
Embedded Systems-Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 05
Hardware / Software Partitioning

Hello. In the last few lectures we saw how embedded systems are modelled. We saw

various forms of modelling, and we also saw a procedure by which modelling also

allows automatic synthesis of the control software that we want to design. However,

when the size of the embedded systems becomes very large and complex, the size of the

models become very large. Such accurate formal models from which synthesis can be

done is very difficult to obtain.

So, we have to resort to more non formal strategies not absolutely as formal as we took

at last day. So, once a modelling is done, the next step that we embark on in embedded

systems design is Hardware Software Partitioning.

(Refer Slide Time: 01:27)

So, firstly, we are given the design to behaviour; that means, we have the models in

terms of say concurrent and hierarchical FSMS, HC, FSMS, and then some nodes of that

HCFSM will be designed in software and some in hardware. By software we mean that,

that code will have a C code for example. We will write the C code corresponding to the

node, and we will execute it on a general purpose processor. Now execution on a general

purpose processor has several advantages.

For example, it allows a lot of flexibility, in terms of easy updates of the software for

example, for the functionality. For example, if you have say a power window system

software, or a suspension software in a car, a suspension system, a suspension control

system is implemented as a software as a C code on a particular general purpose

processor.

Now, if you want to update the suspension software, it is very easy to do, just change the

C code and drive it on to the platform of the car through the network. And the update is

done. So, therefore, it is just the updation of the C code that was required to change the

suspension control system that we had. So, this was possible because we implemented

the suspensions software. Suspension code or functionality in software and executed it

on a general purpose processor.

Software execution software based execution to the C code also allows multiple

executions to seamlessly co execute dynamically together without any hassle. So,

therefore, software based execution has a lot of flexibility; however, hardware based

implementation also has it is own advantages. So, what is a hardware implementation?

So, that C code will then go through a set of hardware design steps, and we will design a

circuit from a digital circuit and we will design or do a technology mapping and map the

functionality on a silicon wafer, and we essentially get a single purpose processor for this

functionality.

So, if we have a completely customized hardware implementation of a functionality, then

what we have is we build essentially build a digital circuit that implements that

functionality. So, it is only that functionality that is obtained, we do not have to go

through the process of say, the instruction set of a software based execution essentially,

what happens? You have the C code; you compile it to the machine code. And then you

bring from the memory the instructions one after another, and the data one after another,

execute instruction after instruction based on the micro instruction that the software

platform or the software processor, the general purpose processor supports. And then

send back the results to memory.

In a hardware implementation, on the other hand you have a de dedicated digital circuit

only to perform that function. You do not have to go through you do not have to bring in

machine; you do not have separate machine instructions for a software for a gen like a

general purpose processor. Say, you just take the data, and the data is transformed

through a set of digital circuits and the output is obtained. So, the execution time might

be much more optimized as in a software with respect to a software implementation. So,

the performance of a hardware implementation could be much more than a software

based implementation.

So, if you require say very low latencies within which a function must be performed

within a very short time, within say 15 milliseconds or some very small time within

which a function must be performed. And that performance cannot be given by a

software implementation, when we are executing interneuron on a general purpose

processor. It might need to be executed on a hardware platform for the sake of this

performance.

However, hardware implementation on the other hand is rigid it is not flexible. Once you

build a digital circuit, you cannot update it, unless you throw away the chip or and

replace it by another chip with the updated functionality, ok. So, therefore, hardware

implementations although may be very optimized with respect to performance can be

rigid with respect to implementation could be rigid with respect to a it is a co execution

of multiple components together, could be rigid with respect to updation.

There could also be a trade-off between the 2 for example, say an FPGA based

implementation, you want to do in an FPGS based implementation. Essentially, you have

a c of gates, with interconnection between them. And you have to program those

interconnections to provide a given logic. So, and it can also be reconfigured, or it can

also be updated. Those interconnections can be reconfigured to get a different

functionality; however, it is not as seamless as fast as the software based implementation.

Seamless in the sense of co execution of multiple dynamic tasks together on the FPGA is

not as easy as doing that in software.

And, the performance although; it is not that as and performance is also not as good as

hardware, but it is better than a software implementation many a times; so therefore,

FPGS could be a trade-off of both worlds. It is sort of flexible, it is not as rigid as

hardware as it allows reconfiguration, but it is not as performance efficient as a

completely customized hardware implementation as well.

So, therefore, what we are saying is that given a behaviour or model in terms of an

HDFSM say we have to take each load of that model, and implemented it on software or

hardware or FPGS or wherever so that our overall design constraints are met. And what

would be the overall design constraints for the entire system? Could be the latency, the

end to end latency of the functionality application that you that we want to do, that we

want to have say the power consumption, the power consumption the area etcetera.

The cost the cost is again another very important thing. Software based implementation

could be much more much less costly than a hardware based implementation. It is just in

a software based implementation again you take the C code, and you take it and push it

into a general purpose processor. For a hardware based implementation the same

functionality has to be synthesized and then fabricated. And then you have to obtain a

chip for it, and then you get that functionality as a hardware. So, it is both costly as well

as time to market the advantages performance. Maybe size the size of the circuit

implementing that functionality will also be much lower than that in for it is software

based counterpart.

So, there are various trade-offs, and therefore, we want maybe we want to implement.

Therefore, some parts of our embedded system in software and some parts in hardware.

Maybe we want to implement. For example, if software based implementation is always

much more flexible, and hardware based implementation is always much more

performance efficient. But costly then we would want may want to implement as much

as of the of the embedded system as possible in software, such that my constraints on

performance are met, and such that my constraints on performance are met, because

software implementation is both flexible and less costly as we just said.

Now, how do you obtain this hardware software partitioning? You first get the behaviour,

and then that behaviour we do a partitioning of that behaviour into the software part and

the hardware part. For the software part we compile say the C program, and then for the

hardware part we do the hardware synthesis and estimate. And then we do a simulation

to estimate what does it meet the required performance. If yes, we are satisfied with the

hardware software partitioning we stop.

If you are not satisfied after simulation we go back and do a repartitioning, and see other

we put other components essentially we do a design space exploration, into various types

of; so, a component can be first we will try in software. Then we will try in hardware,

different components with different cost variations, right. We will take another hardware

software partition again implement, again compile it. Again to a hardware synthesis may

be a high level synthesis we do to get an estimation of what will be the hardware cost,

area etcetera and performance. And then do a co-simulation of the software and hardware

and then see if it is ok. Once we have once all our objectives are met, and the constraints

are satisfied we stop, ok.

So, how does this hardware software code design approach proceed?

(Refer Slide Time: 11:59)

Firstly, we have to look at the inputs. So, what are the inputs? What is the target

technology available to me? What are the available hardware components? Do I have is

it possible for me to design completely customized hardware or we have to make go for a

standard cell implementation, or we can have FPGAs, etcetera? What kind of general

purpose processors do we have? ARM, Intel what kind of general purpose processors do

we have? DSPs, digital signal processor, FPGAs, etcetera. So, what are the different

types of components that I have at my disposal. That has to be known, what are the

design constraints that I have on power, area, delay, capital, expenditure, etcetera. And

we also have the required behaviour on which we will do the partitioning in the form of

say an HCFSM, ok.

(Refer Slide Time: 11:50)

Taking a small example of a data flow dominated graph. This one is a data flow graph,

where let us say you have 3 inputs i1, i2 and i3. This is the specification. And you have

these functionalities fct1, fc2, 2, 3, 4 and 5. And these are the components, and we say

that for this functionality the end to end latency bound that should be met is 2 2 7 6 5

nanoseconds; and also between the end of functionality one and the beginning of

functionality 4. Let us say there must be a time gap bit of 5000 nanoseconds. Given these

constraints, let us say we will have to decide what to do.

For example, here possibly we have decided that we will implement functionality 1 and

functionality 3 on processor 2. So, it will co execute functionality one and functionality 3

will co execute as a software code on processor 2. Functionality 2, on the other hand will

execute on processor 1, and functionality for 5 is possibly extremely performance

hungry, and we need very efficient performance for it and we will implement it in

hardware. And all these processors talk between themselves over buses, ok, this is an

example.

(Refer Slide Time: 13:08)

Therefore, what are the steps do we have? The overall steps, first we translate the

behaviour into an internal graph model, could be a task track task graph model, which

says that for example, these are my nodes, these are my nodes, say and these are the

edges with the frequencies, ok. So, the edges will tell me how many times say suppose

these are my end nodes representing sequential component programs. These are my

sequential component programs, and these are my edges say. And these represent say

how many times does n 3 needs to call n 4, if these are modules.

So, we have a task graph like representation like this. So, we translate the behaviour into

an internal graph model, and then translate that behaviour into an HDL and C

compilation. HDL is a hardware description language like Verilog and VHDL and C

compilation. So, what we will do? We will have both for each functionality.

For example, we have to have the option of either implementing it in software or

implementing it in hardware. So, we have to estimate, what is the cost of implementing a

particular functionality, a particular node in hardware and software. So, to estimate the

hardware cost of an implementation we have to implement that node in HDL say Verilog

or VHDL. To estimate the cost that this node will have for a software implementation,

we have to implement that particular functionality as a C code. Then we compile all C

programs on the target processors available. We compute the resultant program size

estimate the resulting execution time etcetera. So, various cost parameters we obtain, and

for the same functionalities we also synthesize the hardware components. We obtain

estimate of the hardware cost and we do a high level synthesis, and then which is

sufficiently fast we look at how high level synthesis procedure happen, how the high

level synthesis works, how do we get an architectural hardware architectural architecture

corresponding to a function in the next subsequent lectures.

So, we have to do a high level synthesis to obtain a fairly accurate estimate of the

hardware costs.

(Refer Slide Time: 15:37)

So for each component, we now have the software cost as well as the hardware

implementation cost. And then we will have various objective and closeness functions

depending on what we want to achieve for the entire functionality. We will have multiple

matrices, as we just talked about for example, cost power performance. And they has to

be weighted against one another into a single objective function. An expression

combining multiple metric values into a single value that defines the quality of a

partition is called the objective function.

So, we will have a partition of into hardware and software. And then how do we partition

into hardware and software? So, therefore, some of my modules in my task graph will be

implemented in software, and some of my modules will be implemented in hardware,

and this is essentially a partition. For this partition, we will have to find out how good

that partition is. That will be determined by an objective function. And that objective

function will provide me a single value weighing different multiple matrices on which

my partition depends for example, cost power performance etcetera. So, the value

returned by such a function will be called the cost.

The weighted sum objective function is used. For example, all constraints have to be

taken into account how for example, the objective function could be let us say k 1, which

is a weight k 1 into area, plus k 2 into delay, plus k 3 into power. Suppose what is the

function f area comma area constraint tells me? So, it will be returned me of value which

with respect to the area taken by the system against an area constraint that I have. F delay

comma delay constraint. Similarly will tell me what it will return your value with respect

to the overall latency of let us say, this embedded system with respect to a delay

constraint that I have, likewise.

So, we will have a single objective function that will tell me the goodness of a certain

hardware software partition at any given time.

(Refer Slide Time: 17:46)

Now, to look a bit more deeply as to how such parameters of performance power etcetera

could be calculated, we look at deeply at oh at one important parameter the execution

time. One of the important objectives of a system could be to minimize execution time.

Of course, within a given cost, as I said hardware based implementation could have a

certain could be better in terms of performance. That means, lowered in terms of overall

execution time, but they could be much higher in terms of the cost it that is incurred, but

estimation of the execution time is required, ok.

So, we now means one of the important goodness parameters of a partition would be that

what is the execution time of the overall application when such a hardware software

partition of the modules are obtained, is obtained. For example, let us say we have a

procedure like this. In this procedure I have a process n 1, that n 1 calls within a loop,

another procedure n 2 x times. And then after the loop it calls n 3 and n 4. Procedure n 3

which is called by n 1 again goes like this. It calls within a loop until something is true

and the loop n 4 and then it ends, ok. So, therefore, this is the overall thing we want to

implement.

Now if you want to estimate the execution time we will have something like this. N 2 we

see has does not call anybody; n 2 does not call anybody. So, execution time of n 2 is

given by the internal computation time ICT of n 2, and nothing else. Similarly, n 4 does

not call anybody. It is a monolithic module program, sequential program. So, the

execution time of n 4 is only the internal computation time of n 4. For n 3 we have this

procedure, we have this procedure.

So, what is the computation the total execution time of n 3? It is given by the internal

computation time of n 3 plus what n 3 calls n 4, n 3 calls n 4 over the edge e 4. So, let us

say the number of times n 3 calls n 4 is given by e 4 dot freq, ok. And let us say the

transmission time for one such data transfer of the data from n 3 to n 4 is e 4 dot t t. And

the execution time of n 4 is already we obtained is n 4 dot et which is equals to n for dot

ict.

Why is this? The overall execution time of n 3, because the overall execution time of n 3

is equal to the internal computation time of n 3, plus the time that is spent executing n 4,

plus and the time that is spent sending data input data from n 3 to n 4. So, n 3 does

something, and then it passes something to at the arguments of n 4. So, n 3 passes

arguments to n 4 for passing these arguments these are data, this is data, and this when it

passes it essentially it is a data transfer from n 3 to n 4. And each time n 4 exists n 4

executes this data is passed from n 3 to and 4, ok.

Now, what is the transmission time for the data? What is the approximate transmission

time for the data to pass from n 3 2 n 4? It is given by this. Transmission time of any

edge is given by the bus delay for this edge. So, I will implement this on a bus. So, given

by the bus delay into number of bits divided by bus width. For example, let us say I need

to send 64 bits and my bus width is 16. So, number of transfers that I will require is 4, 64

by 16. So, bus width is 16 I have 64 bits to transfer.

So, I will require 4 transfers. And in etcetera, each such transfer I require a delay which

is equal to the bus delay. And this is the total transmission time for one data transfer from

n n 3 to n 4. So, once I call n 4 I will have to incur a delay of ei in e 4 dot tt. And each

time I call I execute n 4. So, each time I call n 4 I incur the execution time of n 4 plus the

time to transmit data from n 3 to n 4.

This is given by e 4 dot tt plus n 4 dot et. And how many times do I have to in does n 3

have to incur this cost which is, that is equals to the number of times the freq of e 4. So, e

4 dot freq into e 4 dot tt plus n 4 dot et, ok. Plus, in addition to this it has it is own

internal computation time ict. So, the overall computation time it is execution time of n 3

is given by n 3 dot ict plus e 4 dot freq into e 4 dot tt plus n 4 dot et.

Now, what is the overall computation time of n 1? It is again given by this one. So, we

see that n 4 executes itself, and it calls n 2 it calls n 4 and it calls n 3. So, then like we

just calculated for n 3, what will be it is total execution time? N 1 dot et equals to n 1 dot

ict, plus e1 dot freq into e1 dot tt transmission time plus n 2 dot et for this one, plus e 2

dot freq into e 2 dot tt, plus n 4 dot et, for this one, and e 3 dot freq into e 3 dot tt plus n 3

dot et for this one. So, this is the total time of n 1 dot et.

Now, you it is we should appreciate that, let us say in n 1 is implemented in hardware,

and n 2 is implemented in software. N 1 is implemented in hardware and n 2 is

implemented in software. So now, this happens you have them in separate chips. And

therefore, in separate chips and therefore, what happens is that, the transmission times

could be very huge. So, it could be so that you design one chip, and design all the

hardware functionalities into the same chip.

So, therefore, a hardware to hardware trunk communication cost a transmission cost

could be very low. Software to software transmission cost could also be low, because

number of programs executing on the same general purpose processor let us say-

however, hardware to software transmission cost could be high, because these are on 2

separate processors, ok. And we also have different amounts of ict, ict that is the internal

computation time would also be different for hardware implementation and software

implementation.

Now, let us say if always software based implementation is lower software plays

implementation has lower performance than hardware based implementation, it could be

that we want to implement everything in hardware. Because, the hardware based

implementation will give you the lowest execution time. If software based

implementation we are supposing assuming that software based implementation will

have higher execution times always than hardware based implementation. If that is so,

then we should implement everything in hardware. However, cost of the hardware

implementation as we told is much higher than that of soft.

So, estimation of this execution time is not everything. As we saw in the previous slide,

we have to have a weighted function the overall cost is a weighted function of multiple

matrices delay or execution time or latency is just one of them. We need to considered

other things not everything is considered in this objective function. For example, one

important objective function could be the expenditure that we need to bear for this

design; and also the time to market for example. So, all these have to be borne in mind

before saying that this is my before, finally, determining the cost of a certain partition.

However, this slide tells you how you can estimate one important metric the execution

time of a given partition. Now there are different types of algorithms that are used for

hardware software partitioning. One important class of algorithms is iterative partitioning

algorithms.

(Refer Slide Time: 27:49)

Now, many algorithms a are very efficient in terms of the performance and some are less,

and what we have done for this course is that, we have tried to take a few heuristic

algorithms and we looked at 2 we will have a look at 2 heuristic algorithms here. We will

not look at the optimal algorithms here we will only have an overview. One important

advantage of the heuristic algorithms we will see is, that it almost always gives us good

results, may not be the best result, but is very quick. Now why it is quickness essential,

because this hardware software partitioning is essentially a design space exploration

process; meaning that, we will have lot of options for hardware and software, we have to

test different alternatives, different nodes in software and hardware before; Finally,

saying that yes this is the best partition. So, we have to quickly be able to evaluate the

cost of the partition and go and proceed and get an answer. And we have to go on doing

that. So, therefore, the there has to be a compiler that tells me how good a partition it and

give us give us quickly a partition so that we can do the next steps.

Now, if the optimal algorithms will take a long time to decide as to how to do this. We

look at other places will look at optimal algorithms here we will look at 2 heuristic

algorithms in this class. So, we will look at 2 iterative partitioning algorithms. How do

they proceed? The computation time in an iterative algorithm is spent evaluating a large

number of partitions. So, the main the place at for which the computation time is

incurred is in an iterative algorithm is spent in evaluating a large number. So, we will

have a large number of partitions and we have to see which partition is good among

them. The iterative algorithm is primarily differ from one another in way in the ways in

which they modify partition.

So, suppose how do they part up update partitions. How? This is a certain partition in

terms of a certain modules in software and a certain modules in hardware, and then it

will take one step and modify that partition. What is the methodology they take in

modifying the partition? So, some of them are in this updation process you it may shift a

few models from software to hardware and a few models from hardware to software say.

So, therefore, what is the mechanism that they are using to modify the partition? And do

they accept bad modifications? Or how do they accept except bad modifications or reject

bad modifications? Why is acceptance of bad modifications at all necessary? Because

locally bad modifications at a certain time can later result in very good partitions; so a

certain transfer from software to hardware certain modules, it may give you a certain

negative impact on the partition cost, but due to that due to that transfer from software to

hardware; let us say, other subsequent transfers could result in huge improvements in

cost. So, it is sometimes essential to also accept bad modifications.

Now, the overall goal of the iterative partitioning algorithms is to find a global minimum

while performing as little computation as possible.

(Refer Slide Time: 31:24)

And as we said, there are a few important iterative partitioning algorithm that we will

see. We will see the first 2 among them, will not see simulated annealing, but the

important ones are Kernighan-Lin, Fiduccia-Mattheyses and Simulated Annealing.

