
Multicore Computer Architecture – Storage and Interconnects
Dr. John Jose

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 19
Tutorial 4

Main Memory Concepts

Welcome to the 4th tutorial. In this tutorial our focus of attention is on concept in main

memory and address translation techniques. We have already covered in our lecture what

is organization of main memory, and we have seen that main memory organization

consist of channels, beams, ranks, banks, rows and columns. Today we will have a

couple of problems which will deal with about the address mapping techniques in main

memory.

(Refer Slide Time: 01:00)

So, look the first problem today consider a system that used 24 bit virtual address space

and 20 bit physical address space. It uses a paging scheme that employs 4 kilobyte pages.

The page table for a program is indexed based on virtual page number and each page

table entry consists of the frame number and 8 control bytes. What is the size of the page

table in bytes?

So, we have to find out what is the size of the page table. There are two things what we

have to understand in this context, when you talk about the page table there are the

number of entries in the page table that is depending on the number of pages in the

program, number of pages is dependent on the virtual address space. So, first you find

out number of rows in the page table and each of the row how much of information is

being saved. So, here it is mentioned that the page table for the program is indexed based

on virtual page number and each of the entry contains a frame number it is not the

address it is a frame number and 8 control bits. So, first we have to find out number of

rows and in each of the row we have to store a frame number and we have to store 8

other control information which may be page replacement bits, other valid bit, 30 bit

etcetera.

So, let us try to find out what are the number of bits required for representing a virtual

page number. So, number of pages that is defined as, you have 24 bit virtual address. So,

2 power 24 is the total virtual memory divided by it is divided into pages each of

capacity 4 KB, so 4 KB is 2 power 12. So, you have 2 power 12 meaning 12 bit page

number. Now, number of frames, number of main memory frames with depending on the

physical address we have a 20 bit physical address. So, it is 2 power 20 is the main

memory capacity divided by number of page size is 2 power 12, so that you will get it as

2 power 8. So, meaning I have an 8 bit frame number.

Now, if you look at your page table, the page table has n entry where n equal to number

of pages. So, I have 2 power 12 pages. Now, it is an 8 bit frame number will be stored in

each of the entry plus 8 control bits. So, each of the entry, each page table entry has an 8

bit frame number plus 8 bit control. So, this is frame number and this is control

information. So, together I have 16 bits or also known as 2 bits. So, I have total of 2

power 12 pages into each of this page is going to consume, each of this entry is going to

consume 2 bites. So, I have total of 2 power 13 bits is needed for implementing the page

table it is also known as 8 kilobytes. So, the final answer is 8 kilo bits.

Let us try to revisit what we have done. We have to find out the number of pages number

of pages is obtained by total virtual memory page that is 2 power 24 divided by what is a

page size, that is 2 power 12. So, you get total to power 12 as the number of pages. So,

its 12 bit page number now we have to find out the number of frames in a similar fashion

what is the physical address physical address is 2 power 20 divided by page size that is 2

power 12.

So, we get 2 power 8 as the number of frames. So, to represent a frame number we

require 8 bit. So, each of the page table entry has an 8 bit frame number plus an 8 bit

control information together 16 bits, that is 2 bit per page table entry we have total of 2

power 12 entries in the page table. So, 2 power 12 into 2 bytes that is 2 power 30 its 8

kilobytes.

(Refer Slide Time: 05:37)

Moving into the next problem; a 32 GB DRAM system uses for channels C 0, C 1, C 2

and C 3 and its has total of 4096 columns per row. It uses an 8 byte wide memory bus to

transfer data from DRAM to the processor. If adjacent words are mapped to adjacent

memory channels which channel will fetch the physical address?

So, let us try to divide the splitting its using a 32 GB DRAM. So, if it is a 32 GB DRAM

then it is basically 2 power 35. So, what I need is I have 35 bits in the address. So, given

the address it is 35 bits and 8 byte wide, so the last 3 bits will be byte within the bus.

Now, this is what is called a word. So, 1 word consist of 8 bytes. So, once you transfer a

word then 8 bytes are getting transferred from the memory into the processor.

Now, here it is mentioned that adjacent words are mapped into adjacent channels. So,

once we once we transfer a word 8 bytes, the next 8 bytes are located in the next channel.

So, we have 4 channels. So, the channel bits will be coming here, these are two bits for

channels and then I have 12 bits that is total of 4096 12 bits for the column and then

followed by the row bank and other things. So, these are the remaining bits. So, for me

the channel bits comes just after the byte within the bus. So, the last 3 bits, last 3 bits the

most least significant 3 bits will be used for bus values. So, what we do is we are going

to take the next to bits. So, these 2 bits will tell you what is going to be the channel

number. So, consider the address. So, out of which I will take only the last 4 two that is

only our interest 4 stands for 0 1 0 0, and 2 stands for 0 0 1 0.

Now, this much value is gone for byte within this bus and these two will tell the channel

number, so 0 indicates channel 0. So, this particular address is coming from channel 0.

So, I will try to re-summarize what we have done. Given a DRAM system consisting of

4 channels and it is mentioned that we have adjacent words mapped into adjacent

channels, so 1 word corresponding to 8 byte.

So, the last 3 bit of the address is actually bytes within a word and the next bits in the

address looking from the least significant side there should be given to the channel then

only adjacent words will be going into adjacent channels. So, when you take up the last 8

bits, here it is the value is 42, once you write that the last 3 bits will go 2 bit within this

bus and the next 2 bits is used for channel, since the 2 bit value is 0 0 then it is

corresponding to channel 0. If this 2 bit value could have been 0 1 then it is channel 1, if

it is 1 0 then it is channel 2, and if it is 1 1 then it is channel 3.

(Refer Slide Time: 09:17)

Now, we move on to the third problem. So, consider a 64 GB DRAM system organized

the 4 channels each channel with 2 DIMMS, each DIMM has 2 ranks. The system uses 8

bit chips and 8 banks, each bank has a collection of byte cells and can store 8 bit of

information organized as rows and columns, that is a meeting point of a row and column

is a byte cell. The bank configuration is in such a way that the number of rows and

columns per bank is equal, the system used 8 byte wide memory bus to transfer data

from DRAM to the controller. Each channel is channel is connected to 16 gigabytes of

continuous memory.

So, let us try to look into the last line each channel is connected to 16 gigabyte of

continues memory, I have total of 64 GB and that 64 GB is protocol 4 channels. Now,

when you have 4 channels and peculiarity is that 16 GB of memory is continuous inside

one channel. So, first 16 GB is channel 0, next 16 GB is channel 1, next 16 GB is

channel 2 and the last 16 GB is channel 3.

For this to realize we have to dedicate the most significant 2 bits for channels. So, let us

try to divide these split of the address. So, once you take the address we have total of 64

GB DRAM. So, 64 Giga means 2 power 36 that means, I have total of 36 bits in the

address. Now, 2 bits is gone for channels that it is a most significant 2 bits are gone for

the channel bits. And then we have 1 bit for the DIMM and then we have 1 bit for the

rank. So, it is 1 bit DIMM and 1 bit rank because we have 2 DIMMS and 2 ranks. So, 1

bit is sufficient enough and that is why we have now 3 banks. So, 3 bit bank. So, it is 8

banks are there. So, 3 bits are dedicated for banks and we have to understand that the

number of chips that we use is no longer relevants as far as the splitting of address is

concerned.

Since, we use 8 byte wide memory bus the last 3 bits that is each of the word is

corresponding to 80 bytes. So, the 3 bits are used to find out these 8 bytes. So, now, if

you look at the total is 36 out of which now 10 bits are used, you have 3 bits for bus, you

have 3 bits for bank, this is for bank and then you have 2 bits for channel 1 bits for

DIMM and rank each. So, its 2 plus 2, 4 plus 3, 7 plus 3, 10; out of 36 bits 10 bits are

already being gone, now it is split up of row and columns.

So, how will you find out the number of rows and columns? The bank configuration is in

such a way that the number of rows and columns per bank is equal. So, you have now 26

bits left, this is going to be divided across rows and columns and if you wanted in the

equal split up then it is going to be 13 and 13. So, I have 13 bit for row and they have 13

bit for column per bank there is a way how you divide. So, what is the total number of

columns per bank? That is your first question. So, I have total of 2 power 13 columns are

there.

Now, what is the total number of rows in the entire DRAM system? So, if you look into

the entire DRAM system 13 bits are for column and 3 bits is for byte within the bus. So,

total of 16 bits is been removed. So, I have total of 36 bits out of which 16 bits are

already taken by byte in the bus and the column. So, I have remaining 20 bits and that

many columns are there. Meaning I have 2 power 20 rows that is also equal to if you take

up the row bits so for an EC conversion, if you take up the row bits that is 13 and I have

to add these 3 the next one one each. So, it is 4 plus 3, 7, so 13 plus 7 total of 20;

meaning I have 2 power 20 rows.

So, there are two ways in which I can use first you remove from the total address you

remove the column bits and the byte within the bus bits those are removed then we have

balance of 20 or in a bank I have 2 power 13 rows I have 8 banks. So, 2 power 13 into 2

power 3 that is 2 power 16 then I have 1 bit for ranks. So, I have 2 ranks. So, into 2 I

have 2 DIMMS again into 2, I have 4 channels again into 4, that will give you total of 2

power 20.

(Refer Slide Time: 14:19)

Now, continuation of this question, if the system is using row interleaving in banking

which bank the physical address 0 x 844332255 is mapped. So, we have to understand

what do you mean by row interleaving. Row interleaving means adjacent rows are

mapped onto adjacent banks. So, once all the column bits are over then comes the bank

bits. So, let us try to find out the scheme of the address, you have the last 3 bits that is

going for the bite within this bus and then this is the bank bit.

So, row interleaving means once the column beat is over then you have to use and this is

what is called the remaining 4 bits. So, we have 13 plus 3 that is 26, 26 plus 6, 32 and

this makes 36. This 4 corresponds to 2 bits for your channel, 1 bit for the DIMM and 1

bit for the rank. So, this is the split up. So, the main point in this context is once the

column bits is over between the row and the column the bank bits will come that is what

is known as row interleaving. So, row interleaving is a concept where adjacent rows are

mapped onto adjacent banks.

So, once all the possible bit values are given in the column then next column number

should be mapped into the next bank. So, that is way how its work. So, we have to

extract these bits. So, now, let us try to take care the values. So, if the last, so 3 2 2 5 5,

these are the last 20 bits out of which 3 stands for 0 0 1 1, 0 0 1 0, again 0 0 1 0 and this

5 is 0 1 0 1, 0 1 0 1.

Now, this last 3 bits this is going for the byte within this bus and then I have 13 bits. So,

this much is this 13 bits that is the column. So, this corresponds to the column number

this corresponds to the byte number and these 3 bits are going to tell you which is the

bank. So, the value is 0 1 1 that means, bank 3. So, this particular address correspond to

third bank out of the 8 bank ranging from 0 1 2 3 etcetera up to 7 this corresponds to

bank number 3.

Now, the second portion of the question we look into the second portion of the question.

If the system uses 128 byte last level cache and is using cache block interleaving in

banking, which bank the physical address is mapped two which channel serves the data?

So, the previous question also which channel serves the data we know that the most

significant 2 bits is the channel. So, here the most significant 2 bits is that is 8, 8

correspond to 1 0 0 0 0. So, the most significant 2 bit is 1 0 1 0 means 2. So, it is

corresponding to channel 2 that was the first case.

Now, in this case we will see what is cache block interleaving, now once you come to

cache block interleaving adjacent cache blocks are mapped onto adjacent banks. So, this

is the address last 3 bits. Now, since I am using 128 byte last level cache 2 power 7 bytes

will fit into my cache already in a single word 8 bytes have gone. So, 128 bites has to fill

in a cache. So, every 128 bit should be located in adjacent banks.

So, I have 128 bytes of data that comes from main memory, the next 128 bite should be

kept in another bank then only it is going to help us. So, if you wanted to get 128 bytes

then it is 2 power 7. So, the least significant 7 bits should constitute one cache block and

this is called the lower column address. Once this 7 bits is over then we should have our

bank bits.

I have total of 13 bits required in the column. So, the column bits 13 bits of column is

being divided into lower column bits this is what we have seen that is column lower and

then we have column higher. So, how much will be there for column higher? Already I

have 13 bits out of which 4 bits is already taken in the column lower and the remaining is

9. So, the idea is total of 13 bits is going to be divided into lower portion column and

upper proportion column and in between the bank bits are inserted.

So, I will summarize again. We have cache block interleaving and in cache block

interleaving adjacent cache block data are mapped onto adjacent banks. In this case we

have 128 byte is the block size of the cache. So, from main memory always 128 bytes of

data are moving to the cache, because access to main memory comes whenever there is

last level cache miss. So, once 128 byte is gone the next 128 byte is the next demand. So,

rather than keeping adjacent cache blocks in the same bank cache block interleaving

means every cache block every adjacent cache block is mapped onto adjacent banks. So,

once 128 byte is been transferred the next 128 bite should be located in a different bank

for that to realize to get 128 bytes we require 7 bits.

So, consecutive 2 power 7 locations are been transferred that is a last 7 bit and then

comes the bank bit. So, my column address is not fully over. So, what we do is the entire

column bits of 13 we have total of 2 power 13 columns, the 13 bits will represent a

column number that is going to be divided into lower portion of the column and the

upper portion of the column between that the bank bit is introduced, and then we have

this 13 bit of row and the 4 bit that constitute the channel DIMM and the rank.

Now, if you write the address its 6 8 A A. So, if you write the 6 8 A A into the decimal

equivalent form, 6 correspond to 0 1 1 0, 8 correspond to 1 0 0 0, this A is 1 0 1 0, again

1 0 1 0. Now, out of which the last 3 bits are gone for bank or it is basically your bus

values that means, bite within this bus. Next 4 bit is the lower order column bits. So, this

will be column bits and then we have 3 bits for the bank. So, this is essentially. So, this

side is for my columns balance. So, these 3 bit value is 0 0 1 that means, it is bank

column. So, I have to find out these 3 bits in the address. So, remove the last 7 bits and

take the next 3 bits and that is corresponding to your bank. So, in this context this

address maps to bank 1.

Now, there is one more portion the question, which channel serve this and channel is the

most significant 2 bits. So, if you take 1, 0 0 1 0 and the most significant 2 bits will tell it

is channel 0 that is way it is been connected. So, this is how you solve the problem given

an address given the spilt up into ranks banks rows and columns you find out the

mapping of the address which all bits constitute ranks and banks and based upon the type

of interleaving. If it is row interleaving after the column bits the bank bits will come, if it

is cache block interleaving depending on the size of the cache block that many bits has to

be kept from the least significant side and then you insert the bank bits. So, that

completes your third problem for this tutorial.

(Refer Slide Time: 23:13)

Now, this is a multiple choice question. In a DRAM system that follows open row buffer

management policy which of the following sequence of commands are generated if the

new request is to a different row from the row that was accessed last? What is the idea?

We have a row buffer for every bank and you transfer the contents from the row into the

row buffer and you apply column number and you extract the corresponding value and

that is been send on.

Now, while doing this when the next request is to the same row then only column

numbers are given because it is an open row buffer management policy. If it is an open

row buffer management policy then after every access we keep the row buffer as it is

assuming that the next access is to an already opened row. Now, the question tells that in

a DRAM system that follows open row buffer management policy, open row buffer

management policy means I leave the row buffer as it is such that. If the new request is

to same row there is no need to take the raw again already the row is open just give the

column address and take the address, if the new request is to a different row from the row

that was accessed last, what are the commands that we have to give you have to give

activate command pre-charge command activate followed by pre-charge or pre-charge

followed by activate.

Activate is a command which is used whenever a new row has to be brought into the row

buffer pre-charge command is used whenever the contents of a row buffer has to be

return back to the row. So, in this case there is something in the row buffer that is not the

row what I want for the new request. So, first I have to write it back. So, I have to do a

pre-charging first and then the new row has to be brought into the row buffer. So, if the

correct answer is it is actually an pre-charge followed by activate is the current option.

So, pre-charge will write the row back into the corresponding row write the contents of

the row buffer and then activate means a new is taken into the row buffer.

(Refer Slide Time: 25:37)

Now, let us goes to another problem. For a sequence of memory request coming to a

particular bank at regular intervals such that every request reaches the scheduler, when

the processing of the previous request is in progress. So, already I am progressing, I am

servicing the request. Now while the service is in progress new request come to the

queue. The meaning is once where one request is completely serviced the queue has an

element if the queue has the same row which is already opened then there is no need for

any pre-charge or activate I have to just enable column address strobe. If it is to a

different row then I have to pre-charge it and then I have to again activate.

Now, the option that is given open page policy gives lesser average turnaround time then

closed page policy. What is the difference between open page policy and closed page

policy? In an open page policy our assumption is the next request the next incoming

request will be there to the same row what is currently opened. So, I want to close it I

want to pre-charge it I leave it open. And what is the closed page policy? Once I have

completed servicing of a current request, if the queue is empty then I close the row I do

the pre-charge, but if the queue is not empty we come to know whether already open row

can I service and incoming request.

So, open page policy gives lesser turnaround time then close page policy that we cannot

say because in this case you are getting request at regular intervals. Closed page policy

gives lesser turnaround time that also we cannot say. The peculiarity is an closed row

policy will differ from opened row policy if an only if by the time I complete a memory

request service my queue should be empty. If the queue is empty means there are no

more pending request then closed row policy will close the page by using a pre-charge

operation opened row policy will leave it open. If the queue is not empty then either it

may be to the same row or it may be to different row. So, in that case open row policy

and closed row policy is never going to be different.

So, both open row policy and closed row policy will give the same average turnaround

time that is the answer. Because there is no difference at all by the time you complete the

request the next request is already there, whether it is open row or closed row either you

have to pre-charge and activate or you have to give only the column address when there

is a row hit or when there is a row conflict. So, this gives you a better idea about the

difference between open row policy and closed row policy.

So, with this we come to the end of today’s tutorial session. We first worked on a

problem with respect to virtual memory finding out the size of the page table and then

we have 2-3 problems that were dealing with the address mapping in DRAM, finding out

channels and bank numbers from a given address and a given constraint. And then we

learn little bit about the significance of activate pre-charge and column address strobe

commands. So, I think this will give a fair background in working with address mapping

techniques in DRAM. So, with this we complete this tutorial.

Thank you.

