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Lecture -04 
Hardware Synthesis

Hello in this lecture we begin our study of Hardware Synthesis. Till now we have seen

that at the beginning, we have an initial rough idea of the embedded system application

that we want to design.

(Refer Slide Time: 00:52)

The  first  task  is  to  specify  that  idea  in  English  language  as  detailed  as  possible  as

accurately as possible, at specification that that allows us to tell what will be the inputs to

the system, what will be the output from the system, how will the inputs will transform

to the outputs. So, what will be the actual functionality that, we will all tell all these

things we will tell in English. And then we have to also tell what are the performance

requirements, what are the properties that this embedded system should satisfy, what are

its performance requirements in terms of let  us say the time within which the output

should be produced, the energy that it is allowed to consume the size within which the

system has to be built etcetera.



After we have this English language description of the system, we specify it formally

using formal modeling tools, we saw formal computation modeling strategies such as the

sequential program model and the finite state machine model in which the application

can be modeled. Now, after this phase after this phase we have a task graph like structure

of the entire application where each task, where each task node. So, it is a graph over

task nodes where each task node is a program for example, the node corresponding it

could be designed at various abstraction levels for example, we studied 8 CFSMs and the

program state machines. 

And let us say that each node could be a single program, or code in the program state

machine each node. So, that node can for example, correspond to one node of the task

graph  at  a  certain  level  of  granularity.  So,  if  we  see  this  figure  first  we  have  the

application or system level and, then after the application of at the application of system

or system level, we have modeled the entire application in terms of a task graph.

Now,  this  task  graph  on  this  task  graph  we  have  specifications  in  terms  of  its

performance requirements as we told, the cost that it should take the cost that can be

incurred for building this embedded system. And then others properties, based on that as

we saw each task node in this task graph will either be built in hardware or software. So,

this is called hardware software code design.

So, the entire embedded system application represented in terms of its task graph and,

this and within this task graph each such task has to is will be built either in software and

executed, as a C program let us say on a general purpose processor, or we will build a

custom, or semi custom hardware corresponding to this task node. So, each task node

will either be implemented in hardware or software.

Now, after  we have  decided  which  tasks  will  be  implemented  in  software  starts  the

hardware synthesis. Now, that we have decided that these stars will be implemented in

hardware we have to design the hardware and implement it in the form of a chip. So, the

today we will look at how a specification that is that, we want to implement as hardware

will finally, be structurally realized in the form of a chip.

So, we see that from the application level we have this hardware software code design,

where we partition the system in terms of what is to be implemented in software and

hardware and, then for the hardware we first have the architecture level designer. In the



architecture level design we have this task a task node, which we have to implement in

hardware and this task node is represented in the form of a high level program, or our 8

CFSM let us say.

And,  actually  essentially  what  is  it  we  have  a  set  of  concurrently  communicating

processes. So, each such process is a program it executes independently and concurrently

with other processes and, has interfaces to talk with the other processes and with outside

world. So, if you see this diagram here B 1, B 2, B 3, B 4 are 4 concurrent processes

running  concurrently  with  each  other  and,  they  can  talk  with  each  other  through

interfaces and they can also talk with the outside world.

Now, this  set  of programs this  set  of concurrently  communicating processes,  will  go

through a phase called high level synthesis, where it will be transformed in the form of

an RTL, or register transfer level specification.  And the structure of the (Refer Time:

06:26) the RTL will  have a mathematical  specification,  in terms of what will  be the

register transfers at each time, we will talk in detail about that. And, it will have a truss

structural representation as well in terms of registers functional units a controller that

controls  its  etcetera,  as  shown  in  this  elliptical  enclosure  ok.  And  after  this  RTL

specification is obtained, we go through a process called logic synthesis, in which the

RTL specification the register transfers are represented as Boolean equations. We also

define the functional sorry, we also define FSMS corresponding to the controller and,

then we realize this Boolean equations and FSM controller in the form of gates and flip-

flop and that is that provides us the logic level design. So, this in encapsulation here, in

this ellipse we see that we have represented the system that, we want to design in terms

of gates and flip-flops.

Now,  from  this  gates  and  flip-flops  level  design,  we  go  through  a  process  called

technology mapping and we obtain a circuit level specification; from the circuit level

specification, we this is a transistor level design. And from this we go to the physical

level design, in which we obtain the geometrical structure of the circuit on the layout, or

the layout of the circuit on the silicon wafer.

So, once the layout of the circuit so, how this transistor level design will be laid out on

the silicon floor will be decided in the physical level design phase. And after this layout

has been decided, we go for fabrication of this layout on the silicon chip and, we have a



wafer level design and from that we have a finally, packaged chip. Going to a bit more

within of this design flow we see that firstly, we have reiterating.

(Refer Slide Time: 08:49)

Firstly, we have this application or system level design the overall problem is expressed

through unambiguous specification models, as we just told. And the models includes a C-

code which is a representation of sequential program model, sequential process model,

and state charts which is a representation of the 8 CFSM, or hierarchical concurrent FSM

models.

And the models are essentially models essentially have task graph like structure, with the

tasks with concurrent processes concurrent communicating processes within them. And

that after that we do a hardware software code design and the application is broken into

threaded concurrent communicating processes, and for the for each of the task nodes

that, we want to build as hardware. Then the following steps elaborate the design of the

hardware components.



(Refer Slide Time: 09:55)

Now, the hardware design flow goes through a set of phases as I told, the first one of

them  was  architectural  level  and  the  system  is  described  by  its  structure  and,  its

corresponding  functional  blocks.  So,  we  have  these  concurrent  communicating

processes,  each process is  essentially  conducts a function,  carries out a function and

these  are  the  functional  blocks.  And,  each  block  is  essentially  a  sequential  system,

meaning that it will it will go time step after time step and conduct a series of operations.

And the blocks communicate among themselves as we also said, the functions to each

structural unit is ascribed, we will see how by designing the data path and control path

for it and timing and other constraints are specified on the system.



(Refer Slide Time: 10:54)

Now, the architectural level specification we said that we will have we will use models

like C and 8 CFSMs as we told. The common languages that are used to model this in

programs other than C are so, from that C specification for hardware it is most easy to

use similar  hardware description languages,  which include which like system Verilog

system C etcetera.  From the  C  level  specification  it  is  easy  to  transform them into

hardware description languages,  or we could also have a bit  at  a higher level  called

architecture description languages like LISA, EXPRESSION, MIMOLA etcetera.

At this stage we can have two types of designs either synchronous, or clocked designs

which we considered them here, or asynchronous, or unclocked designs which we will

not consider in this course ok. So, from the architectural level we move to the RTL level.
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And at the register transfer level what do we have the design is composed of a data path

and  a  controller.  So,  we said  that  essentially  any hardware,  that  we designed  has  a

logically structural view what is it is logically structural view composed of a data path,

and a control path. And a controller the data path consists of register banks functional

units and their interconnections.

So, the interconnections will have wires MAXs D MAXs etcetera and the controller so,

what will this data path do. So, data path will transform input data and it will allow

certain data in certain ways to be to be transferred to functional units get, and will get

transformed  and  then  stored  again  back  into  registers.  So,  from inputs  through  the

functional  units back to registers this  path is provided by, this data path that is why,

because this path transforms data from input to output this is called a data path.

And, how the data path will transform the data is controlled by the controller; that means,

the for example,  the contents of which register;  will go to which functional unit at a

given time step is controlled by the controller. And then the output of the functional unit

will go to which register is again controlled by the controller as we will see. So, this data

path and controller essentially constitutes the register transfer level, level specification

structural specification of the design.

So, registers are connected to functional units of higher multiplexers, the multiplexers

are controlled by FSM. So, the select lines of the multiplexers will be controlled by FSM



and therefore,  the multiplexers  will  be able  to  choose will  be able  to  choose which

register contents will go to which functional unit at a given time. So, the design after at

the RTL level the design is broken into clocked steps at each step some registers and

functional  units  are  activated  and  these  activations  define  the  RTL assignments  for

example, at time step 1. So, suppose we can have RTL specifications like this at time step

one, perform the following register transfers. So, R 1 plus R 2 equals to R 2 equals to R 1

plus R 2 so, take the contents of a time step 1 take the contents of R 1 and R 2 pass, it to

an adder and, then the output from the adder should be passed back to the register to R 2.

Similarly, also performed the same function also performed the function R 3 plus R 4.

So, contents of R 3 and contents of R 4 should be transferred to the adder and the output

of the adder should pass should be passed to R 4. So, this also should be done in time 1

and, then at time step 2 similarly other things other register transfers will be done. So,

this is how the register transfer level specification is designed. So, after register transfer

level design we go to the logic level.

(Refer Slide Time: 15:37)

So, at  the logic level  what happens the application,  or the m the hardware design is

specified in terms of its functional representation. So, what is a functional representation

as I told you from the RTL specification, we build the Boolean logic, or the Boolean

equations and FSMs for the controllers. And then what do we obtained through the logic



synthesis phase, we obtain a structural realization of this Boolean logic and FSMs in the

forms of gates and flip-flops and this is called the gate level netlist.

So, what are the important functions that are done so, we do a state encoding we do state

assignment  for the FSM state  encoding and state  assignment.  And then we form the

Boolean  equations.  And  after  we  have  done  the  Boolean  equations,  we  do  logic

minimization both two level and multi level logic minimization is performed to obtain

optimized Boolean logic and, then this optimised Boolean logic is transferred to its gate

level netlist through the synthesis phase.

 The first these first 4 stages of the design is called the front end. So, architectural level

the RTL level and the logic level. So, from the application level if we come so, them

from the application level the architectural level the RTL level and the logic level, these

are the front end of the design. And then comes the back end which is this, the circuit

level the physical level the fabrication level and the packaging. So, these are the back

end of the design.

(Refer Slide Time: 17:19)

So, after the gate level netlist is obtained we told that we do a technologically technology

technology mapping and, we obtain the corresponding transistor level design which is

called the circuit design. And various types of architecture three types of mainly three

types of architectures are possible for the logic design, meaning the logic design can be

mapped to the circuit level in three types of architectures.



So, it can be mapped in terms of FPGAs. So, the logical representation of FPGAs is a set

of  gates  and their  interconnections  which may be programmed to  obtain the  desired

logic, we can have full custom design where we have fully customized functional blocks.

We can also have semi custom design, where we have a set of standard cell cells and the

interconnections among the standard cells needs to be routed to obtain the functionality

that we want to have. After circuit level comes the physical level design.

(Refer Slide Time: 18:23)

At  the  physical  level  the  circuit  blocks  with  the  real  estate  requirements  and

interconnections are specified. So, once we have the transistor level design we have a

fairly good idea as to what will be the area taken by this design on the FPGA floor ok.

So, then once we have an idea of the amount of space that it will take on the FPGA floor,

we have its real estate requirements estimation.

And we when we have the real for the different types of so, the circuit will have different

say gate blocks and each blocks of gates for different connected functions. And each

such connected function will have its real estate requirements known, once we do the

technology mapping and do the circuit level design. And then and then once the real-

estate requirements are of these blocks are known we also know at in addition to the

blocks the interconnections among these blocks.

So, the blocks and their  interconnections  together  specify the functionality  right.  So,

once the realistic requirements of the blocks themselves, which are for the circuit blocks



themselves and their interconnections are known, we represent them again as graph like

structures called necklace. We are and the output what do we obtain as output from the

physical  level  design,  we obtain a  geometric  layout  of the circuit  elements  and their

interconnections ok. 

So, we will have so, after the gate level design is done at the and after the gate level

design is done, we obtain the circuit level we obtain each block of circuit and for each

block of circuit, we have obtained the real estate requirements. And these so, these will

be the circuit blocks A B C and D let us say, these are the circuit blocks these are the

circuit block. And the interconnections among these circuit blocks are also known. So,

once this is known we can have a layout like this.

So, we will have a layout like this. Now, this layout is the g this is what is the geometric

layout and is the output of the physical level design, such as geometric layout is the

output of the physical level design. Now, once we have a layout like this layout can be

fabricated,  this layout can be fabricated on the silicon wafers. And once we have the

fabricated silicon wafers it must be packaged into chips at the packaging level.

(Refer Slide Time: 21:23)

Now, after we had this overall hardware synthesis steps after, we have a overview of the

overall hardware synthesis steps, we will take a deeper look into architectural synthesis

that is the step that takes the design from the architectural level to the RTL level ok. So,

we said that at the beginning of the architectural synthesis step, we will have a set of



concurrently communicating processes. And these concurrently communicating to each

such concurrently communicating process will be represented in terms of a sequential

program  model  and  the  tool,  or  language  that  it  is  commonly  used  for  hardware,

hardware design in this sequential program model is Verilog VHDL etcetera. So, this so

the programs for each process each communicating process will be specified.

Now, once this program the Verilog VHDL description is known, we have a pro another

program called the design analyser, which transforms this specification into a control.

And control and data flow graph representation, or CDFG representation which we will

look at  what  it  is  the this  control  and CDFG represent  control  and data  flow graph

representation is then transformed into the FSM controller and data path, at the RTL level

through a set of processes called scheduling, allocation and binding ok, which we will

also  look  today.  What  are  they  yes  architectural  synthesis  is  also  called  high  level

synthesis.

(Refer Slide Time: 23:17)

And  the  input  behavioural  model  can  be  abstracted  as  we  said  threaded  concurrent

communicating process modules and, these are the models M 1, M 2, M 3, M 4 are 4

concurrent  process  modules.  And  they  represent  the  set  of  operations  and  their

dependencies, process modules have interfaces to other blocks and the outside world. So,

these may be connected to the outside world these are connected to other blocks.



(Refer Slide Time: 23:47)

Now, what is the output so, the input was a specification like that and, what do we get as

output at the RTL level the output is a block structure, which is represented as we have a

set of registered banks containing data. And the data in the register bank are transformed

to a set of functional units, through an interconnection network of buses and the output

of the functional units are further transferred back to the register banks ok. So, we have a

data path consisting of register bank functional unit bank and interconnection network

and, we have an FSM controlling the all the all the data transfers within the data path this

is the output.

(Refer Slide Time: 24:31)



So, now let us take an example let us say that we have a set of statements, we let us say

our VHDL Verilog statements some high level, high level language set of statements are

here e equals to a plus b g equals to a plus c, f equals to c plus d and h equals to d plus f,

these  have  to  be  implemented  in  terms  of  a  hardware  circuit.  So,  we have  to  do  a

hardware synthesis corresponding to this corresponding to this small example high level

code ok.

Now, first this code is transformed to a schedule like this, this schedule has 2 time steps

T 1  and  T 2,  how this  transformation  is  done  we  will  see  and  it  transfers.  And,  it

transforms it in this way so firstly, if we take the first statement we see that a and b are

passed through an adder and the output generated is e at time step 1 and at time step 2

because e is generated at the end of time step 1. So, the at time step 2 what we have is

that, this e and a are then added this e and this a are then added, in this adder and the

output g is produced at time step 2.

Similarly, c and d statement three here, c and d are passed through the adder and this

output f is produced. And at the next time step f and d so, f and d are added in this adder

and the output h is produced ok. So, this is the schedule of operations that we have and,

what is the kind of arc RTL level representation in terms of the data path that we realize.

So, in we stored in R 1 a and we store b in R 2 and then we pass it to adder 1, and the

output of adder 1 goes to goes back to R 2 and e is produced. And after e is produced e

and a is again added in adder one and the output g is produced which is stored in R 2 ok.

Similarly, for the second adder here for this for the second set of statements 3 and 4 for

statements three and 4 these two statements, what we have is the following we have c in

R 4 and d in R 3. And, these two are added in added to and the result is passed back to R

4, which is f f and d are then added again f and d are then added in a register in adder two

at time step 2. And the result is stored back in h.

Now, we will  look  at  this  example  in  a  bit  more  detail  to  understand what  are  the

sequence of control signals that are generated so, that the required timing can be ascribed

to it, and the register transfers correctly do happen, for the example that we have here.
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So, let us say we have the same set of 4 statements and, we have this schedule T 1 and T

2 this is what we have. And, how is this implemented. Firstly, we have four registers we

have four registers R 1, R 2, R 3, R 4. And initially in R this one is R 1 R 2 R 3 and R 4.

So, initially we have a in R 1 say b in R 2 and b in R 2 and let us say c in R 3 and d in R

4 ok.

Now, we said that and let us say the functional unit we have two functional units 1 of

them is adder 1, this is say adder 1, adder 1, we said that the input to the adders are the

are connected through MUXs this one is MUX 1 and let us say this one is MUX 2, this

one is MUX 2. So, this one is 1 input to the adder this one is the other input to the adder.

And, we also said that the MUXs the registers will be connected to the functional units

via MUXs. So, R 1 will be connected to this one R 2 will be connected R 3 will be

connected and R 4 will also be connected ok.

Similarly, for the MUX 2 also the same thing is going to happen ok. Now, MUX 1 is let

us say controlled by two select inputs S 0 1 and S 1 1. And MUX 2 is also connected

through two inputs S 0 2 2 select inputs and S 1 2 ok. So, these are the two select inputs

corresponding to MUX 2. And say that R 1 this input, this one is input I 1 of MUX 1 and

this one is input I 4 of MUX 4. So, I 1, I 2, I 3, I 4, I 1 is selected when the select inputs

are 0 0. So, R 1 will be selected when the select input is 0 0, R 2 will be selected when

the select input is 0 1 4 MUX 1 likewise.



Similarly, for MUX 2 so what we want to say is here is that MUX 1 will allow the

contents of R 1 to pass to adder 1, if the select inputs are 0 0 corresponding to MUX 1.

Similarly we also have a D MUX, we have a D MUX at the output and, that will also be

controlled through select inputs say S 0 3 and S 1 3 and, it will have 4 outputs going to

say R 1 R 2 R 3 and R 4 ok.

Now to implement this operation this operation e equals to a plus b let us say that what

we want is what we want is that the output e should be should be stored in register R 2,

why because the input this data in b this data b is no longer required after time step 1;

however, the data input a is required again at time step 2. So, there is no problem, if b is

overwritten by e at the end of time step 1. 

So, now our controller the specification of our controller would be actually a counter,

which has two states which has two steps and this one is time step 1 and this 1 is time

step 2. So, our FSM is accounted with two steps and the outputs will be if when it is at

time step 1, it will produce the outputs what will be the outputs the outputs will be for

time step 1 the outputs will be S 0 1 equals to 0 S z z S 1 sorry S 1 1 equals to 0 and for

MUX 2. So, why is as 0 one equals to 0 and S 1 1 equals to because at time step 1, we

want the input in R 1 to come here we want a to come here at time step 1.

So, therefore, this will be selected for R 2 sorry for the other input of adder 1, we want

the value of R 2 which is b to come into the other input of adder 1 and, that will be done

how that will be done by having S S 0 2 equals to 0 and S S S 1 2 equals to 1, why

because this corresponds to the second input I 2 of MUX 2 and I 2 of MUX 2 will be

selected when the select inputs are 0 1.

So, at time step 1 R 2 the contents of R 2 can go to adder 1 if select inputs are 0 1. And

after that we have said that let us say this one is the output 2 of the D MUX O 2 of D

MUX and we want the output 2 of D MUX, because it goes to register two we want the

output 2 2 of D MUX 2 go to meaning that this to be selected, we want the second output

of the D MUX to be selected. And therefore, at T 1 the select inputs S 0 3 equals to 0 and

S 1 3 equals to 1 should be selected, because when the D MUX select inputs are 0 1, the

second output of the D MUX will be selected and the output will be correctly passed to

register R 2.



Similarly, same thing will happen for the other adder. So, we have I have not drawn the

full there will be another adder adder 2 and, for that it will have again the MUX inputs

MUX 3 and MUX 4. And it will similarly have inputs from the 4 registers and, it will

appropriately allow correct inputs to pass. And it will have another D MUX and each of

them will have select inputs each of them will have select inputs and, also the functional

units can have activation inputs and registers can have load inputs as well.

So, these inputs can also be controlled by the FSM so, the FSM essentially will select all

the correct control signals which are the select lines load inputs active activation inputs,

or functional units etcetera and it will correctly activate correct data transfer from correct

registers through the correct functional units, through the through the correct D MUX

outputs back to the registers. So, this will be controlled by the FSM controller. So, these

will be the this will be the set of control signals that will be output at state one of the

controller this is how the design will be realized and controlled.

Now, when we have seen the when we have seen the architectural synthesis overview, we

will see the steps in a bit more detail. So, at the end of the as we said at the beginning of

the architectural synthesis step, what we have are concurrent communicating processes

and each process is a high level language program let us say. And then this high level

language program is transformed by the design analyzer into CDFG, or control and data

flow graph.

(Refer Slide Time: 37:54)



So, first we look at what a control flow graph is so, first step in high level synthesis is the

decomposition into basic blocks and generation of the master controller. Now, what are

these so, each module is parsed and it is flowchart is extracted. So, the program that we

have of each common concurrent communicating process so, each process is a program

and for  that  process  we obtain  the  flowchart  and from that  flowchart  we obtain  the

control flow graph.

So, what is this control flow graph? Each node of the control flow graph is a basic block.

So, what is a basic block? A basic block is a piece of sequential or straight line code with

a single entry point and single exit point. So, we look a bit more deeply into what a basic

block is in the next slide and, then once we have disintegrated the entire functionality in

terms of its  basic blocks and interconnections  between these basic blocks realizing a

control flow graph, we have a master controller we can generate a master controller for

this program.

So, what will be the master controller of this program the master controller can is design

from the C CFG and the states of the master controller are basic blocks themselves and

the transitions are same again as the CFG.

(Refer Slide Time: 39:22)

So, now we see how a particular high level code of a Verilog out of VHDL code need, we

take an example of C here a C code can be can be disintegrated. So, we will take the high

level code and transform it into HCFG. So, for CFG as we said first we have to find out



the basic blocks. So, this program over here has 4 basic blocks B 1 B 2 B 3 and B 4 and

B 4, and how are these basic blocks obtained see that the first 4 lines of this high level

code form the first basic block why, because this is a piece of straight line code which

are single entry point and single exit points.

Once the program control enters into the first statement w equals to 0, there is no other

way that  it  can exit  other than the last  after  the last  statement.  So,  once w 0 is  a is

executed once w is control enters into w 0, we know that up to the f statement it is

always going to be ex executed. So, if w 0 is executed then x equals to x plus y must be

executed y equals to 0 must be executed and, if x greater than z this condition check

must be executed.

Now, after  that  the  control  breaks  so,  we do not  have  a  straight  line  piece  of  code

anymore and, we have two exit points correspond from out of this basic block why, when

the if condition is true and the other when the if condition is false. Now, we have said

when the, if condition is true these two statements are executed, which is again a straight

line piece of code and this forms basic block 2. And the other basic block is y equals to 0

z plus this is again a straight line piece of code becomes basic block 3 and finally, after

the join we have another statement which is which forms the last basic block, because

this one contains only one statement with a S this is the only straight line piece of code

that we have for this basic block. 

Now, what is the structure of this control flow graphs we enter the control flow graph,

we first go into basic block 1 after executing basic block 1, we either go into basic block

2 or then our basic block 3. And then we have basic block 4 after the execution of basic

block for we exit.  So,  this  is the control  flow graph representation of the high level

program that we have here. So, in the first step in architectural synthesis, the in the input

process input program is transformed.  So, each concurrent  communicating process is

transformed to its  corresponding control  flow graph. After  the control  and data  flow

graph is obtained we schedule operations within each basic block. So, from the control

flow graph we now go within each basic block.
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And we say that all operations in a basic block may in principle be performed in a single

clock cycle, what do we mean by this statement. Let us consider the example that we had

just seen a while back. So, we had this a b e f so, we had this a b e f. And we said that we

had done it previously in two clock cycles T 1 and T 2. So, could we have and so, that

required two time cycle two time cycles, but we are saying that all operations in a basic

block may in principle be performed in a single clock cycle.

Could we have done this in the same clock cycle, with the resource constraints that we

had over there, we could not have done it why, because we were having only 1 adder and

we had only 2 registers; however, suppose if we had 4 registers R 1 R 2 R 3 R 4 and we

could say something like this. And if we have 2 adders adder, 1 and adder 2, then we

could do we could say something like this we could say that transfer a this one and, then

you this output let it go into e this output may in parallel may go into e, and the output e

comes here and then the output goes here.

Now, if we have we do not have register we do not have let us say resource constraints

like this we have 4 register possibly, we could have done it with 3 registers as well, but

we needed at least 2 adders and we have 2 adders. Then what is the advantage do we

have so, a and b a a and b passes their outputs no matter, when we start the time step 1

and everything is done in time step 1, how at the beginning of time step 1 a and b is

transformed quickly into A 1 and the output is produced and e is e the e goes into register



1 and, then the output of this output from this register goes into A 2 and finally, the

output of A 2 goes into this register ok.

Now, what are what is the constraint here constraint are the delays of these registers and

functional  units  and the MUXs and D MUXs that we have,  now if  the delays if the

summation of these if we have a clock cycle which is greater than the summation of the

delays of these registers MUXs functional units etcetera. Then we basically after the start

of the time cycle, we are we are waiting for a sufficiently long time and we will see that

the output has correctly  come into let  us say if  this  is register output  the output has

correctly come into register R 4. If we have waited for a sufficiently long time such for a

long time that a time duration, which is more than the cumulative delays of the registers

and the functional units and MUXs and D MUXs which come in the data path processing

ok.

So, we are limited by the delays of the of the of the resources, but we do not have any

constraints on time, because we do not have any resource constraints. However, if we

have this sort of a design in which we are reusing this adder, we cannot do it in a single

time step why, because we do not know we do not know we need to have a crisp time at

which we will have this e value output and this output will be stored in a register by the

end of time step 1. So, that this output we will have a stable output at the beginning of

time step 2 and we will produce this f ok.

So, otherwise the we could have a corrupted result, because the output e will be produced

and this output will go back to the same functional unit and it may interfere with a and b

which  were  which  were  the  previous  contents,  we will  have  we could  have  several

problems in there. However, we if we have a sufficient amount of resources, we have no

problem in implementing this whole thing in the same clock step ok.

So, therefore, if we can do all operations ideally in a basic block within the same clock

step,  but  the  problems  are  unacceptable  hardware  cost  and  delays.  So,  unacceptable

hardware cost means we saw that, we need a lot of hardware to implement it in the same

clock step and delays, we saw that we need more delays we have to wait for thus for a

sufficiently long time for all the delays of the resources to be to be to be taken care ok.

So, the problems are unacceptable hardware cost and delays.



So, what is the solution to this, the solution to this is to execute you execute a basic block

in several clock cycles. So, the operations of the basic block has to be executed in several

clock cycles this is the solution and therefore,  we need to schedule operations in the

various clock cycles within the basic block. The other side of this problem is that let us

say a clock, we have a clock and this clock will not be exciting only a single basic block,

it will possibly be provided the same clock will be provided to multiple basic blocks.

So, we will have a fixed clock size clock step size for all basic blocks ok, if we have that

then if a particular basic block has nothing much to do it may have to wait ok, or let us

say if we have allocated only one operation per clock cycle. Then it may have to wait,

because these operations are very small, it takes a very small time and, it has to wait after

needless to wait before the next operation can be started.

So, to as a solution to this people suggested chaining, in which multiple operations may

be executed in a clock step if overall propagation delay is less than cycle time. So, what

does chaining allows as we saw that multiple operations can easily be incorporated, but

the problems are we need sufficient  hardware and sufficient  delay ok.  So, therefore,

when can multiple operations be executed in a single time step through chaining, when

we have the propagation delay of all the resources in that in those set of operations to be

less than the cycle time, if we satisfy this and we have enough resources then we can do

chaining.

So, now we come back to what are the steps in scheduling. So, what is scheduling is the

assignment of start times to each operation in a basic block. And then after assignment of

the start time to each basic block, we generate the controller to direct the operations at

each time step within the basic block that is all so, we have seen.



(Refer Slide Time: 50:46)

Now, we will look at the scheduling steps in a bit more detail. So, we had the control

flow graph in the control flow graph, we had basic blocks with the basic block was a set

of statements one or more statements in the, of the program and, those statements are

converted into a data flow graph like this. In the car in the data flow graph nodes denote

operations  and edges denote data  dependencies,  they are as this  graph is  acyclic  and

provides a partial order among operations.

For example, if we have a basic block such as X plus Y into Z less than W plus T. So,

what  we have  this  one  performs X plus  this  one  performs X plus  Y star  Z see  the

dependencies have been adequately taken care, this one performs W plus T and, then this

one performs the comparison operation and the output is produced here. So, this is the

data flow graph representation of this basic block, with its dependencies taken care and

the nodes representing the operations.



(Refer Slide Time: 52:00)

After the data flow graph is obtained the data flow graph is converted to its operation

constraints graph, the operation constraint graph is very similar to the data flow graph,

and it shows precedence constraints among operations and with additional source and

sink  node  produced.  So,  the  inputs  and  the  outputs  are  removed  it  only  shows  the

precedence constraints precedence constraints among the operations the inputs and the

outputs are removed and, we add a source node and a sink node.

(Refer Slide Time: 52:37)



After the operation constraints graph is obtained, we generate schedule we schedule the

operation constraints graph essentially ok. So, a given area and execution delays of each

resource type, we generate the schedule multiple of options are there for assigning time

step to operations. For example here is the same data flow graph same data flow graph,

but  two  schedules.  So,  this  schedule  takes  this  schedule  takes  three  time  steps  this

schedule takes say 4 time steps ok, but we see that here we require 2 adder units in

parallel. 

So, I need to adder units to do it. However, here I need only 1 adder unit because, no

adder unit more than 1 adder unit has not been used at the same time step. These two this

adder unit can be reused with sale this adder unit or this adder unit; however, these 2

adder  units  I  must have two physical  added units  for  this  addition  and this  addition

operation ok. This ante for when this addition is performed I can reuse one of the adders,

we used in time step 1, because it is in a different time step. 

However, in the in schedule two we have all the addition operations in this think time

step  so,  only  one  adder  suffices.  Therefore,  different  schedules  will  have  different

amounts  of  times.  So,  schedule  one  will  have  lower  delay  than  scheduled  2  so,

performance will be better; however, schedule 1 will require more resource and, hence

will consume more area will have more cost etc than schedule 2.
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Now, after scheduling comes resource allocation and binding, what is resource allocation

there may be more than one resource type that can execute an operation. Now, we have

said that after we have scheduled which operation to do in ad with time step, now this

operation has to be implemented on an actual  hardware resource. Now, we can have

multiple operations for which for a resource for example, for the addition operation we

can use the carry look ahead adder, or a ripple carry adder we can have a ripple carry

adder or carry look ahead adder. But ripple carry adder has higher say delay than carry

look ahead adder right, but the hardware again the hardware cause resource cores are

also different. So, therefore, we have to select appropriate resource type.

Once the resource types are selected we need to do binding; that means, the resources

operations have to be bound to the functional resources. So, the actual are the functions

the operations have now to be actually bound to specific hardware resources. So, we

have done an allocation; that means, which resource type to use let us say we have two

ripple carry adders, now rr rr ripple carry adder say A 1 and A 2 are two ripple carry

adders.  And we have operations now say hmm AD 1 AD 2 and AD 3. So, we have

operations AD 1 AD 2 and AD AD 3. So, these are the three addition operations and we

have 2 adders ripple carry adder A 1 and A 2. So, binding would be something like this

we want AD 1 and AD 2 to be to be implemented on only A 1 and let us say AD 3 will be

implemented using A 3 so, it maps operations to the hardware resources ok. 

These that we will use to ripple carry adder say A 1 AD 2 was selected in the allocation

phase and,  this  mapping of  operations  to  the  actual  hardware  units  was done in  the

binding phase. So, map operations through functional resources allocation and binding

can be looked at a global optimization problem considering multiple basic blocks why,

because  then  the optimization;  or  the  minimization  that  we can  obtain  can be much

better, if we have multiple resources. Because, the same hardware resource can be used

by some operations in some other basic block as well. 

So, therefore, this is actually a global optimization problem. Finally, after all these steps

are done the FSM controller for a basic block is inserted into the master FSM controller,

replacing the state of the basic block. So, we had the master FSM controller in the master

FSM controller the states, were basic blocks and the connections, were at the edges of

the control flow graph again.



Now, this in the master FSM controller this basic block noad will be replaced by the

FSM controller that we have generated for this basic block. So, for this particular basic

block  to  excite  different  control  signals  at  different  time  steps  and  to  appropriately

conduct  the data  transfer  operations,  in  this  basic  block we have generated  an  FSM

controller. This FSM controller is essentially the controller for this basic block and, then

it will be replaced corresponding to the overall node of the master controller  ok. So,

these are the steps that we have in high level synthesis. 

With this we come to the end of this lecture. 


