the instruction stored at memory address



18 will be fetched. And by the time, I am doing the memory operation or comparison, the

next is also fetched.

So, suppose let  us say my instruction finds that r 1 and r 3 are same, then all  these

instruction  that  is  there  in  14,  18,  and 22,  they  should  not  have  executed  now. So,

whatever  we have  fetched  and executed,  they  are  wrong instruction.  So,  here  is  yet

another scenario that if you execute this instruction and, or, and add, then they are going

to create a wrong result, this is because they are not supposed to be fetched and executed,

because there is a branch condition. Handling this is known as a control hazard.

(Refer Slide Time: 57:39)

 

So, in conventional MIPS pipeline, what we have seen previously, we have a unit. So,

what happens is this r 1 and r 2 is compared in the previous case, whatever we have

shown r 1 and r 2 is compared. So, you subtract them, if it is equal to zero, then in this

stage so your next value that means, PC plus 4 is available here, and whatever value that

is available in the instruction that will reaches here that means, the target instruction as

well as the next instruction is available here. And then, you check what is the condition,

and that is going to give you like what is going to be your next program counter.

So, it is the fourth stage in the pipeline in the kinds of a conventional MIPS processor,

we deal with branching conditions. So, in branching means either you can go to adjacent

instruction that is PC plus 4 will be computed here, and then value has to be passed

across various stages or you have to find out the value, which is part of the instruction,



the target instruction. So, both this branch values are available to you, now you check the

branch condition.

Here, the previous case we have seen, you have to check the value, whether r 1 and r 3

are equal;  how will  you know they are equal,  you have to subtract  them and check,

whether the zero flag is set, that is what equal zero flag. An optimized version, so this

will make sure that for every branch will come to know what is the output of branch,

only  at  the  4th  clock  cycle  by  then  already  three  instructions  are  fetched,  which

sometimes you may have to flush out.

(Refer Slide Time: 59:22)

So, an optimized version of MIPS pipeline is we have to rearrange the instruction, such

that we cannot compare two registers. If you want to compare two registers, then they

can be done only in the ALU stage.  But,  if  you slightly change your instruction  set

design in such a way that, conditional checking can be done only on test of zero. Your

branch instructions can be done only like in following cases, I can check whether r 1 is

equal to zero, whether r 2 equal to zero, whether r 3 equal to zero. Test of zero if that is

the only branching condition, zero checking can be done very early in the pipeline.

So, in the second stage itself, I know what is PC plus 4, I know what is going to be the

target instruction. So, both the target instruction as well as PC plus 4 will come to this

unit, and the zero testing flag will tell whether should I take PC plus 4 that is an adjacent



or follow through instruction or the target instruction, such that I could resolve branching

in the second stage.

(Refer Slide Time: 60:28)

Now, how to  handle  branch hazards? One simple  way of  handling branch hazard  is

whenever  you  find  that  there  is  a  branch  instruction,  the  moment  you  fetch  an

instruction, when you are going to decode it, you know this is a branch instruction. The

moment you understand, it is a branch instruction, do not fetch any other instruction, you

wait until the branch condition is resolved. Once the branch condition is resolved, then

you have an idea, whether should the follow through instruction be fetched or the target

instruction to be fetched, so then you can go and do. So, ideally you are stalling pipeline

for few clock cycles, till the branch condition is resolved, that is called stall until the

branch direction is clear.

2nd one we use sophisticated mechanisms called branch prediction techniques, these are

mechanisms by which the moment you see on a branch, you know whether it will be

taken branch will be taken that means, you have to go to target location or branch will

not be taken that means, you have to go to the adjacent instruction. Based upon that,

appropriate instructions can be fetched. In the next class, we will learn deeper about how

branch prediction techniques are been applied.

And the 3rd concept is called delayed branch. So, this is a combination of the 1st one.

Whenever you come to know it is a branch, then until the branch is resolved. You try to



fill up some kind of an instruction that is being done by compiler, compiler will find out

some useful instruction and put it immediately after the branch instructions, and these

instructions are those instructions, which how to be executed for sure, whether branch is

taken  or  not  taken.  So,  we  will  see  deeper  about  branch  prediction  techniques  and

delayed branch techniques, in the next class.

So, with that we are going to conclude today’s lecture. Just to summarize, we learned

about the concept  of instruction pipelining,  what are the advantages of pipeline.  And

then, we have seen the five stages of RISC architecture, RISC pipeline architecture. And

we see what are hazards; we have seen structural hazard, data hazard, and control hazard,

and some of the techniques that are used to resolve these hazards. So, if you have any

doubt in this session, please feel free to post your queries in this online discussion forum,

we will so resolve your queries by getting back to you. 

Meanwhile spend time on working on the tutorial sheet or the problem or assignment

sheet that is being uploaded. And hope that you enjoy the session of instruction pipeline.

Next  day  we  will  learn  about  some  advanced  pipelines  and  branch  prediction

mechanisms.

Thank you.


