
Embedded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 09
Hardware Architectural Synthesis – 4

Welcome to module 1 of lecture 7. In the last module, we took a look at when are 2

operations said to be compatible, we also understood two important resource sharing

models, the compatibility graph model and the conflict graph model. And we saw that a

solution to compatibility graph model in terms of finding the minimum number of

cliques in it. A minimum clique partition of the compatibility graph gives me the

maximum resource sharing possible.

We also saw that minimum coloring of the conflict graph gives me an optimal to again to

a resource sharing problem, but we told that both the minimum clique partitioning

problem and the minimum graph coloring problem is NP complete for general graphs.

Then we understood that there are a few special classes of graphs that are chordal graphs,

interval graphs and compatibility graphs for which these problems have polynomial type

optimal solutions.

We understood that the compatibility graph corresponding to the operation within simple

data flow graph within a basic block can be modelled as an interval graph, why? Because

each operation each an operation within a single constraints graph within a basic graph

can be modelled as single continuous intervals from the start of it is execution to the end

of it is execution.

And hence, the corresponding conflict and compatibility graph with respect to this

scheduled operation constraint graph can be modelled as interval graphs. As we said,

next after understanding the resource sharing models we will study algorithms for

resource allocation. We said that interval graphs gives as easy algorithms for graph

coloring in polynomial time and these are all optimal solutions. We will study one of

these algorithms in this in this lecture. But before that we will understand the resource

minimization problem.

We will understand the resource minimization problem can also be mapped as eh as

graph coloring over interval graphs. And hence the same graph coloring algorithm can be

used both for functional unit minimization; that means, maximization of resource sharing

maximization of resource sharing among functional units, and maximization of resource

sharing among registers as well. And hence, before going to the actual coloring for

interval graphs and going to the actual algorithm for coloring interval graph; we will first

understand the register minimization problem.

(Refer Slide Time: 03:51)

The problem to minimize the number of temporary registers used; so, we see that there

are 4 independent variables here x, y, z, w. And 4 registers will any now 4 hardware

register will anyhow be required to store this variables. So, for this operation to be

scheduled in time step one, before time step one is activated x, y, z, w must be in

different hardware registers for this operations to execute correctly. Now that is out of

our control; however, these temporary registers, we said that the output of the operation

is are floated on temporary registers.

So, each operation is floated on a different temporary registers at the output of the

scheduling step. Now, the register minimization problem is to minimize the number of

hardware registers that are required to allocate these temporary registers. So, these

temporary registers must be allocated to hardware registers as well, right? When I in

actually implement the schedule. And hence I want to reuse a given hardware registers

for as many temporary registers as possible. This is how I do register minimization.

So, what are the properties of temporary registers? At any c step temporary register may

appear only once on the LHS when it is written. And multiple times on RHS, when it is

read. For example, this temporary register t 1 is written in time step one. At because it is

at the output of operation one; subsequently this temporary register has been read in time

step 2. So, it is read by this multiplication operation here, and this mult this addition

operation here. This t 1 is read in both this operations and both these operations are in

time step 2, right. If we take another example let us take t 2.

So, t 2 is written to in time step 1, and is read in time step 2 by this multiplication

operator, and is read in time step 3 by this multiplication operator. So, a temporary

register will occur at most once on the left hand side of the register transfer. And will

appear and may appear multiple times on that RHS of a register transfer. And each

register therefore, has a distinct life time interval from it is a first definition to it is last

use. And hence this registers these temporary registers can have can be mapped to

distinct intervals.

(Refer Slide Time: 06:48)

So, what do we infer from all these intervals? We infer that registers with non-

overlapping lifetimes can be merged. So, temporary registers whose lifetimes are non-

overlapping can be merged and allocated the same instance of a hardware register. For

example, here t 1 and t 4 can be allocated to the same instance of register. And so, what

is the, what do the algorithm basically look like here? We sort the intervals based on the

left pages. And then we take one hardware register which is blank. And we take the first

temporary register and put that in that hardware register.

Now say r 1 I have hardware register r 1 and I have put temporary register t 1 in to r 1

because, this has the earliest left page. Now I can put another register which is the

earliest temporary register which is the earliest starting temporary register that I can put

again in r one any register, whose left edge is higher than this right edge of t 1, right. So,

therefore, t 4 is one search t 4 is the next search earliest starting temporary register which

can be allocated to r 1. Similarly, I can also allocate t 6 to r 1 because t 4 and t 6 are non-

overlapping the intervals are non-overlapping. So, I can put in to r 1 t 1 t 4 and t 6. I can

even put t 7 in to r 1.

So, therefore, the same register r 1 can be used to whole t 1, t 4, t 6 and t 7; likewise, then

I all these when I have already allocated. When I have already allocated a set of

temporary registers to a given hardware registers. I now remove all these registers from

consideration from the remaining. So, non-remaining temporary register can be allocated

to the hardware register r 1. So, I put aside r one with it is allocation t 1, t 4, t 6 and t 7.

Now, for the remaining register for now for the remaining temporary registers we try to

allocate again the minimum number of hardware registers that that I need to allocate this

temporary register in a very similar manner.

(Refer Slide Time: 09:32)

So, the algorithm that we have can be formulated as a graph coloring problem. So, this

particular register conflict graphs. So, this is the register conflict graph, for the register

conflict graph this register conflict graph also called register interference graph. Now, the

register interference graph has nodes as the initial temporary registers. The edges denote

overlapping lifetimes, right? For simple DFGs register interference graph is an interval

graph, right similar to the fact that for simple DFGs the functional the behavioral

operations in my operation constraints graph are also inter are also who also have a same

simple continuous intervals.

And hence, their conflict graph can also be represented as an interval graph. Here again

the interval graph or register conflict graph for a registers can also be similarly mapped

as an interval graph. Now as we said the generic problem is NP complete; however, for

interval graphs the optimal problem can be solved in polynomial time the optimal graph

coloring can be sort of sort in polynomial time. And in fact, in n log n time and that also

in n log n time, because prior to the algorithm I need to sort the left edges of all, the

temporary registers in a list.

So, what are the left edges? Left edges are the start times the definition times the first

definition times of the temporary registers. So, I need to keep a list which maintains the

maintain all my temporary registers that have not yet been allocated in to a list sorted in

terms of their start times their definition times or their left edges. So, in the interval

graph I have a set of intervals I l g r j. So, this is the l j to r j is the lifetime for temporary

register t j. Now we need to assign a distinct color to a temporary register. What does this

assignment of color means? A distinct color if I assign to a temporary register mean that I

have assigned a distinct hardware register to this temporary register. So, these list I of all

temporary registers are taken as input by the left edge algorithm.

(Refer Slide Time: 12:17)

Now, given this list of intervals it first sorts. These elements in I in a list l in ascending

order of the left edges. First I assign 0 colors means c equals to 0. What does c means? C

gives a labelling for colors. C equals to 1 is the distinct color. C equals to 2 is another

distinct colors c equals to 3 is another distinct colors. So, if I allocate a color c equals to

1 to a set of temporary registers, then all those temporary registers will be will be

allocated to the same hardware register whose color is labelled one, right.

So, why there are intervals still left be colored, will take a hardware register we will take

a distinct color, and find out what are the maximum possible number of temporary

registers that can be allocated to this hardware register. What is the maximum number of

temporary registers that can be assigned as same color, ok. So, how do I do that? First S

equals to phi; that means, S will contain S is a hardware register. I have initialized and

currently it does not contain any temporary register in it, and hence S equals to phi.

S is the set of temporary register that can be allocated to single hardware registers in

each given pass with device by look is a pass. Firstly, r equals to 0. The initial coordinate

of the rightmost edge in S in the hardware register is set to 0. Why they are exist? An

event in l whose left edge is larger than r; that means, that I want to find a left edge in the

list l. And in the list l all my left edges are sorted are sorted in increasing order. So, first

left edge beyond the value r in the in the register set in the in the hardware register

defined by S currently if the register which I can allocate next to s.

So, small s is the first element in list l with ls greater than r, then s equals to s union

small s; that means, I include this registers small s in the current set in the current

hardware register being considered for allocation that is capital S. Then I change r equals

to r s. So now, I change the right most edge in my hardware register r to the right edge of

the current temporary register that has just allocated to s. Because the next temporary

register that can be allocated to s will have a left edge which is greater than r s.

Otherwise their intervals will be overlapping, and I will not be able to allocate in this

same hardware register.

Now because s has small s has already been allocated over hardware register capital S I

delete s from capital L which is the list of temporary register which have not yet been

allocated. And then I assign the color then I assign c equals c plus 1 a labeling of color to

capital S that is hardware register, ok. So, label element label all elements of s with color

c, right. So, then all these temporary registers are allocated to the same hardware register

and in color c. This loop will then continue until all temporary registers have been

allocated hardware registers. So, like we can have we have applied this problem for

register minimization.

I can likewise apply this problem for functional unit minimization as well. In that case

what each type of operations that are schedulable by this same type of functional limit I

will have to run this algorithm once to obtain the minimum number of functional unit

instances that are required to allocate the behavioral operation of that type. So, this

algorithm can be applied to both functional unit minimization as well as register

minimization. With an understanding of the left edge algorithm, we come to the end of

module one of lecture 7.

