
Embedded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 6
Hardware/Software Partitioning- 2

We now look at the first partitioning algorithm Kernighan and Lin.

(Refer Slide Time: 00:33)

Now, let us say the objective for our partitioning process for this algorithm is very

simple. We want to minimize the number of bits transmitted between hardware and

software and not look at anything else. An example why you would we want this is, let

us say, we have a extremely data dominated embedded system, where the cost

minimizing the transmission between hardware and software is of prime importance

because transmission of data between hardware and software is very costly. So, we want

to minimize the amount of data transmitted between software and hardware that is

essential big part of the cost. And the actual execution times of the nodes let us say is less

important in for this for our example problem here.

So, the communication cost is much more. So, we assume that each of the nodes whether

it is implemented in hardware or software, just consumes a unit cost, unit execution cost

and the communication; however, is the edge have weights. So, I want to minimize the

amount of data transfer or the total summation of the edge weights that goes from

hardware to software or vice versa. Now this algorithm is a group migration based

algorithm it starts with an initial partition generated randomly. So, we start with an initial

partition. And we the here the one of the important principles of this algorithm is that the

number of components in hardware and software will be same.

So, it moves components between partitions to improve. This is the characteristic of all

group migration based algorithms. Now the input is provided in the form of a graph;

where V is a set of nodes modules to any number and E is the set of edges, and number

of edges equals to m. The cost or weight of an, you we have a cost or weight of an edge

which indicates the total cost of data transfer.

For each edge between hardware and software and for each edge a b in b we have a cost

of the data transfer c a b. And we want to minimize the amount of data transferred

between in between hardware and software. So, the output what do we have? We have 2

partitions X and Y such that the total cost of the cut is minimized. By cut we mean the

total data transfer between hardware and software, and such that each partition has n

vertices. So, we say that this algorithm will always return in return equal sized partitions.

So, it will only try to find out which nodes to put in hardware and which nodes to put in

software multiple options it will test for it, but it will never have unequal size partitions.

So, the number of nodes in Maha software will always be equal to number of nodes in

hardware, keeping this constraint I want to minimize the data transfer cost. Why do we

want to have equal sizes in hardware and software? Could be that that gives me a balance

of the cost because otherwise if you put everything in hardware, then the cost may shoot

up because hardware implementation is much more costly.

So, we will always keep a balance, and hence we will keep equal number of vertices in

software and hardware.

(Refer Slide Time: 04:32)

Now, as we told it starts with an initial bisection X comma Y. Bisection meanings it will

randomly choose let us say by some heuristic or randomly, it will choose n of the nodes

it has 2 n nodes. The total number of nodes is 2 n, it will take one set of n nodes put in X

and the other set of n nodes put in Y, then it goes into a loop. It chooses free cells, cells

or modules it is same.

So, you can say these are program modules, it chooses a pair of free cells or modules one

from X a from X and b from Y; such that, exchanging a and b gives us the highest gain.

Gain in terms of the partition cost gain in terms of reduction in partition cost. For us here

gain in terms of reduction in data transfer. So, we choose a pair of free cells a from X and

b from Y such that exchanging a b gives me the highest gain. And then we act actually

tentatively exchange a and b tentatively. Exchange a and b it is not a final move, but we

for the time being we exchange and then lock a b.

So firstly, we had n nodes in X and n nodes in Y, and then we took a from X and b from

Y we exchange them and locked them from further consideration. Let the gain a b be

given by g i. Now we go into this loop again now a and b is removed from consideration

again we choose another node from X another node from Y such that, exchanging a b.

Now gives me the highest gain, and then we tentatively exchange a and b and lock a and

b. Likewise when we go on doing this all my nodes in a and b will finally, be it is

exhausted after n moves.

So, we will have n pairs and after n such loop iterations, all my nodes will be locked all

my nodes in 2 n nodes will be locked. And then after all my nodes are locked we unlock

first all vertices. And when we have unlocked we actually have a series of course, g 1 g 2

dot up to g k dot up to g n because we have made n exchanges, ok. So, we have g 1 plus

g 1 comma g 2 comma g 3, likewise we have these n exchanges because for each

exchange we have kept the estimate of the cost g i. So, we have this g 1 g 2 up to g n

values.

From that we find a k such that g 1 plus g 2 plus g k is maximized, and actually exchange

cell pairs up to this k th step. So, we said that these n pairs of exchanges were actually

tentative. We do not actually exchange all of them, but how many pairs do be actually

exchanged, we find some k and we go on exchanging pairs from g 1 up to g k because if

we take after g k if we include gk plus 1 gk plus 2 it only reduces the gain. The gain is

highest when I have g 1 plus g 2 up to g k. Now what may happen is that this gain could

actually some of these gains could actually be a loss.

Meaning that at a certain point in time let us say you have made a few exchanges and at a

certain point in time all my pairs are given a loss. So, the highest gain is essentially the

least loss. So, some of these gains could be a negative value. So, why do we at all

include? May have include may have negative values in between some of the gain values

even if it is negative, may be included in this in between.

Because some of the negative values due to this exchange may afterwards result in a very

high gain for the subsequent. If I did not do this exchange, then later the subsequent

exchanges would not give me that very high gain. Because I have now allowed this

negative gain subsequently I get a very high gain. And then I finally, take up to go up to

that value of k which gives me the final highest gain.

(Refer Slide Time: 09:16)

We will take an example. Before that we define what is gain before going into the

example. So, the gain is defined as D a plus D b minus 2 c a b where cab is the weight

between a and b. So, c a b tells me what is the total cost of the data transfer between a

and b. What is a and b? A and b are the nodes which we are thinking of exchanging. The

highest among all such pairs we will take an actually tentatively exchange, but we have

to test all pairs. Before finding out so, see in this algorithm such that exchanging a and b

gives me the highest gain.

Therefore, to find out which one is the highest gain from all pairs which are currently

unlocked. We have to test all pairs and find their gains and from them we have to find the

highest gain. So, therefore, we have to find the gain of each pair. Now to we take any

arbitrary pair a and b and then find out it is gain. And that is given by D a plus D b minus

2 c a b. Where c a b is the cost of the data transfer between a and b. D a is out a minus a;

that means, the total cost of edges which cross the partition and in a is the total cost of

edges which do not cross the partition.

So, D a is out a minus in a, were out a is the total weight of all edges that cross the

bisection and in a is the total weight of all edges that do not cross the partition, ok. Now

how what is the essential meaning of this? Let us understand this through an example.

For simplicity let us assume that all these edges have cost 1. All these edges have cost 1.

Now and I have an initial partition initial this one my phase one, and this let us say is my

final partition. This is final and this is my initial random, initial partition I start with, this

is my initial partition I start with.

Now, let us say we exchange node 3 and node 6. What will be the gain? All edges have

one weight. So, the number of edges that in out of 3; that means, edges which cross

partition is 1 2 and 3; out of 3 equals to 3, what is in of 3 only one. So, in of 3 equals to

1. And therefore, what is D of 3 D of 3 is 3 minus 1 which is 2 which is what is out of 6

similarly 1, 2, 3. So, out of 6 is also 3 out of 6 equals to 3. And what is in of 3? In our 3

is also one it is got enough 6 in of 6 is equal to 1.

So, what is D of 6? D of 6 is also 2. Now what is therefore, gain of gain 3 comma 6,

therefore, gain 3 comma 6 equals to 2 plus 2 minus 2 into 1. What is 1? The this edge 3,

6. So, what is the cost of the edge 3 6 is 1. So, it is 2 plus 2 minus 2 which is 2. Why do

we do this minus 2? Because what the essential the actual gain is only 2 because

although 3 goes to this side of the partition and 6 goes to this side of the partition. The 3

to 6 edge still remains in out. It does not go from out it does. So, all the other edges this 3

to 7 edge and 3 to 8 edge becomes part of in of 3 when it goes to the other side of the

partition, but this 3 to 6 edge does not change from out of 3 to in of 3 because 6 also goes

to the other side.

So, it still remains in out of 3. Similarly, the edge 6 to a is in out of 6 and when it goes to

the other side of the partition. This 6 to 2 and 6 to 1, this edges move to in of 6, but 3 to 6

does not move to in of 6. It still remains in out of 6. And this is this edge 3 to 6 has been

taken twice; one for this one in the calculation of D of 6 and other in the calculation of D

of 3. So, therefore, we have to subtract it twice.

So, the essential gain is 2 which is 2 plus 2 minus 2. This is how we calculate gain.

(Refer Slide Time: 14:59)

Now, we will take the, this example in a bit more detail. So, we said that how does this

algorithm proceed. This algorithm proceeds by initially starting with an initial partition

this is my initial partition. And then in that initial partition for all pairs of vertices I find

gain. And let us say we do not go into this procedure, but you can see it and check it that

the highest gain is provided by the exchange of pair 3 comma 5. We already saw that if

we exchange 3 and 6 we get a gain of 2.

And here it tells that if we exchange and here if we exchange 3 and 5 we get a gain of 3.

Before that for the initial partition the size of the cut is 9. Each edge has a cost of one,

how many edges cross the partition? 1, 2, 3, 4, 5, 6, 7, 8, 9 so, the cost of the partition is

9. We said that if we transfer3 and exchange 3 and 5, the cost of the partition will reduce

to 6. Let us see how because the gain of 3 comma 5 is 6 will just take an example and see

this.

So, after this step, after this step we add after this exchange of 3 comma 5, the what we

will have is 1 2. And 5 will go to this side of the partition. Let us say this is the partition

that we have. And 3 will go to this side of the partition this is let us say this is 3, 3 we

have 7 here and we have 8 here, ok. And we also have a 4 here, and we also have a 6

here. So now, what are the edges that we have? We had 5, 2, 2 edge we had a 5 to 1 edge;

we had a 1 to 2 edge. We had a 1 to 6 edge. We also had we also had a 2 to 6 edge. We

have ha so, we have 6 to 3 edge, we have a 7 to 8 edge. 7 to 3 8 to 3 8 to 4 and also 7 to

also we have 7 to 4, ok. And I have 5 to 6, I have 4 to 3 I have 4 to 3.

So now this these are all my connections. And the what is the cost of the cut 1, 2, 3, 4, 5,

6. So, when I transfer 3 and 5, I get a gain of 3 and the cost of my cut produces to 6. Now

again the next highest gain that is we have found out. So, after this exchange I will lock 5

and 3. I will not consider them from further exchanges. So, what are the remaining

nodes? 1, 2, 6, 4, 7, 8 out of these out of these nodes the pairs that we can consider

exchanging is say 1 6, 2 6 and then 4 6, and then 1 7, 2 7 say 4 7.

So, these are and likewise we will have these many pairs out of these many and many

pairs like this. Let us say rather we will have n square pairs. And the highest gain that is

given by let us say is 4 comma 6 and the gain is 5. Now if the gain is 5 what we get is

finally, a cut size of 1 and here is this partition where we have already exchanged the 4

and 3 also. After we get 4 this side and 6 this side.

So, on this side we get 1 2 5 and 1 2 5 6. So, 1 2 5 6 on one side and 8 3 7 4 on the other

side and the size of the cut is just one. Now if we exchange further we have to go on

further until all vertices are locked, we will see in for this case we will see that the we do

not get any benefit in gain further we only have negative gain. So, minus 6 gain. So, the

cut size increases to 7 if we do an exchange of 1 7 and also 2 8. But this does not mean

that this will happen in all cases sometimes for very large cases for very large task graphs

it could be that some of my exchanges.

Let us say it increased cut size, but subsequently it may due to this exchange

subsequently it allowed many more exchanges which reduced the cut size to a very small

value. Therefore, allowing negative gains is also essential. So, this is how essentially the

Kernighan and Lin algorithm works. So, for this case we will take because steps 3 and 4

do not give me good gains. So, we will only take up to the second step.

So, this is my final partition. So, we will consider g 1 plus g 2 because g 1 plus g 2 plus g

3 plus g 4 does not give me the maximum gain. G 1 plus g 2 plus g 3 also does not give

me the maximum gain, but g 1 plus g 2 gives me the maximum gain. So, we will only go

up to the second step and that will be my final partition. What about the complexity of

the Kernighan and Lin algorithm?

(Refer Slide Time: 21:20)

The complexity is big O of c and cube. C essentially so, if we go into the algorithm back

once more, we see that this is an inner loop. And the outer loop says until g equals to 0.

So, I will take up to g k ha and then I will unlock all pairs and then repeat the process

with the current partition.

So, this was the initial partition at the end of this I have taken up to g k, I have modified

the partition and with this modified partition I will go into a second loop, until we have a

phase we have a entire pass in which we have no improvement in gain, ok. And this path

is typically not a large number of times, it is only a small constant number of times at the

outer loop will be required to execute it quickly converges down to a gain of 0. I mean a

few number of iterations of the outer loop. And hence c the c component in the

complexity is essentially the complexity or with the number of times the outer loop goes.

The inner loop has a complexity of n cube; why do we have that?

So, at each at each loop iteration, I will have big O of n nodes, which are unlocked. And

for them for those big O of n nodes I have to compute the gain of for each of them

because we have to compute the d values for each of those nodes. So, the cost of out

edges and the cost of in edges, cost of edges that go outside the partition and minus cost

of edges that have that go inside the partition.

So, to calculate the d values of the n nodes for each node I will take a constant amount of

time to calculate it. And therefore, for my n nodes I will take big O of n time to calculate

the cost of D’s to find the d values of the nodes. Then after finding the D values I will

have to find the gain of n square pair of nodes. So, if I let us say have n nodes, then I

have n square pairs of those nodes.

And for each of those pairs I have to find the gain values. So, to computing the gain

values takes constant time. However, I have n such at each phase I have to recalculate the

D values. So, I will have n plus n square. I will first calculate n then I will have n square,

and then this will go on n times, because I have to go on locking unless all pairs are

locked, unless all n pairs are locked I have to go on doing. So, that is another big O of n

times. So, I will have to incur a big O of n cube complexity in this.

So, n square complexity in the calculation of gains firstly, you have to calculate d big O

of n plus after calculating this you have this big O of n square complexity in calculating

the in calculating for each pair of nodes, the gain values this is for gain values this is for

D 1. First you calculate d in a separate phase with these ds you go on calculating the gain

values in one phase and then you go on doing unless un until all these nodes are locked.

Unless and so, will the number of times this loop will go is again big O of n times

because unless and until all pairs are locked, you will go on doing this loop ok. So, the

overall complexity of this algorithm becomes bigger c n cube. So, within a past

computation of gain for all 3 pairs this big O of n times number of passes is small and

hence you have this c. Drawbacks of this algorithm it considers unix vertex weights only

partition sizes have to be pre specified. In fact, equal size partition and the time

complexity is high relatively high.

(Refer Slide Time: 25:48)

Now, some of the restrictions of the Kernighan and Lin algorithm one important

restriction for example is to have unequal sized blocks. That can be extended Kernighan

Lin algorithm can be extended to circumvent some of these problems

So, to partition a graph of 2 end vertices into 2 sub graphs of unequal sizes n 1 and n 2.

So, now I do not want the equal number of nodes in n and n on each side of the partition

on, let us say or for software I want n 1 node for hardware I want n 2 nodes and n 1 and n

2 are not same. So, how do we go about how can we extend Kernighan Lin algorithm to

take care of the situation. We divide the nodes into 2 subsets a and b containing min of m

n 1 n 2 and max of n 1 n 2 vertices respectively. Then what do we do? Then we apply kl

algorithm, but restrict the maximum number of vertices that can be interchange in a path

to min n 1 n 2. So, previously we were doing unless all pairs were locked.

So now the number of exchanges will be min of n 1 and n 2. So, one of n 1 in among n 1

and n 2, 1 is small, one is large. So, at least you have mean n 1 n 2 pairs. So, up to n 1 I

know in one coming in 2 pairs you do and leave the rest. Because that this so, what will

happen to the rest of the nodes which are not taken care it will finally, be taken care over

many number of passes. So, we will go on doing this until g equals to 0. Not all the same

node set of nodes will not be pawed be starved and not be exchanged iteration after

iteration if it so, deserves right.

So, therefore, at each iteration it works fine if we allow only n min of n 1 comma in 2

pairs to be exchanged and then we go on through some passes.

(Refer Slide Time: 27:58)

Last algorithm before finishing this lecture is the Fiduccia method s algorithm. It is an

extension of the Kernighan and Lin algorithm. We move instead of node pairs in this

algorithm we move one module or cell at a time instead of exchanging pairs. And can

easily be extended for more realistic cost function, for example, let us say our objective

of minimizing execution time. So, we had that and that cost estimation of execution time

of modules. And this can be considered in this algorithm easily. And it maintains an

approximately balanced partition after every move. So, let us go into and look at to this

algorithm.

(Refer Slide Time: 28:43)

So, we start with a balanced partition P X comma Y. So, what do we mean by balance?

Let us say, that we want to implement we want to minimize execution time. And if let us

say execution in hardware always minimizes execution time, wanting to minimize the

execution time you will get that finally, everything should be in hardware. However, the

balance tells me that you must have at least some of the nodes in software and the nodes

in hardware a minimum number.

So, at least 70 suppose 75 percent at least three fourth of the nodes in software and only

one fourth in hardware, you cannot have more than that. And that will be bounded within

a certain value let us say between say 70 percent to 80 percent will be the case. Let us

say, you cannot have less than 70 percent nodes in software. You cannot have more than

80 percent nodes in software and this balance will be maintained.

And maintaining this balance we will try to minimize what is the minimum execution

time that we can obtain for a given embedded system. Let us say this is my objective. So,

we start with a balanced partition p, and like Kernighan and Lin we repeat for I equals to

1 to m. Let us say the number of nodes that I have is n. And we choose a free cell b or

free module b, either in X or in Y does not matter it is not exchanging.

So, I just choose a module from X or Y such that moving b to the other side gives me the

highest gain. And now what is the gain? The gain is in terms of minimizing the execution

time, of what? Let us say I have this entire application n 1, which calls say n 2 n 3 and n

4 we saw. And n 1 n 2 n 3 n 4 can be either implemented in hardware and software and

then it is a movement of either the. So, so this moving of the cell represents therefore, the

moving of n 1 n 2 n 3 or n for any one of them from hardware to software or from

software to hardware, wherever it is such that this movement gives me the highest gain.

And what is that gain for me now.

The minimum execution time that I have for n 1 because n 1 is the ultimate execution

time of the overall application. This is my objective; the objective is to minimize the

execution time of n 1. For that only I want to move modules from software to hardware

or hardware to software.

So, I choose a free module b belongs to X union Y, such that moving b to the other side

gives me the highest gain. And also moving b preserves the balance. So, after moving b

we have to see that if I move b does it will preserve the balance that I required for

example, at least 70 percent of the nodes will be in software and at most 70 percent of

the nodes will be in a ha software. So, the number of nodes in software should always be

the number of loads are the total and ha the total number of nodes in software will

always be between 70 to 80 percent. Let us say is this balance maintained, after I have

moved b.

So, if this balance is not maintained I cannot move b, I cannot move b. And I have to

choose another particular module for movement another module for movement not this

module. So, we have to see that does moving b preserves balance if. So, move b and lock

b. Let us say gain is gained after moving b.

You unlock all cells and just like the next step is just like the Kernighan and Lin

algorithm. You go on moving b and lock b unless all the b’s are considered for movement

while preserving the balance. And after that is done one this inner for loop is done, and

then you repeat this for a few number of steps. So, with this we come to the end of this

lecture.

