
Embeded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 37
Interaction Testing between Hardware and Software

 So, hello everybody; today, we are I have come to the last lecture on the course of

Embedded System - Design Verification and Test. And we are in the last part of the

design as well as today we are in the last lecture of this course.

(Refer Slide Time: 00:37)

So, we throughout a long journey, we have covered all the basics about design, then we

have studied about verification and finally, we have learnt of lots about testing of

Embedded System. Today, basically in the last lecture, we are going to cover a very

futuristic topic and in fact, in this part in or in this paradigm and a very little very little

work has been done and in fact, there are lot of research challenges and open problems

that exist in this part which we called as the interaction testing between hardware and

software.

So, from the term itself it seems that there is a hardware paradigm to the software

paradigm; how you can integrate and test. So, in this lecture rather going into any

particular solution, we will try to look at the problem; what are the issues and how

tentatively people are trying to solve and even if people are trying to solve the problem,

what is so challenging about it. So, what is testing and what is the importance in a

embedded system? Basically why is what the, what is the integration testing rather

basically?

So, the traditional system on software basically is Coding, Compile, Assembling, Link

and Execute. That is normally you have a PC or your computing environment, you write

a code and basically you see whether the code is proper or not; you do a lot of software

verification and test on that which already we have been covered by Professor Dekha in

when we are discussing on the verification. But what is the special challenge in

embedded system?

(Refer Slide Time: 01:55)

So, the problem mainly is the hardware platform is not available in the embedded system

directly right. If it is a normal computing system, I have a laptop like this. I can write my

code and I know that the laptop hardware or the computing a hardware is not having any

faults. So, if there is any problem etcetera, it is mainly with my software. So, basically I

can do lot of verification of the software like Black Box Testing, White Box Testing and

Fault coverage analysis and so, many stuff which already we have discussed at length in

the module in the second part of the course.

But in a Embedded System, the special challenge is the laptop given to is to me is not yet

ready or they say that a similar version of hardware will be available to you which will

be very much application specific, you know the embedded system is totally application

specific.

And in fact, the hardware may not be available to you in the beginning. So, it is a kind of

a stuff that 2 people have started the journey and or it is making a tunnel through 2 parts

of the hill. So, one tunnel will come from this side, another tunnel will come from this

side and they should meet that is what is the integration testing and in fact, it is a very

very difficult problem that if the slight mistake in any of the tunnel drilling problem, the

two tunnels will pass and they will never meet in the end.

And historically many many such incidences have happened in the engineering of tunnel

drilling. So, simply it is very synonymous problem here also. A group of people will

make the hardware; a group of people will write the software. Knowing that such a

hardware will be available to me in future. So, you can understand how difficult the

problem is and the hardware people will make a hardware, understanding that there will

be some code which will be available to me in some point down the line which we has to

work on my hardware.

Now, we can ask me the question, then let me first make the hardware and then, I can ask

the software people to develop the software. If you do this, there will be longer time to

market of the product and you will lose the market business. So, you cannot do that. So,

both the teams will start drilling and finally, they have to meet it. So, that is actually the

special problem of embedded system, compared to any traditional system where the

hardware is built a priori.

(Refer Slide Time: 03:42)

So, this is what is the idea. So, basically what is having we have a system definition, then

we go for a hardware software codesign that is partition.

There is a function design and then we partition what has to go in a hardware and what

we have to go in software. So, there will be a hardware design, there will be a software

design. Hardware is fabricated. There is a software code which is developed and

interestingly, the hardware fabrication people have to think in mind that such a code will

execute on my on my hardware. I have to design like that the software people have to

think in mind that such a hardware is available and the code should run.

So, you can understand the difficulty basically. So, both of them have some picture in

mind and they try to develop. Finally, hardware is tested on its own as in the last third

model which I have taught you. Software is tested is testing and verified on its own

methodology. Finally, they integrate and test. So, practically speaking this last phase

although it is very very important, but practically before time to market we have a very

very little time to put on that. And in fact, it is a very difficult problem. So, people have

found that the most of the bugs which still remains in the hardware and software

paradigm are because of this lack of integration testing and available paradigm.

Now, you can ask me what I can able to do it? So, basically can I have something called

a preliminary software; can I have a preliminary hardware, where I can do some kind of

a integrate test from the beginning? The answer is very very difficult. Preliminary

software still can be developed; you can say that I will write some basic blocks and

maybe I will write some software which will work for only a very few of the inputs, but

how can you have a temporary hardware.

So, if you have a temporary hardware, at least with the advent of FPGs and CPLD

advices which you have discussed in the last lecture; slight research has been going on to

this direction, that if there is a prototype device where I can download my hardware and

then I can still give you a hardware platform to download the software and go for partial

amount of integration testing.

But still is a very nascent stage because as I told you in a general purpose or in general

sense the hardware are quite involved and you require may require lot of FPGs to

download a real hardware which was to be fabricated in a acid because nowadays it is

true that we have very large size FPGs, but for many practical applications multiple

FPGs has to be used to design which is equivalent to a single asic.

Because as we have seen that FPGs are basically some kind of general purpose

hardware; so, the difference between the advantage of a FPGs is that you can very

quickly have a prototype. But the area will be higher and at speed testing cannot be done

because FPGs are generally slightly slower than your contemporary asic designs.

But still some work has been done or people are trying to enumerate or I mean they make

a prototype hardware and download the software and try iterating it debug the bugs

easier so that when you read to the FAB and software code, many of the design

handshakes has been done. But again not it is a very very challenging problem.

(Refer Slide Time: 06:18)

So, basically why all these problems happen because it is first class only I was telling

you, when a technology matures fault tend to decrease, a new technology evolves.

Therefore, always the testing issue or verification issue comes into picture. Because if I

was fixed hardware which is a very well tested like in a normal computing platform like

a server, like the laptop which is already well tested.

So, if I write a software on this, then I can concentrate on debugging my software, but in

embedded system the it is always going toward cut during the cottage technology. So,

always we target that a new processor or new embedded processor will be coming into

picture and newer embedded hardware will come into picture. So, my code should run on

that. So, in fact, that high end hardware is not available to me as of yet and for the

hardware designers, neither the fabrication technology known a priori neither the

software which will run on in unknown a priori.

So, basically everything is very futuristic; everybody has something in mind that that the

target they should meet and they all are rushing towards something like to meet some

goal for which the technology is not yet matured. So, if you have such a you a futuristic

goal and you are trying to match it, the problem is that you will have tend to have lot of

bugs and you have lot of faults which may be in place. But what is the solution? You

have to debug, you have to go for a integrated testing and you have to make maybe you

can go for some kind of prototype develop and preliminary level of test.

But you cannot see that I will have a predetermined hardware and I will write a code for

that. If you do that, you will lack the market speed because the all your competitors are

making a futuristic hardware assumption, writing the software. The hardware people are

having a very futuristic software application in mind, writing the hardware for that and

finally, they are going to meet. So, you cannot lag behind anybody.

So, therefore, we should have a futuristic fault model into picture. We should have a

prototyping device and we should start aiming that something will be available down the

line and all our design should be targeted towards that. So, this is the unlike any

traditional system with the basic technology is mature and well tested resulting in very

less number of faults or bugs. So, in many of the cases the hardware platforms are mostly

well established.

And there is a traditional software development. The hardware platform is well known;

only the bugs are discovered in the software. But in hardware nothing is available

everything is in the air. So, their target hardware target software both are developing;

finally, they should meet and they therefore, there are lot of bugs which can be found out

when you are going for an integrated test, but still this is the need of the hour.

So, you should have very good technologies to go for this integrated test, we should start

from the beginning of the die; not basically you should not target here. We should rather

target something like where we can do our prototype design verification much before the

final phase like something like this.

(Refer Slide Time: 08:46)

So, basically it is some kind of a hardware is the current model of hardware software co

design. So, you have concepts Software Analysis, Hardware Requirement Analysis. So,

basically is your hardware development. So, you see you partition into hardware, then

you have Requirement Analysis, Preliminary Design, Detailed Design, Fabrication and

finally, the Hardware Test. Software means what part you are going to put in software?

Software Design Analysis, Preliminary Design, Detailed Design, Unit Coding Integrated

Testing, Black box testing, White box testing; finally, we have the code and finally, we

will integrate and we are going to do it.

 So, you see that these final level of test is only towards the end which makes our life

very very problematic.

(Refer Slide Time: 09:21)

So, what is the problem? System immediately partition into hardware and software. After

sometime down the line you might have find it ok, this part I should have moved in

software or this part of the software I could have moved in hardware, then I would have

been a better design; very difficult to do go in this straight flow of design. There is no

iteration back.

If you see as we would not have any iteration back, then from some part I can again

change the hardware software partitioning. That people do not do because the partition,

then the two teams start doing their job interchanging hands is a very very difficult

problem there. So, that is one of the main issues. Then, hardware and software are

developed separately hardware first approach is often adopted that is what I am saying,

but still it is not very good. And if you first fabricate the hardware targeting that that

software will come and execute with me and then, you employ the software and see

everything is there.

But it will make this, this is actually a practicality even if many of the industries may tell

you that we are having co development phase and all, but still it is practical, but still it

hits the market because if you have make a hardware and the software team starts the job

later. Then you can find out that we will lose time to market. So, it is always people try to

do it parallel.

But still for the more most of many of the practical applications, hardware are developed

first and tested; software is downloaded and seen whether with the assumption that the

hardware paradigm is correct which is the most of the normal computing platforms, they

follow these approach, hardware first. But for embedded system industry practically

many of the industries follow hardware first approach, but this will lead to a situation

when will be quite bear in others market. Like this story I always tell you about Nokia

and some other phones like Samsung.

So, I mean this is just some example should not go about the exact vendor and for just an

example I am telling you. This is does is nothing to do with favoring Nokia or Samsung

in general. But the idea is that Nokia wants to give a very nice robust mobile phones;

Samsung on the other hand started giving lot of features, but initially there they have

much more bugs or robustness compared to a Nokia.

But, who won the market? Samsung, the smart phones. Why? Because they were have

futuristic development ideas that this is my hardware available, this is the GUI

development. So, all started in parallel and finally, they met. But if you do such an

approach, then it is true that there will be some bugs and fold might have some problems,

but Nokia was following the hardware, full verification kind of a method. So, that all

their phones are very very robust and they were very less bugs, but still who won the

market? Who could be more features with little amount of bugs because with the

handheld device generally for home usage or a non critical usage. So, we find bugs I can

tolerate the design, but I need lot of features.

So, that is just the idea of embedded systems. For if this is the slightly different for

mission critical applications, where we have to be super sure that everything is operating

fine, but 99 percent of the embedded systems are basically for homemade or home

devices or for personnel and non-critical uses. So, the market is very very high there.

Your microwave wave microwave and washing machine, mobile phones everything

basically is an embedded system nowadays.

 So, therefore, people try to go for a parallel approach and try to see basically how much

features they can give. In that case the integrated testing and integrated development

environment becomes very very important. Another problem is Hardware Software

trade-offs are restricted. As I told you, this is hardware, this is software. If I down the

line I find this put should be put in a hardware; this should be put in software, such

chances are not available to us. So, that is the problem.

The trade-offs are decided in the beginning and in middle you cannot have a handshake

which problems are Poor quality design, Costly modifications, Schedule slippages; that

means, Schedule slippage means I cannot meet the target. I was saying that this hardware

would be available; then my software would run.

Hardware people have taken more amount of time. So, such type of stuff happens. So,

we require co-development and co-integration and co-testing phases of hardware and

software in embedded systems.

(Refer Slide Time: 12:52)

But again, as I told you it is a very very difficult problem. So, there are some incorrect

assumptions in the current design process. Hardware and software can be acquired

separately and independently with success and easy integration in the two later that is

what people have a thought that I will make a hardware with the assumption, this is

exactly the hardware with what when I am making the hardware, I should have a

knowledge that exactly the software would work and finally, they should integrate (Refer

Time: 13:10).

But that never happened basically. Hardware problems can be fixed with simple software

modifications. Therefore, these are some practical things which people have faced. So,

people thought that if the hardware has some bugs, then I can write the software with

tried modification those are these bugs become maskable right. They are not faults; they

are bugs basically. So, and people also thought that because software can be modified;

hardware cannot be. So, the hardware people are thinking that such a software will be

available and I am going to do it. But in the end software hardware had some bugs not

faults design errors.

But, because the software is not available with them; so, they cannot directly verify the

hardware exactly that how it would perform when the software is executed. So, that is a

problem. So, people generally thought that we have a hardware and we write the

software, if there are bugs in the software, we will try to hide them. And in fact, many

processors or many embedded hardware’s have software bugs. The software was tightly

tweaked or a operating systems were slightly tweaked. So, that the faults become marks

that you do not feel the effect.

. So, even no industry will tell you these stories because that will put a very bad mark on

them, but that is the truth. So, once operational software rarely needs modification or

maintenance that is also a not true basically; means I mean that is not true basically too

much relevant for a embedded system, what people thought is that the hardware is there

you dump the software. Then, your job is done and in fact, it is not we require quite

updation of the software’s because on the same hardware paradigm you can also improve

the versions of the software.

So, your hardware should not only target that this is the software that would be

downloaded you should be certainly futuristic like I have a module mobile phone and I

download a version 1 of the embedded wise. After sometimes, I will I will download

some applications. Then, I will also update my always of the hardware frequently. Your

hardware should be able to support that.

So, previously embedded people thought that this is the hardware developed for this

target, software after that there will be no renovation on the hardware is simple because

hardware cannot be renovated software will also not be enhanced, but that was not true.

So, you if your phone or your handheld device do not allow, enhancement of the

software is a very bad marketing or design policy. So, your hardware should also be

futuristic; not only it will be able to download this operating system and operate within,

but you should also see that it should be able to work on version 1, 2 and 3 and so forth.

So, be there is beings lot of hardware design challenges and right. So, this is basically

some of the assumptions which were not true in the embedded domain.

So, basically hardware software cannot be designed so easily, separately. Integration is a

very big challenge. Hardware problems can be solved solve the software from that is

true. But with very modern paradigm, it is very difficult that all hardware problems can

be marked with software. Secondly, like some part of the hardware has a problem. So,

maybe we will not try to means access those parts, I mean there may become from the

redundant parts will only access them something like that ok.

(Refer Slide Time: 15:51)

So, again basically software rarely needs modification in a embedded systems not true

basically because a hardware is fixed, software is fixed. In embedded system, generally it

was understood, but in fact, hardware it cannot be changed, but lot of upgraded versions

has to be downloaded and executed.

So, you can understand the problem, this is extremely challenging problem to design a

pure new embedded system with lot of guarantee of success, lot of tradeoffs to be given

because 2 people are starting there if in between something, we find that this has to be

changed to hardware from software, this can be mapped from software to hardware.

But I am not able to provide that because we are calling you in a directional way. In

direction, you may find lot of bugs. In that case people cannot modify the hardware; they

will try to tweak the hardware environment. So, you can understand if I can somehow

make a co development environment, then all my problems will be solved. So, that is

what is shown in this slide. So, Integrated Modeling Substrate; so, we require us part

which can model your hardware as well as your software. Software modeling is very

simple is then it just programming language that is the model of the software.

And if you want to go for a preliminary design, you can go for block level design; then

you can slightly make it more you can enrich these blocks with code and so forth and

simulating a software is very simple. Main problem is with this software part. The

software part is very very difficult sorry hardware the software part is very simple

actually hardware part is where the problem is because I can have a hardware in

simulation which I call a verilog simulation or all the models which Arnab sir has told

you.

But they are all at the hardware level; their one level is hardware simulators, one level is

software simulators. Software simulators are as the C language, Java whatever

programming language you are using, compilers you are using, you can tell them that is

the software simulator. There is nothing that executes your software.

But when I am talking about hardware, the hardware is not available; only I have the

software representation of the hardware and the software compilers like HDL verilog

compiler, VHDL compilers; they will take the verilog or VHDL code which is

representing the hardware and then, they will try to tell you that this is how the software

will be having.

But we rarely have some kind of a simulators in which case you can put the software in

the hardware which is also in the software version, like this is a hardware pure hardware

and we do not have that verilog VHDL. All are software representation or software

models of the hardware and we have some say C code or Java code which are which I

am going to execute on this hardware.

So, these hardware simulators, this is the pure hardware we have some hardware models

which are running in its software like verilog VHDL. So, if I say that VHDL. So, this

VHDL basically models this hardware which is written in a soft language, but VHDL

cannot simulate this hardware with this C language that those things are now not

available or not even if it is there they have take a long time to simulate. The idea is that

I have written a verilog code for an adder. So, it is there verilog, the verilog will the code

will simulate and tell you the how the hardware will behave.

But if it is a C program which will access this adder, the verilog simulator cannot

simulate that because verilog simulator will simulate the hardware which is written in

verilog called VHDL , but if a C program runs on top of that; how that C program will be

executed on that hardware there are very difficult very very, such simulators are very

very difficult to develop even if its develop it is very very slow which actually takes the

hardware represent in verilog or HDL there is a hardware is represent in a hardware

definition language.

On top of it there is a C language program or some language program which is running

on that and totally on entirety, it is simulated on your some kind of a platform. So, the if

that is available, then our problem is solved. So, you some simulators are available, it is

not that simulators are not available. But it will take a long time to simulate a large or a

practical design because it has to simulate the software. It has to simulate the hardware

and how they are integrate that has to be simulated and everything is done in the

software paradigm.

So, it is something like one of 1 hardware, on top 1 processor is there on top of that you

are putting a another sandbox, on top of that is you are putting another sandbox and you

are running multiple operating system on top of one another. So, one OS is simulating

another OS, another OS is simulating another. So, OS and it makes things very very

slow. I am just giving an analogy, but here the hierarchy is C language on top of it is the

hardware. Hardware that is not exactly hardware, this is a hardware written in verilog on

HDL and an entirety there should be a simulator which can take the hardware in VHDL

and C language which is running on that VHDL version of the hardware and total how it

behaves very very difficult to get something like that.

(Refer Slide Time: 20:15)

So, Requirement for Ideal Co-design Environment; Unified unbiased hardware software

representation. So, you can represent in a single environment, both the hardware as well

as the program. Supports uniform design and analysis techniques for hardware and

software. Permit system evolution in an integrated design environment; allows easy

migration of tasks either into hardware and software.

So, if I can give you an environment where I can write the hardware in verilog on VHDL

I can write the c program or which has to be running on that hardware same

environment. I can code and its simulator what it will do it will take the C language or

whatever language, you have written in the soft code, we will take each instruction of

that mapping on to the hardware which is still in a soft language like verilog and VHDL

and finally, it will tell you how the hardware will behave when such instructions are

taken into picture. So, that is actually called unified or co simulation environment that is

much challenged to design. In fact, it is much challenging to design a very fast working

simulator on that.

So, if it is there, then you can allow different tests like this part in hardware, this part in

software; how it will behave? So, basically you can find out if there are bugs that when it

points the bugs. I think it is very obvious that if I have a entire simulation, environment

from the beginning a single team or people are working in very close hand in hand to

find out whether means how the system is behaving.

If this part is a hardware, this part is software; if it is a bug; whether the bug is in part a,

or part b or if it is a hardware or in the software? So, maybe in fact, is the entire software

given to you a part is for the hardware, a part is for the software, together you are

simulating it and it becomes a co development environment, co design environment and

life becomes very easy.

But the problem is making such a simulator is difficult; as well as it will become terribly

slow to simulate practical designs right. So, that is what is required. Integrated Modeling

Substract.

(Refer Slide Time: 21:57)

Supports evolution at several stage of the divine design; supports step-wise development

and integration of hardware and software. As I was telling you validation ensures that the

system implemented means the initial system and final system requirements. So,

basically it ensures that the entire system going to be final design will meet the initial

system requirement.

So, initial system requirement as you see is not partition into hardware and software, in

the initial requirement, now you have a any now if you look at it what you say this is

very interesting. So, if you look this is the system requirement right. This part is in

hardware and this part in software. So, if you take the traditional way, the whole system

concept can again be tested only in the end. When the practical hardware is there you can

test it, but here the idea will be basically you have a integrated modeling software. So, at

each point of time basically you can validate the entire system specification which was

not possible in the traditional design flow.

(Refer Slide Time: 22:47)

So, that is actually called cross fertilization between hardware and software. So, basically

you know what I was telling you is basically is written in this in this slide that mainly we

should have a co design environment that is very important, that is cross fertilization. We

should have a hardware representation as simulation. We should have a software

representation as the simulator.

Both should be able to integrate at the simulation environment and then, you should be

able to see the results. This will allow to you to develop test scores much before. This

will allow you to find bugs whether in the hardware and software in the beforehand, they

can allow you easy tradeoff between the two. So, that you get a very very nice and when

a system design environment. There are lot of designs available right.

(Refer Slide Time: 23:24)

Environments available to do it, but they are all at the very what I can say the theoretical

level or even if it is the cross hybrid environments are there at the simulation level also,

they are very less in numbers and the main drawback is this p and then that is why I am

just going to show you a very very simple example. Why it is challenging to build such a

simulator. Like for example, let me zoom this code for you. A simple code, what it says

input N, output S; s equal to 0 for i equal to 1 to N; s equal to s plus i.

What it does? It iterates and add s equal to 1 2 3 4 5 6 7 8 up to N that is it. So, it is a

simple software, but if I write in the hardware for this, if it is the c representation, you

can understand it is a a class 12 exercise or just we take first year exercise. But if I write

it in terms of verilog, what is the representation? Extremely-extremely difficult. So, this

is basically the hardware implementation for the, or the register transfer implementation

for this. So, what will have? You will have a adder fine you should have a counter.

So, initially the counter will be loaded with N; then there should be a comparator

because every time is a down count. So, every time it will become the N minus 1 up to 0.

So, whenever there is a comparator will be comparing with 0. So, whenever it is 0, it will

freeze the value and this is going to freeze this one and initially this sum will be reset to

0. So, there should be a reset line which will reset it to 0 right then basically this counter

will have the value N. So, in the time first time, the initially it is loaded with N, then

basically this is reset to 0 and basically the, this compound has a value 0.

So, I represent 0 and N are uncomparable. So, now, this is a freeze line. So, this is not

freezed basically. So, what happens? So, you will have 0 plus N is equal to now it will be

N. So, it will keep on; then it will be coming down counter N minus 1. So, sum will be

equal to N minus N, N minus 1, N minus 2 and so forth. So, this is a simple RTL design,

I am not going into the VLSI design as present, but I am just trying to give you an idea

that why it is very difficult to make a co simulation environment.

And it decrements finally, becomes 0. So, when it becomes 0, it will make this tri state as

a high. So the, whatever value is in this sum register will be coming out over here; that

means, now 0, 1 from N to 0, it has come the counter has come started from N coming to

0. So, at that time the tri state is enabled. So, whatever value is basically retaining over

here is coming out and it is also freezing this sum register. It will no more increment or

decrement or do any addition.

So, there is a simple typical circuit.

(Refer Slide Time: 25:47)

So, basically this is the verilog representation. So, you say always are the posedge of

clock if reset out is equal to 0 count equal to in count equal to in means it will be loaded

with the value N and ready bit is set as one some variables you have set.

(Refer Slide Time: 25:59)

Then, if the reset is not there if count is equal to 0, ready bit equal to 1. Count is equal to

0 means the counter has been set to you make the ready bit equal to 1; ready bit means it

will be freezing and sending the value to the tri state else out equal to out plus 1, count

equal to count minus 1.

So, you can see there is a clock edge, there are registers, there is an initialization code,

there is basically a incrementing code and so forth. So, this is in a verilog representation.

(Refer Slide Time: 26:26)

And finally, this is your it will be synthesized as a hardware like this and so forth. So,

what I try to mean by this? I am not going to teach you I am not teaching verilog or so

hardware design in this key in the slides and then, you see the difference. So, this is the

software and this is basically hardware representation for a, same design intent. So, such

difference in the hardware and software description.

(Refer Slide Time: 26:47)

So, it is very very difficult to make a uniform coding environment or uniform simulation

environment. True, but still people have overcome these lot of theories has been

developed as I told you this is a very very futuristic research problem and people have

really tried to develop environments where even if it is a hardware or software still how

they can be simulated together. Just this was just to motivate the challenge that why it is

difficult to have such a co different co simulation environment right.

So, that is what is very very important. So, if I somehow can do it, then what is the idea?

So, if I can somehow have a unified software hardware representation. So, a

representation of that system can be used to describe its functionality, independence of it

implementation in a hardware and software in a we have a initially we have a very

integrated environment. Then, you can software partitioning you can delay till a long

time that I am trying to say integrated environment, I am trying to go right and even

when I am going in the final stage. Then, you can have a more clearer picture that which

should go in hardware and which can go in software.

Because I have a integrated environment. So, I can try all this and towards the end even

more or less all the design components are clear, I can do a partitioning which will give

me a better control for efficiency right. So, that supports cross fertilization between a

hardware and software provides and simulation environment after partitioning is done.

So, that means, is a the in a in a nutshell if such an environment is available to you, most

of your embedded system solutions problems are solved. Problem number one what is

solved? The problem number one is very simple that is I have a co environment.

So, whatever hardware software version I have I will download and I will I mean I shall I

should they give the simulate and see whether there are anywhere bugs or not. So, bugs

will be developed very early. I can also find out that at a every stage the design is correct

or not because I have a entire working version in software.

So, I can see whether the design intent is made; bugs are caught earlier; is the design

tradeoff that I find this one is good in software, I can put it in a hardware and vice versa

and also it is said that I can delay the partitioning. Then I can have a initial big model and

then, I can go and go quick iteration, still I when I have a more or less a complete system

idea in my mind; then, I can find out this I put it on hardware this I can put in software.

 So, this will actually give you a better debugging capability, the better test capability,

better solution efficiency and so forth, but only issue is that making such a environment.

(Refer Slide Time: 28:57)

So, that is actually people call it is called a Virtual machine. So, basically what we can

have is a Virtual machine is the some kind of a machine which will emulate or simulate

your hardware. This is a software you will run on a hardware. So, basically the software

layer is very close to the hardware that hides the hardware details and provide provides

an abstract view of the to the x programmer , but when I am writing a C code I need not

think about the hardware.

But in case of a embedded system, the software person has to think of the hardware that

is what is the problem. So, if I can have a virtual machine or if I can somehow emulate

the hardware on which the software will run our job is solved. So, basically all the co

simulation environments work on that. The hardware is written by a hardware person in

verilog, but the co simulation environment it is basically abstract out the hardware part

from the software part.

So, the software developer will find that the hardware is already there in place which can

be a which can execute in software. Of course, the hardware will also be developed in

phases initially there are block diagrams so that I mean you can do just functional

simulation; maybe after that it will be and they will implemented register transfer level.

Then you can also put delays and you can find more detailed analysis of your hardware.

Finally, they will simulate the gate level design. So, in that case you can have exact

delays, you can have a exact latch problems, you can find out how many power what

power it is taking and so forth.

So, it is a hierarchical solution first we have that is the functional implementation, then

you can have delay implementation, then you can have power implementation and all

these parameters will slowly come into picture. But the idea is that at every point of time,

you have a entire simulation of your entire system that is the key code. In traditional

design, you have a hardware version hardware partition, software partition you cannot

simulate the entire solution only when the hardware has been fabricated and come; then,

you can put it in the software in that and you can get the working version of your entire

system.

But here it is the other way around. From the starting only we will having a simulation

environment of your design, but maybe I will have set level in the beginning, then after

sometime you will put more details on to the design. So, you can get more features out of

it or more test characteristics or more what do I say more inside you can get about the

design like I can have a black bugs software and I can have a very high level architecture

design at block level, at the RTL level. Then I go for gate level, then in a when I am

going to gate level I can find out the delays I can model delays in a better way. I can now

very well, what will be the frequency of my circuit, I can also have a power model.

So, I can get more insights on the design, but at every point of time, I have a simulation

level. So, I do not need to wait till the end to find out the bugs and land up in surprises

that is what it is basically the idea right. So, we should always have some kind of this

abstract. So, this is the current abstraction because this is for software system. Basically

this is what is currently being done. So, they have a hardware emulation or a hardware

software hard software virtual machine for running the hardware right.

(Refer Slide Time: 31:37)

This is what basically is the Abstract Hardware-Software Model.

So, you have a Abstract Hardware-Software Model. So, there is general purpose

evolution, it can support so many things, but this is what is basically your challenge that

how can you have a similar table or angular table abstract hardware model; that means,

what it is basically this challenge. So, you can do a lot of general purpose system

evolution you can do, evolution of design alternatives you can do, evolution of software

hardware tradeoffs identification of bottlenecks or bugs everything is possible.

But I require a simulation version of this which is the main challenge.

(Refer Slide Time: 32:09)

So, how people have tried to do it? They have something called a verilog hardware

simulator. In this case you can download your hardware. First may be an RTL level, then

you can go basically at the gate level and maybe at the very detail level. So, you can do a

phase wise. So, this is your hardware; this is the hardware where which simulates the

verilog and you have some software procedures, but as I told you verilog can only

simulate your hardware. It cannot some of the software on top of it.

But people sometimes also run put some kind of a interfaces. They have written some

kind of a interfaces are that in the software environment, a poor development

environment we will have lot of interfaces in the verilog itself. So, in that case what

happens? It will take the software. It will come convert this into some kind of a hardware

representation so that they can be integrated with this environment.

Again, making the story from the beginning, verilog can simulate hardware which is

written in software in languages like verilog or there are a lot of HDL simulators. So,

HDL simulators will take the soft version of your hardware in it can execute, but it

cannot take how a software will run on it that they cannot do for that people have written

some kind of what is called a bus into what they call it Wrappers that is a verilog PLI

programming language interface as they call it PLIs. In that case is the hardware which is

written in verilog you write some kind of wrappers.

. So, in this what the wrapper will do the wrapper will take the software which is written

in a CC plus or whatever language you want your software to be. It will translate those

softwares into a verilog representation. So, that they can integrate with the HDL

representation of the hardware; maybe this is some kind of a maybe simple like can be a

simple adder which is written in basically your verilog.

Now, this is a software which are using this adder. So, what this PLI will do? This is

basically will translate this code of the C language which uses the adder so that it can fit

into this into the an hardware environment simulator for this verilog code that is what is

basically the idea. So, it is an integrated environment. So, then such an environment can

be developed and there are lot of environments there, but the main the problem is this p.

So, it is actually you can think this it is a very it has become a very complex. Hardware is

generally some maybe a 100 lines of verilog code makes a hardware.

Now, if you try to integrate with the C. So, C language will be taken it will be translated

into verilog or mapped into a corresponding verilog language so that it can interface with

the hardware which is written by the verilog that is the pure hardware. So, this software

cannot the c language cannot be run on that in simulation. So, they are converting into a

hardware language which is compatible.

So, that code actually becomes very very high because C codes or software programs are

generally very long in length compared to the hardware counterpart. If the hardware

represents a hardware block or hardware definition language represents the hardware in

software language. So, those codes are generally not very long because it just be

optimized because that finally, it is to be fabricated. So, generally there are lot of

optimization techniques that goes in.

But software codes are generally implement the general purpose functionality. So, if you

are representing general purpose functionally using a code generally it becomes very

very long. So, if I try to represent such C codes using its verilog representation, the code

becomes very very large and complicated and the simulation takes lots lots of time. So,

what is the solution? People try to use this and dump it into FPGA. So, it becomes a

hardware representation that is a real hardware, I do not required to and simulate

anything this is called emulation.

Then, now you can directly download your software and you can test it. So, nowadays

people are actually taking this environment. So, that is why FPGS are become a very

very field role player in a integrated environment business; instead of simulating the

hardware, they write the hardware, develop the hardware fully, but I cannot fabricate it

because it takes long time. You download it, download into this the FPGA and basically

you download your software onto the FPGA which is called a emulation not a simulation

and then, basically you can see whether everything works.

Still its good, but not as better as best as the co simulation environment. Co-simulation

environment is very flexible; you do not require any hardware. Everything in a software

you just write a code and see whether everything is proper or not , but as I told you it

which will be require very high speed computers to make a time optimized simulators for

such a co simulation environment. So, many people are trying to go in the other direction

in which case programmable devices are available, you download your hardware there, it

becomes a prototype device and your soft test your software and that.

So, with this we come basically come to the end of this course as well as this lecture. So,

these are the very open problem. So, verification test. So, main problem comes because

we do not have the full design at because when I talk about the embedded systems you

partition it, something into hardware and something into software and you test it

separately. It is very challenging to develop a integrated environment in to solve the

problem and to solve the problem. So, that is one of the key challenges where all

embedded system people are working for.

So, it is a open problem like. So, you have to look at machine critical systems, you have

to see look at for handheld devices, you have to see for personal devices and I require a

common modeling environment, common verification environment and finally, common

hardware development and test environment. Can I do it in a single window? That is

what is the key role which is the open problem.

So, with this we come to the end of the course. I think you have enjoying you have

enjoyed the course throughout the last 3 months basically and in fact, what you should

try to emphasize that this course as was a part which included 3 different aspects like

design verification and test. We have tried to give you the some basic broad lines of all

the different paradigms. So, this becomes a and course in a entirety; otherwise means we

have not gone into too much details of each of these steps because they would (Refer

Time: 37:34) a course in itself.

But we thought that basically this course should be a first course towards the embedded

system in a entirety because when I am putting this 3 phases together because no

embedded system can be complete with the design phase alone or test phase alone or

verification phase alone. Entire embedded system design flow comprises of the design

modeling verification and test. So, so that was our emphasis. So, with this, we would like

to all thank you all for your patience listening over the 3-4 months and all the best for

your exams.

Thank you.

