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Welcome to module 2 of lecture 6. In the last module, we had started with allocation and

binding an important post scheduling step in high level synthesis. In this lecture we will

proceed  with  allocation  and  binding  further.  Before  taking  a  look  at  allocation  and

binding algorithms, we will first take a look at different resource sharing models.

(Refer Slide Time: 00:55)

We will  look  at  a  few  definitions.  First,  we  will  understand:  what  are  compatible

operations. 2 operations are compatible if they can be bound to the same instance of a

resource of given type; that means, when does 2 operations become compatible, when

the same functional unit can be used to execute both these operations. When can the

same functional unit instance be used? When the 2 operations are non-concurrent, if they

are being execute if they are executing at two different time steps, only then can I use the

same functional unit to execute both these operations on the same functional unit.



And, obviously, they have to be implementable by resources of the same type. Now with

the definition of compatibility we will take a look at 2 types of resource sharing graphs.

So, first is the resource compatibility graph. The other will be resource conflict graph,

these 2 resource sharing graphs we will understand. So, what is a resource compatibility

graph?

In the resource compatibility graph the vertex set are operations there is an edge between

2 operations if these 2 operations are compatible; which means that there will be an edge

between these 2 operations, if both these operations are not scheduled at the same time

step and both these operations can be executed by an operator of the same time. A group

of mutually compatible operations then form a clique here what is a clique a click is a

maximal  complete  sub  graph,  alright.  So,  a  mutual  a  set  of  mutually  compatible

operations form a clique or a complete sub graph, why? Because, all these operations

will be connected by edges between each other and why are that? So, because all these

operations are mutually compatible.

Neither of these operations are scheduled at the same time step, and the same functional

unit type can be used to schedule all the operations in this clique. A distinct resource

instance  can  be  dedicated  to  each  click.  An  optimal  solution  to  the  resource  to  the

resource sharing problem is what. One that maximizes resource sharing; so, the optimal

solution you will be one that minimizes the number of resource instances. So, how do we

minimize the number of resource instances? If  we can minimize the total  number of

cliques, for each click I must dedicate a single resource instance.

And if we can minimize the total number of clicks I will be able to minimize the total

number of resource instances required. So, partition the graph into a minimum number of

cliques.  And obtaining this minimum number of cliques is to obtain the clique cover

number. So, the clique cover number of a graph is this minimum number of cliques into

which the graph can be partitioned into.
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Now, in this is a scheduled operation constraints graph. On the left and on the right we

have the corresponding compatibility graph. In this graph we see that operation one and

operation  3  share  an  edge,  why?  Because  operation  one  and  operation  3  can  be

implemented by the same resource type multiplier, and they are scheduled in different

time steps one and 2 in this case.

Similarly, 1 and 7 are also compatible, why? Because 1 and 7 are 2 operations that can be

implemented by the same type of function unit  multiplier  again,  and they have been

scheduled  in  different  time  steps  here  time  step  one  and  time  step  3.  Likewise,  all

operations which share an edge are compatible. One important thing to note here is that

the  compatibility  graph  will  have  as  many  disconnected  components  as  there  are

resource types.

So, here we have 2 resource types multiplier and ALU. So, for ALU I have a single a

connected  component,  and another  connected  component  for  the multiplier  operation

type. Now, what are the max minimum number of clicks? What is the minimum click

partition in this  graph? We have here v 1, v 3, v 7, v 1, v 3, v 7; so,  the one with

emboldened  edges.  So,  these  complete  subgraphs  with  emboldened  edges  form  the

clique. So, v 1, v 3 and v 7 form a clique v 6, v 8, plus v 2 form another clique v 4, v 5, v

11 and v 10 form another clique and v 9 forms another separate clique.



So, these are the mean this is the minimum clique cover that we have; so, the minimum

clique cover has 4 cliques and in indeed we require 2 multipliers and to ALU's for the

scheduled operation constraints graph.
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Now, as an example of the actual resource binding that we can obtain here is this. So, we

have a  one multiplier  say let  us  say multiplier  1,  multiplied  instance  one is  used to

schedule operation 1, 3, 7 which is in the same clique. Again another multipliers say

multiplier 2 is used to execute operations 2 6 and 8 in time steps 1 2 and 3.

Similarly, eh ALU one is used to execute the operations 10, 11, 4 and 5 in 4 different

time steps. And the operation v 9 is given another dedicated ALU for it is execution. So,

this is an example allocation, and this is the best possible allocation as it turns out.
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The second resource sharing model  is  the resource conflict  graph.  Resource  conflict

graph has the same vertex that as the compatibility graph. So, it is this it is vertex set are

also the operations of the operation constraints graph. What are the edges? The there is

an edge between 2 operation between 2 operations if they are not compatible; that means,

in the compatibility graph 2 operations shared an edge if they were compatible, in the

conflict graph 2 operations share an edge if they are not compatible.

Hence, the operator the conflict graph is a complement of the compatibility graph. So,

when will 2 operations be conflicting? When these 2 operations are scheduled either in

the same time step or these 2 operations are unrelated. In meaning that, they cannot be

executed using the same functional unit type; however, it is true that if you have a set of

compatible operations they will form an independent set. What is an independent set?

The vertices in an independent set will be those which do not share an edge between

them.

So, mutually compatible operations will form an independent set. A proper coloring of

vertices such that no 2 adjacent vertices share the same color provides a solution. So,

what do the vertex coloring do? Vertex coloring tries to find the minimum number of

colors that are required to color the vertices of a graph, such that you cannot assign the

same color to 2 vertices that share an edge.



These colors actually they denote resource instances. Each color is a resource instance,

and optimal value uses the minimum number of colors. Such minimum number of colors

is called the chromatic number of the graph.
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Example of a conflict graph; so, in this we see that 3 and 6 share an edge. 3 and 6 share

an edge, why? Because 3 and 6 are operations of the same type and being scheduled in

the same time step; because they are scheduled in the same time step they are conflicting,

and cannot be executed by the same resource instance and therefore, they share an edge;

obviously, 3 and 4 also share an implicit edge which is not shown. Because 3 and 4 are 2

operations unrelated operations which must be executed by operators of different type,

there is an implicit edge between them which we have not shown here.

Now, what are the independent sets in this conflict graph 3 7 and 1 is an independent set

they do not share an edge between them. 2 6 and 8 is another independent set. They do

not share an edge between them. 4, 10, 5 and 11 is another independent set and v 9 forms

another  independent  set.  It  is  important  to  note  here  that  the  cliques  mean  the

compatibility graph are now independent sets in the conflict graph.

The chromatic  number here is same as the vertex cover number in the compatibility

graph is 4, and therefore, we again require 2 multipliers and to ALU's allocation and

binding will again be same. Now, one of the important outcomes of this analysis steel

study of these models is that, given general compatibility and conflict graphs, both the



minimum clique partitioning problem and the minimum graph coloring problem are np

complete.

And hence exhaustive or and enumerative type solutions only do exist. For the general

versions  of  the  compatibility  and  conflict  graphs;  now  with  this  understanding  of

resource  models,  we  will  first  we  will  now  see  how  from  the  scheduled  operation

constraints graph can be obtained a compatibility graph.
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Similarly, we using a similar procedure, we can easily obtain the conflict graph as well

because, as we have seen that the conflict graph is just a complement of the compatibility

graph. Now given a scheduled OCG let n be the number of operations. Resource type of

an operation is denoted by tau v i this comes from the scheduling problem.

So, tau v i tells me the type of resource that I required to schedule operation v i. The start

time of the operation is t i because this is a shed you will do operation constraints graph I

know the distinct start time for each operation i. The execution delay of operation v i is

also known this is d i. So, the compatibility graph will have edges e equals to v i v j, such

that t v i equals to t v j the first here first term tells me that both t v i and tau v i and tau v

j must be same; that means, they must v i and v j must be executable by the same type of

resource. The second constraint tells me that if t j is scheduled later than t i than t then t j

must be scheduled at least d i time steps later than t i starts. So, t j’s start time must be at

least d i time steps after t i. Why this is so?



So, because d i is the delay of operation i operation v j follows v i. And hence otherwise

there is an overlap in the execution intervals of these 2 operations and therefore, the

same operation instance cannot be used to execute both these operations v i and v j.

Similarly, if v i starts after v j then v i must start at least d j time steps after t j after v j

starts. So, t j plus d j must be less than or equal to ti, only then can I ensure that both

operations v i and v j will not overlap in that execution intervals.

And hence both these operations v i and v j can be implemented by the same type of

resource. Now we understand that how can we obtain these edges I need to traverse the

operation constraints graph. And then I need to consider each operation in the scheduled

operation constraint  graph. Then I  find out which opera for a given operation in the

operation  constraints  graph,  which  are  the  operations  that  are  adjacent  to  it  in  the

operation constraints graph. For all those operations if this constraint is true, I can put an

edge between these 2 operations in the compatibility graph.

Now through such a traversal of the operation constraint graph we understand that all

edges of the compatibility graph can be obtained in big O of n square time, where n is the

number of operations in the operation constraints graph.
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Now,  as  we  said  for  general  compatibility  and  operation  concern  for  general

compatibility and conflict graphs, both the minimum clique partitioning problem and the

graph  coloring  problem is  np  complete.  And  hence  must  be  solved  by  enumerative



methodologies; however, there are special classes of graphs for which both the minimum

clique partitioning problem and the graph coloring problem can be solved optimally in

polynomial time.

So, if my compatibility graph or my conflict graph falls into one of these categories of

these special types of graphs, then my graph coloring problem or my clique partitioning

problem can be solved optimally in polynomial time. Hence, we need to understand these

special types of graphs first; to understand whether my graph coloring problem and the

clique partitioning problem can be solved in polynomial time or not.

So, first we understand what our chordal or triangulated graphs eh. If we say it in terms

of a compatibility graph, a compatibility graph becomes a chordal or triangulated graph

when every cycle with more than 3 edges in the graph has a chord or edge joining 2

nonconsecutive edges in the cycle. So, I am given a compatibility graph, and I want to

find out is this compatibility graph a chordal graph, how do I find out? If I see that each

cycle  of  more  than  3  edges  in  my  compatibility  graph  has  a  chord  joining  non-

consecutive edges in the cycle, then I can say that my compatibility graph is a chordal

graph.
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For example, let us take this compatibility graph that I have here. In this compatibility

graph let us take one cycle. 1, 3, 7, 6 in this cycle we say that there is a chord 1 7 here.

This chord this is a cycle of length more than 2 this is a cycle of length 4. And we have



told that every cycle of length more than 3 will for every cycle of length more than 3. I

will have a chord joining non-consecutive vertices. And hence these vertex 1 and 7 are

nonconsecutive and hence there is a chord joining it in this cycle 1, 3, 7, 6 

Similarly, we will see that for all other cycles of more than 3 or of lengths more than 3.

Similarly, we will see that for all other cycles of length more than 3, I will have a chord

joining nonconsecutive vertices in the cycle. And hence this compatibility graph that we

have here is a chordal graph. Now, therefore, the minimum clique partitioning problem

for  this  chordal  graph  for  this  compatibility  graph  can  be  solved  now optimally  in

polynomial time.
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After an understanding of chordal graphs, we will now understand what interval graph is.

Simply  speaking  and  interval  graph  is  a  graph  where  the  vertices  have  one  to  one

correspondence  with  the  set  of  intervals.  For  example,  let  us  consider  the  opera

scheduled operation constraints graph here. In this schedule operation constraints graph,

each vertex can be represented by a continuous single interval  defining it  is  start  of

execution and end of execution.

So, each vertex or each operation in this operation constraint graph can be represented by

a  single  continuous  interval  representing  it  is  start  of  execution  to  the  end  of  it  is

execution. So, t i to t i plus d i minus 1, this interval is the in is the interval for vertex i.



For each vertex similary I can define a continuous interval which denotes the lifetime

starting from the start of it is execution to the end of it is execution.

And hence simply speaking all the operations in this operation constraints graph have a

continuous interval.  And hence the corresponding compatibility  graph or  the conflict

graph is basically an interval graph. So, interval graphs are a sub subclass of chordal

graphs if you have an interval graph the property for chordal graphs will always be true.

So, vertices can be put in one to one correspondence with a set of intervals. Vertices are

adjacent if corresponding intervals overlap. So, vertices are adjacent if corresponding

intervals overlap.  So, in my interval graph vertices  are intervals,  and there are edges

between 2 vertices if they are intervals overlap.

Now, we come to the third class. So, why have we studied interval graphs? We can still

have more simpler algorithms for both clique partitioning and graph coloring for interval

graphs. As we will see later we will study one algorithm for interval graphs for graph

coloring  of  interval  graphs.  Now we will  look at  the  third  class  of  graphs.  A graph

becomes a comparability  graph when it  satisfies  a transitive orientation property. So,

therefore, I need to be able to impose a transitive orientation property on my graph. So,

my compatibility graph or my conflict graph can only become a comparability graph if I

can impose this transitive orientation property on this graph.

Now, if I impose a transitive orientation on an undirected graph it becomes a directed

graph. So, my compatibility graph or my conflict graph will be a comparability graph

when after imposing this direction property on the compatibility graph I will have this. In

the result directed graph g equals to V comma F. V i v j belongs to f and v j v k belongs

to f; implies that v i v k belongs to f. So, this direction property this transitive direction

property will be imposed will be impossible on this graph. As an example let us see my

let us see this compatibility graph that we have here. So, in this compatibility graph we

have an edge from 1 to 6, and we have another edge from 6 to 7.

So, let us see this is v i this is v j and this is v k. So, if I have an orientation if I impose an

orientation from v 1 to v 6 from v i to v j I have an orientation from v i to v j. And then I

also impose an orientation between v j and v k, I can impose an orientation from v 1 to v

7. So, if there is an orientation from v j to v i to v j and there is an edge and oriented edge

from v i to v j there is an oriented edge from v j to v k, there will also be an oriented edge



from v  i  to  v  k.  This  is  what  this  ensures,  and  hence  this  compatibility  graph is  a

comparability graph. Because for all edges I can impose an orientation property like this.

Now, on this how can we get a sense of how to obtain this orientation. We can assign an

orientation with respect to the order of start times in the operation constraints graph.

Now here there is we are putting an orientation from 1 to 6, because 6 starts after one in

the operation constraint curve 6 starts after 1. There is an orientation from 6 to 7, because

7 starts after 6. And hence there is an edge between one to 7 denoting that 7 starts after

one. Such an orientation can be imposed for all for all edges and hence this compatibility

graph is a comparability graph.

But  why  are  we  studying  these  graphs?  By  studying  the  chordal  graphs  and  the

comparability graphs, we can find out whether a graph is with whether the graph is an

interval graph or not. If my conflict graph is a chordal graph, and the compatibility graph

is a comparability graph, then the conflict graph is an interval graph. So, if this conflict

graph is a chordal graph. Here this conflict graph is a chordal graph because, there are no

cycles of more than 3.

In fact, there are no cycles in this graph. And hence this conflict graph is a chordal graph.

We have seen that this compatibility graph is a comparability graph. We have already

understood this. And therefore, this conflict graph now becomes an interval graph, right.

The general theorem is that a graph is an interval graph only if it is chordal. And it is

complement  is  compatibility  graph.  Here  we know that  the  compatibility  graph is  a

complement  of  the  conflict  graph.  And  hence  if  the  conflict  graph  is  chordal  the

compatibility graph is a comparability graph, then the conflict graph becomes an interval

graph. 

We come to the end of module 2 of lecture 6.


