
Embedded Systems-Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 36
Part-3: Embedded System Testing

Testing for Re-programmable hardware

Hello students. So, today we have come to the last module of the course on test that is

basically we are going to today discuss on Testing of Embedded Software Systems. Till

now in the whole phase of the lectures on testing, you might have observed that we are

talking of embedded hardware in which case as we have already discussed in the

previous lectures that basically in embedded systems we first make a partition of a

hardware and software based implementation. And then we have assumed that the

hardware part of the implementation is made up of ASIC. By ASIC, I called Application

Specific ICs, where we are a giving these basically the proper flow that is where we are

saying that this is specification, this how to be implemented, and then this is fabricated.

After that, we are dealing with such type of systems, where after the hardware part of the

embedded design is freezed, we manufacture it, and then basically we find out test

patterns and ways to apply and test those specific hardwares, so that was our assumption

till now. But, in the last two basically lectures, I mean we cannot go to a very vast details

on these two parts, because these are more or less slightly what do I say newer part on

embedded systems or I should say that basically move towards software, hardware

hybrid kind of implementation kind of stuff.

So, basically what we are trying to do is that in these two lectures, I will try to give some

directions and thoughts. And how basically in some part of the embedded system, which

are built on reprogrammable hardware FPGA. In that case, what happens basically, so

you download or the hardware is reconfigurable, you can configure it to be an added, you

can configure it to be a subtractor, you can configure it to be a multiplier, it can be a

processor.

So, basically you have to write the functionalities like a very log code, synthesize it, but

instead of fabricating it, you can download and configure that hardware and it will

become the perquisite or basically the you wanted, you whatever the hardware

implementation you wanted, it will become like that that is what is the idea of a field

programmable gate array or CPLDs or there are sense of other versions basically. But, as

off now FPGA is the most popular implementation of programmable hardware.

Then basically how we should test such hardware or the programs, which has been

downloaded over there that is what is the idea of these two lectures. But, again as I am

telling you with this is all some of the we can say that the some kind of a bit cornered

part of embedded system design and test, whether there I should not call it design,

whether the test because in because mainly we are concern when you talk about

embedded system test, we rather are more interested or more the literature of the work

has been towards exact hardware implementation of which is called hard fabricated

chips, we are mainly concentrating on that.

But, a major part of paradigm shift has now been coming by using of reprogrammable

hardwares of embedded systems. So, towards the end we felt that we should also give

you some thought and directions in which research is going on in this type of platforms.

(Refer Slide Time: 03:12)

So, as we all know, so basically there is a specification. Then the architecture hardware

and software as there integration and test basically. So, basically what do we are looking

at till now is the hardware design, and we are basically testing it from that perspective.

Like basically there is a hardware, we decided that is part of the form is part will be in

the hardware design. And we are manufacturing, and we are testing it that is what is the

main thing, and that is what is widely expressed or practice in the testing or embedded

system industry. That the idea is see if the hardware design in high is found to be without

faults, the software part is verified.

As we have as (Refer Time: 03:44) data is already taught you, then if you integrate it,

there should be very less amount of faults possible. And in fact also in the next lecture,

we will try to show you that how we can also go for integration testing. But, this is one

of the very very complicated ways or complicated subject to understand.

And is a it is also very difficult problem to solve, because hardware is done by one team,

software is done by another team, finally they are integrated. Integrated in the sense that

the hardware is developed, software is downloaded on that, and software executes on that

hardware platform. And you have to find out, if there is any (Refer Time: 04:13) faults

due to or errors happening due to integration.

But, again as I told you hardware is again tested be free of fault, software design is

verified to be free of faults, then there should not be any kind of integration faults. So,

therefore, it is expected that they have should not be kind of any kind of integration error,

but still some errors do occur, and people have to find out.

But, this is a more involved topics, who are not directly go into details in this course on

this integration testing. But, rather I will try to give you some ideas in the next class that

how we can use the software components to test the hardware design or basically the

integration that will be the next lecture.

(Refer Slide Time: 04:52)

But, today what we are going to see? Basically, in hardware design is also now becomes

some kind of software control. Like a anyway in this is the this is the part that this part is

design in hardware, and this part in software. But, if I look at it, so you have a hard

specification for the hardware part, hardware architecture, detail design integration, I will

test. So, this is the hardware part.

But, see for example if this hardware is also flexible, so what do we mean by flexibility

that basically first I thought that I will design adder here. And I will put all the

multipliers in the software, because multipliers are more hardware consuming. But, then

I after some iterations, I thought that adder plus some more part may be at least 1 2 bit

multipliers, I will try to put it over here. At the other part, I will be putting in software.

So, I can try to make lot of trade off that is I keep on changing my ideas. So, before

fabrication also I should have a hardware paradigm. In fact, one thing I should tell you

that integration testing was not possible till a very till a order of quiet few years back that

was not a nice possibility, because you will get the hardware, only when you have your

cheap has been fabricating, and it is come to the market.

But, as of now there is something called FPGA-Film Programmable Gate Arrays in

which case, you can write your hardware in very long. And you can download it, if you

will become your required hardware. Of course, as is a prototype device, it cannot be as

fast as your real ASIC. Because, FPGA as I will you will see is some kind of a general

matrix kind of an arrangement. All sort of gates with all sort of inter connects.

So, you can change the inter connects, you can download the level of interconnects you

want, and we will be configured to another. You can change the inter connects and the

gates, it will become a subtractor and so forth. So, of course we such generality you can

implement your hardware or your algorithm is as a hardware, but it will not be as faster

as a real ASIC or there will lot of power consumption etcetera.

But, since a very good pro typing environment; so, if you have this hardware design in

the initial goals of your design, you can download your software here. And you can start

testing, whether the whole protocol system or whole system is a integration will test or

not. So, nowadays this FPGA base design is a lot being used in protype testing or

prototype, co validation, co testing, because now you at least have a hardware before the

finals applicator cheap is there. You can download the software, and you can see whether

it is operating in integration.

Of course, at speed testing, we will not be valid cannot be tested over there, because

speeds of FPGAs are not cannot be of course cannot match with a very high speed ASIC

implementation. But, of course whole functionality can be verified, and nowadays very

large capacity FPGAs are available in which a processor can also be downloaded, and it

can be emulated.

So, basically size is not on a concern. So, with this new kind of designs are coming up.

So, if for some cases, your speed is not very high speed, because I should not, so that

FPGAs are very slow. But, gigahertz level FPGAs may also be available in the market,

but as which are called rocket IOS based FPGAs.

But, basically still I mean first many of the applications we do not require a very very

fast ASIC device. So, in FPGA is more or less capable of handling this pin. In that case,

why I should go for ASIC fabrication, which is a more expensive procedure. So, what I

can do, I can take a FPGA with rocket and high speed IO, download my code there. And

I can say, this is my ASIC this is my implementation instead of going for a fabrication.

So, nowadays many people are have started using FPGAs not only at the prototyping

device also in the final design, so that has brought lot off challenges in the embedded

system market. So, if it is a prototyping device, I am not much bothered about the

hardware correctness or hardware faults in the FPGA.

So, if some faults are found in the FPGA or in the code, there will be bugs and then you

can debug basically. So, if you find out that because prototyping stage, so your more or

less analyzing your implementation, so you can find out that ok. Your software design is

fine, if hardware is also fine, but there is a manufacturing faults in the FPGA. So, it is not

operating file.

So, in that context, it is important to test FPGAs, but not of a major concerned as in the

case of ASIC base testing. But, with the philosophy of now coming into picture, where

people are using FPGAs not only the prototyping device, but also the final product has

making the test challenge much much higher that is there very large size of FPGAs. 10

years down the line FPGA capacities were very less, you can put only small modules and

do the emulation, and prototype test.

But, nowadays FPGA capacities are very very large. So, you can download even

processors or in many cases you can put multiple FPGAs to implementing a large, very

very large embedded system on the or a set of FPGAs, which are download in a board

which are fabricated and arranged in a perpended circuit board. But, an of course the

speed is should be slightly lower or the application speed of those application should be

slightly less, then such solutions exist in the market.

But, now if for such applications people are not at all going for ASIC fabrication, they

taking FPGA downloading the code verifying everything is fine they will make is the

product, and cell it in the market. So, FPGA testing has become very very important in

that perspective.

So, why do I calling as a software, because if you look at the topic of this course, it is

testing for reprogrammable hardware in the context of embedded software systems that

is in this case, I write a embedded software, I write a hardware. And I do want go for

fabrication, whether in the sound version and download in FPGA, and basically software

becomes a hardware.

So, there is lot of flexibility or it is a more of I can say hardware software hybrid kind of

a nature. So, we should that is why this lecture is focusing on testing of FPGAs, which is

some kind of a hybrid of embedded hardware and embedded software right. So, basically

in this pure software is the pure hardware, now in the detailed design basically now

instead of an ASIC, it is an FPGA. So, what is FPGA etcetera, we will first see before we

go to the details.

(Refer Slide Time: 10:09)

So, this was our if you look at this is standard ASIC design flow basically in which is

your specification, then we RTL design, then we can something called logic synthesis.

Logic synthesis means, all your RTL should be translated into logic gates, then there is a

physical layout, and find is a fabrication, test plants of course coming to the between. So,

this is basically proper ASIC flow in which case you give a design, you translating into

gates laid out, and finally it is fabricated according to your layout. So, once this layout is

being done, you cannot change anything it is the hard design.

(Refer Slide Time: 10:40)

Now, basically as you will see if I do something like instead of going for a physical

layout, instead if I could have got, something like a I can see a n cross n matrix, like

something like this. May be I have a 4 cross 4 matrix. And if I give this choice then any

of the body can connect to any of the blocks, and each of the block can be AND gate OR

gate NOT gate any gate, it can be configured.

There is it become something like a universal logic implementation or 4 gate universal

logic implementation. Any gate can be converted to any gate, and they can be (Refer

Time: 11:17) own fashion. So, you can implement any logic circuit with these 4 gates.

So, it is a something kind of a erasable, and so erasable. Once you download, this may

become AND gate, this may become OR gate and so forth. And the interconnection is

done. You check your implementation, then you switch the FPGA off everything will be

clear.

Then you can again download another set of gates, and make a another type of

connection. If something kind of a white board, you can connect any type of gates you

can do any type of connections make it work, and then you can you can erase it that is

the beauty of FPGA. So, basically the idea of FPGA is a integrated circuit that can be

configured by the user to emulate any digital circuit as long as there are enough

resources that means, of course if it is a very very multi code process that cannot be done

in a single FPGA, but as I told you. Nowadays FPGA capacities are very large, if in big

procedure course are implemented in multiple FPGAs in a board level solution.

So, nowadays FPGAs are very large capacities, so that is why not only it is use for

prototyping is also use the final product. But, anyway FPGA is basically in the main

logic behind this FPGA came into the market was basically as an emulation platform.

You can take a hardware downloading it, sees working erase it, put another hardware.

So, FPGAs can be seen as an array of configurable logic block means, it can be

configure to any type of gates. And modern FPGAs, there are lot of additional

functionalities, which can be configured like you can have a simple two bit adder, some

memory blocks, etcetera can be there. But, any way in this lecture we will be limiting as

to simple traditional FPGAs called some old FPGAs in which case, basically we have it

can be converted into any type of logic function, there can be of it can be converted into

a sequential function and so forth.

So, basically FPGA can be seen as an array of configurable logic blocks, you can convert

to any type of gates, and with interconnect which are programmable, because you can

connect from any gate to any gate. Because, in ASIC you have tell that this is the AND

gate, this is how you should be kind of the OR gate. But, in case of FPGA there is a full

flexibility of n cross n connectivity is there, you can connect any gate to any gate by

changing the fuses, so that gate 1 gets connected to gate 2, in the next iteration gate 2

maybe connected to gate 1 and so forth by changing the matrix of connections.

And any block can be converted into AND gate, OR gate in the iteration. So, it is a full-

fledged reusable programmable hardware. So, you download it is a bit map or I call the

connectivity and CLB configurations, it becomes one circuit erase it, do another in

download, another you will be a another circuit and so forth. So, mainly so that is why, I

called it software based embedded system application. You write code, download into the

FPGA, it will be get converted.

Nowadays run time (Refer Time: 13:47) hardware are also available. This up to this point

of iteration or implementation this was a AND gate. After some time, it is reconfigured,

it becomes an OR gate. So, run time when the embedded system is running on the

hardware, still the hardware can be reconfigured. So, by again which is a very very

recent, they will and in case of a FPGAs.

But, the one we are discussing in the lectures on non-reconfigurable run time that means,

before the you have to erase the FPGA, download you require required configuration, it

will become a circuit, then it will operate throughout its life. But, again if you switch it

off, it will get erase. Then you have to again download the new code a frequent, it will

become another circuit, and you have to go about it. So, it is not a run time

reconfigurable that is what was a traditional FPGA.

But, nowadays it is more powerful, you can do this configuration run time. So, you can

understand the power of FPGAs. Nowadays as I told you, it is become a very very high

capacity FPGAs are there speeds are also becoming higher. So, many real life application

instead of being instead of using as a prototyping device people are downloading the

original application, and selling it to the market as an FPGA is called to save the cost of

product development and resources.

Basically, because fabrication is an expensive procedure; if some error happens in the

design, you cannot do anything basically. If some you made a design, you verified it, still

you find out that some there are some errors somewhere, you fabricate it, the whole

product whole range of chips you have fabricated has to be thrown out, it is a very

expensive procedure. But, if you do it in a FPGA, it is very very flexible. So, there is a

FPGA is becoming a very very prominent hardware in the embedded system market.

(Refer Slide Time: 15:13)

So, without telling more stories about the FPGA, let me tell you what it looks like. So,

here something called as CLB, then there is this is the interconnect, because these are

interconnect means, if I want to connect this CLB to this CLB, it will be routed like this.

For example, if I want to connect this CLB to this CLB, I will be connecting like this.

So, the blue blocks in FPGA can be switched to make the connections. So, for another

application, I may be liking to connect the first CLB to this one. So, SB this SB, SB will

be responsible for doing, it is a switching matrix. And of course, the black lines are

basically nothing the IO pins. So, there are this is some IO blocks will be available over

here, which will connect the FPGA to the outer world right.

(Refer Slide Time: 15:54)

So, these are very simple architecture one figure will be clear, let me just zoom it. So,

CLB is nothing but a very simple stuff like this. Of course, as I told you again a we are

talking about the very basic FPGA, moral FPGAs are more sophisticated CLBs. So, there

are look up table, the look up table is nothing but it will implement a logics function.

So, it can directly go as the output or it can feed a D flip flop. So, if this feeds are D flip

flop, it becomes a sequential element. And if you want to feed it directly to the MUX, it

becomes a simple gate. And also I can implement it as a simple MUX flip flop also. In

that case basically, the MUX will send this value as the output right.

(Refer Slide Time: 16:28)

Now, again as an example, always an examples are better. So, basically let me say that I

want to implement a 4-input AND gate. So, this LUT is nothing but a memory as simple

as that because, I as you know the memory is a universal logic gate. I as you all know

you might have if you have forgot please go and, it will digital design lectures. So, like

for example, in this case because a memory is a nothing but truth table. Like in this case

if you look it is a 4-input AND gate, I can have any other implementation. So, it is all

zeros will be there accepting ones, because 4-input AND gate. Now, what is this I can

think that this LUT is nothing but the memory.

So, in this case this is the address bus 0 0 0 0, so this one will be address. Let me zoom it

for you very simple, so all 0s means, it is first block. All 0 0 0 0 one this, 1 1 1 1 means a

last element of the LUT will be axis. So, if you see is nothing but this whole truth table is

implemented into this memory with this as the address box as simple as that.

So, LUT is nothing but whatever gate or whatever logic, you want to implement. Write

the truth table, and convert it into a memory, and that is done. So, basically this is the

address bus and this is the memory. So, it is just by the address lines, you can put it up.

So, whatever gate this is an and 2-input AND gate, it will be something like 0 0 0 0 1.

So, the inputs the inputs lines will be A B 0 0 0 0 0 0 0 0 0 1 1 0 1 1, so this will be the

memory for the AND gate. So, 2-input AND gate.

It is a OR gate basically, it will be 0 1 1 1. So, if both A and B are 0 0, this is 0 for all

other cases the answer will be a 1. So, whatever logic function you want to implement,

you have to write this over here correct. Now, basically it has two outputs, so the output

will bed D flip flop or you can basically give, it the MUX.

So, if it is want just input of 4-input AND gate, so the configuration bit is zero. So, this is

feeding as the output. And if you want to implement as a flip flop, it is very simple, you

have to make this as a 1 right. And maybe whatever value you require, basically you

have to configure this two all 0s. If you want to use as the single flip flop, and whatever

value you want to axis has to be return in this sense, all others basically do not cares.

So, it is something like you make the configuration 1, so this one will be fed over here.

And all the inputs you make 0 0, so that you can axes the first cell. You can also be the

last cell, depending upon your FPGA implementation. Then whatever value you keep

over here will be here if you apply a clock, it one will be coming over here.

So, with this configuration, it will become a flip flop or with the simple configuration, it

will become a simple logic function implementation as simple as that. So, this is

basically a CLB. So, I think it is very clear to you that CLB is nothing but or it is a gate

or some functional logic functional implementation or a simple flip flop.

(Refer Slide Time: 19:02)

Now, this interconnection is very very important, because you should be able to connect

in four directions. So, if something like this, if we look it is pass transistors based logic.

So, in this case if you see if you if this part has to be corrected to this, then basically this

transition has to be made 1. It is a 1, so it 1 will be connect here.

In this case, the direction is a four line. So, it can be going to any directions. So, if I

make this as a one as you can see, this is how the line is connected. If I want to make a

connection from this to this, so I have to make this bit as a 1, so this 1 will be connection

may. Here want to make a connection like this, it 1 has to be a 1.

Similarly, if this line has to come over there, you have to make it as a 1. But, if these two

lines has to be connected, it has to be made as a one. If you want to connect this two

lines, basically you have to make it has a one. Of course, you should check that there

should not be any kind of shorts so, as again the configuration if you in your paradigm,

you can select accordingly.

So, this is basically nothing but a pass transistor logic, which implements that any of

these four directions can be connected to any directions as require. So, now if you want

to implement a circuit, what you have to do? It is very simple, first we have to configure

the different CLBs by the values that the LUTs. And what is the value of the MUX input,

so that we will convert all the CLBs to basically your desired logic gates. And the

connectivity, you can very simply implement by basically change in the switch

connection.

(Refer Slide Time: 20:16)

Again without telling stories take an example. This is a very very simple circuit, and I

want to implement it. So, what I require to implement AND gate, a XOR gate, and a flip

flop, so I will try to do that. So, any way first you have to do a mapping, so I there

actually we are having a flip flop, and this connectivity. So, there are some as you see

that LUT can be having again there are flip flop together it can be separate the flip flop

or it can be another simple gate. So, in this case it is a gate connected to a flip flop, so

you can directly take it over here.

Generally, the idea is another told you, generally you do not have a single flip flop. So,

this situation as I told you that making all these as a excess making at 0, and this the 1 or

0, whatever required you can bring it here with clock rarely arises. Because, you do not

have generally a single flip flop as a implementation or flip flop as a combinational cloud

behind this. So, this is the combinational cloud.

So, in this case the combinational cloud is basically a AND gate. So, you mapping to

CLB 2, again this is CLB 0, this is an XOR gate, you have to mapping to some other

CLB. In this case, they are mapped it to CLB 2. And basically the CLB 3 is going to be

the output basically or because there is or basically, because 3 inputs are there, these are

2 inputs over here, and there is 1 input over here.

And basically you can take it as the you can take it as the output over here or you can

take it the output from other CLB that depends upon your necessity. So, basically in this

case 2 inputs for this one. In this case, if you look at it, so one the output of this first

block this one will be should be coming over here. This is the input number 3. And this is

basically map to the XOR gate, and you can get the you can easily get the output from

here or for some reason you can even bring take this output to other CLB depending on

that. In this case for some reason, they have taken the CLB output over here.

(Refer Slide Time: 21:56)

So, now how do I configure, so simple. So, let us look at the CLB 1. So, you have to

convert this one into an AND gate, so 0 0 0 0 1, and basically this is the case. So, let me

zoom it for you. So, in this is a AND gate, of course all 1 1 only there answer will be a 1,

you have to make it as a one, because basically it should become into the flop.

So, very simple this is CLB 1 as simple as a XOR gate. So, XOR gate means, it is what 0

0 0 0 1 and 1 0 1 and this is actually 1 1, so 0. So, it is a simple gate. But, in this case the

flop the MUX has to be made 0, because I do not require a flip flop over here, basically

this should be the output. So, as see very simply, I can implement this two basically is in

two CLBs, I can make the implementation of the circuit.

(Refer Slide Time: 22:37)

Now, routing. So, as I told you the first implementation input one will go over here to

this connection, so this is what is being implemented over here. Basically, this

connection this connection I am implemented. So, this is what is the case. Now, secondly

basically means input two is already there. And this one, I am as I told you somehow I

am going to take the output over here. So, basically SB4, it should make a connection

like this. I could have also taken the output over here, but anyway to show that two

routing tables we are two routing we are using. So, anyway the example, I have taken

from the general this is where general textbook material available in most of the text

books on VLSI design.

So, in this case they have routed it over here. But, if you are if you want to take the

output over here, then this is not frequent, then this is also not frequent. But, if you want

take the output over here, so SB4 has to be made in this manner, so that basically this is

as a 1, so the output is so this connection is done. And basically this configuration

basically is your implementation of the simple circuit like this. Now, what I have to do,

so you know that this is the configuration, which allows to do.

(Refer Slide Time: 23:39)

Now, what happens? Now, given an FPGA, you have to configure all these CLBs and

SBs you have to download the value. So, what I will do? In this case, important are CLB

0, CLB 2, CLB 3 maybe an SB1 an SB4, but all have to be downloaded, because you

cannot keep any of this CLBs empty. If the not require, they can be x x x I do not

believe, do not understand, whatever you want to down you can download, but that of

not of a concern. But, important is whatever I am requiring for my implementation.

So, if you will see CLB 0 means, 0 0 0 0 0 0 1 that is the content, and it has throughout

as a 1. What is that, so it is this one is the configuration, and this one is the bit. So, it is

the input basically to the LUT, and MUX MUX is a 1. So, they have mirror configuration

like this. CLB 1 is basically if you look it is an XOR gate, so it was 0 0 0 1 1 0 that is the

XOR gate. And this was a 0, because the configuration was something like this, because

I want to directly take as the output without a flip flop, so I will write like this.

Other flip flops I do not bother, basically then important is basically your SB1. So, SB 1

is something like this which should be a 1. So, basically similarly in case of a SB1, you

say this is a 1. This things I do not bother look at much. SB2, SB3 all 0, they have kept

means everything is disconnected they have disconnected everything, and SB4 also

should be something like this. So, only one bit is a 1. So, in that case this is SB4. So, this

is how the configuration SBs done.

So, all zeros means every it is open, so it is not connected to anyone, this also not

connected to any one. You can download you can some make some arbitrary connection

or sometimes you can keep it and open. So, in this case they have kept it an open. So,

what I do? So, this is what is something called a bit map.

So, there are automated tools you tell the design is a design is I want to implement, it

will automatically map your designs, first it will synthesize a design, it will map into the

exceptive CLBs. And basically it will find out what switches to be made on, and what

switches to be made off, so that proper routing is done. And then there will generate

something called is the bit map, which will be download to the FPGA, and basically if

FPGA will become your hardware that is what is actually call field programmable gate

array.

So, why it is a we tell it is a software base implementation of a hardware, basically

because in a embedded system, we first partition hardware and software. Hardware was

manufactured ASIC, so you cannot do much changes, software is downloading the

hardware and tested or use in the community. But, now we call it hardware software kind

of a hybrid kind of an implementation, because it is a I have not fabricated an hardware, I

have written a very log code and hardware language code. Instead of making a hardware,

I am downloading it one FPGA, it becomes hardware, which implements the software,

but it is a soft implementation.

Some of the modern FPGAs, you can configure all this six in the run time, which part of

the circuit is not doing its word, it can be reconfigure that is a very modern concept. So,

if any of the hardware can be reconfigure run time, so it becomes some kind of a

hardware software hybrid implementation or hybrid level of thought also basically.

Hybrid implementation initially was thought has hardware is fixed, software changes.

But, here the hardware software both changes, so that is why FPGAs brought into a

paradigm shift in embedded shift implementation. But, the course expression we are not

dealing with such high and FPGAs in this course, our case everything is predetermined

you have to just download this code, it will become your hard so hardware. So, this is lot

of flexibility.

Nowadays, I mean you need not partition your I mean hardware software partitioning so

basically drastically, because I mean no changes can be done after that, right now with

FPGAs that assumption is no longer valid. After some time, you will find that some more

part could have been go into hardware or you can change the paradigm it is possible,

because FPGA is very very flexible, so that is why in this course, we are trying to look at

how FPGAs are also getting tested.

(Refer Slide Time: 27:14)

So, any way this tells you that what is an FPGA. So, of course we cannot do that

manually though there should be FPGA EDA tools, which will provide a design

environment in which case, it will hide all complicity like placement, routing, bit stream

generation etcetera. We just give the circuit, it will automatically map it to the say CLB

respective CLBs, it will make the automatic routing, it will generate the bit map, it will

be automatically download, and you will get the circuit implementation.

The lot of FPGA tools like Xilinx, mentor graphics, Altera. There are many lot of

vendors, I thing you many of you are may be knowing, who are into this FPGA business.

So, there it is very simple you write the code synthesize it, after everything is automated.

(Refer Slide Time: 27:52)

So, I am saying a typical Xilinx HDL flow. So, in this case you write all the HDL files.

Then basically some of the synthesis constancy you have to give, because what is the

timing requirement, what is this space constrained you are putting and so forth.

Basically, you take takes a target device. What do you mean by target device, because

FPGAs lot of variations of FPGAs are there. So, whether you are taking a vertex family,

whether you are taking a Spartan family, what type of FPGA configurations you give you

have to tell that in this FPGA, I want to synthesize.

Basically all implement because some of the FPGAs are large, somebody have small,

somebody are high speed, so you have to tell, which FPGAs I want to use. Then there

will be it will be synthesizing your circuits not in terms of gates, but in terms of LUTs on

the target device.

(Refer Slide Time: 28:32)

Then basically what you have to do with this target, because now you have all the LUTs

targeted. Then basically, there is an automatic map and place route. So, this is actually

synthesis flow. In the ASIC synthesis flow, basically you get a gate level implementation,

here we will getting a CLB level of implementation.

Then basically with the CLBs, you there is automatic implementation tools for the for

Xilinx from Xilinx and all other vendors. So, basically they will take your basic so the

net list basically, which are nothing but LUTs, they will map it to the respective CLBs,

they will place and route as I have shown you. And finally, they will generate a bit

stream, which will be downloaded, and it will become your hardware.

Of course, I am not going into the designed flow much, because this is not a course on a

VLSI design, but this more or less is the flow. So, two figures I have shown you this one

example of Xillinx FPGA. And this board as you can see, they are not using for

protyping, rather they have put lots basically I let me zoom it for you.

So, rather they have put lots of FPGAs as you can see from Xilinx, make it can be from

any vendor, they are putting it. And it actually scold as a real product that means, these

FPGAs have some functionalities as a hardware, which is not reconfigured. If they have

downloaded it, they have verified it to be proper, and they are not is not used for a pro

typing. Basically, they have (Refer Time: 29:47) feed functionality, and they put it as a as

if is an ASIC permanent hardware and sell it to the market, so that is why, the test of a

FPGAs are becoming very very important.

(Refer Slide Time: 29:56)

Now, let us see let us try to focus, and try to see what is the philosophy difference

between the normal circuit test and a FPGA test. First all I could say that as I all a stuck

at fault model is a very well fault model. So, why should not I go for it stuck at fault

model or bridging fault model answer is not possible, because there are no gates.

So, in fact there all memories and multiplexers, and basically some kind of a LUTs, so

that type of stuck at fault model and bridging fault model, whatever I have told you is not

at all applicable over here. Secondly, observe ability and controllability are very easy in

FPGA why, because this is full reconfigurable. You take one block, make it test the other

block making analyzer, and switch it something like bist.

So, in this case it is under test and this is under analysis, then again maybe it can be test.

So, both these blocks under test will give the answers to the third block, it will analyze

the response, then you change the roles. So, here and here basically as I showed you

ATPG is very very trivial, because the gates are very simple. There is a LUT, there is a D

flip flop, and there is a multiplexer. If you look at the CLB, it is only three stuff, LUT, D

flip flop, and multiplexer, and there are some interconnection.

So, tell and all the box are very very symmetric. So, it is very very ATPG is of course is

very very trivial by doing some 12 fluids with me as off now. I think you might have one

of very simple idea that in this case the ATPG will be very very trivial test pattern

generation will be extremely trivial procedure.

And also testing is also very simple, because you can maybe you can put some kind of

another block to put the patterns TP generation, you can put over here. The same values

can be given over here, because another advantage is boxer symmetric, they are same

blocks. I can put some test patterns from this block to the block under test, the same one

I can fit another block under test. And the response I can put the analyzer block, which is

the simple XOR, and it should be able to find out that both of the blocks under test

should give the same output.

Because, basically the blocks are same in function so, you just give same inputs take the

outputs XOR it, and you should get same results, and your job is done. So, whole ATPG

of or testing of FPGAs are based on the simple philosophy. Gave some give some

simpler inputs to the both the blocks under test, and they should give the same output.

Instead of two blocks, you can give 3, 4, 5, 6 10 blocks, and they should give the same

answers, which ever block is giving a wrong answer, you can tag it having a error. But,

the problem is re-configurability, because every time as I am saying this is a block,

which will generate the pattern this is the testing block, testing block, this is the analysis

block. So, I have to download that configuration, so that these blocks give reoriented in

this fashion.

Now, once this testing has to be done, I have to reconfigure. So, in this case may be this

one will be another test block, this may be the analysis block, and may be this may be the

pattern generated block, and this may be another block another test. So, role will be

changing, orientation will be changing. So, every time one part of one testing is done you

have to again erase the FPGA, download a new bit file, so they can reconfiguration is

done, and again is test, and you are going to test it.

So, in FPGA the philosophies slightly different, FPGA is simple test application time

analysis is simple. Only thing is that if you have to change the configuration of the

FPGA for test that going to take long time, because FPGA tests basically takes more

amount of time, because is not about the applying of the test pattern or test pattern

generation is because from mode a 2, mode b 2, mode c different base of orientation as I

have shown you, you have to do it to test the different different components. And from

one configuration to another configuration test means you have to erase the FPGA,

download a bit file that takes time.

So, now some people argue that FPGA testing should not be done at the ATE level rather

you can purchase it, and you can do the tests, at your at the user location, so there are lot

of philosophy. But, if some FPGAs are very high and expensive FPGAs, then you have

to of course with that the ate and then basically you have to CP to the customer. Because,

FPGAs are mainly for prototyping, you will download the codes, you can test your

FPGA, and then you can sell it into the market. So, lot of flexibility here.

So, many people say that I let the process of downloading, reconfiguration testing be

done at the use on it, because then you test an FPGA, do a everything then you download

your staff everything is operating fine, then you sell it into the market. So, some

philosophy someone some people tell it that you have to do in this way.

If the FPGA is chip, but some other people also say that is a very high end FPGA, then it

is quite expensive, then it should be done at the ate level before selling into the market.

Again there are two types of FPGA base testing, one is called application-dependent, one

is called application-independent. What is application-dependent that is I take an FPGA,

I download my required circuit, then and then it will be become my hardware, you test

that that is called application dependent.

Another is called application-independent that the raw FPGA is there, you will verify

that all the blocks are proper or not. So, the more majority of the researcher researchers

are working on something called application-independent testing, you get a raw FPGA

quickly test it. Because, if you are going to test an application-dependent circuit, then

basically it is a circuit, you cannot do much reorientation, because the circuit is there. If

you test the circuit, whether is operating properly on the FPGA or not.

So, at some parts of FPGA will be not be tested. And some of the parts of the FPGA you

should must not test it, because for some particular application certain configurations

may not be valid. Main difficulty here is that the these there cannot be any structural

testing in FPGA, you have to note the point that application dependent testing is difficult,

because it is totally dependent on the circuit itself.

In case of ASIC, we were doing structural testing. Structure testing means, you take a

fault model and you do the test. But, stuck at fault model, bridging fault model are not

holding fine in FPGA. So, therefore you have to go for functional testing. So, if this is a

functional testing in case of application-dependent FPGA testing, then the designer has to

be there. Designer we will look at the design, if you will give a test bench, and that is

basically nothing just like your testing your C code, so basically you will be having the

FPGA, downloading the software into the FPGA, and just like I am doing a software

testing if you do the hardware of the FPGA for the test.

Just like if you see all the loops are come order or not accept some of the philosophy, we

will look at tomorrow in the next lecture. When I just like normal software test, you

download the hardware in the FPGA, and that code basically you test, just like because

there are a very log code or VSDL code, which is download to the FPGA, you test the

code. But, not in the soft level, after it is download to the hardware.

So, therefore it is a kind of full software base testing, more or less software base testing,

and you require full designer knowledge for that. Because, stuck at fault model or the

bridging fault model, which we know basically no longer that way validate much valid

over such kind of application dependent test. But, most of the test engineers are

interested in application-independent test. What is an application-independent test, raw

FPGA testing. So, therefore test engineers are more interested on that. Today, we are

going to look at application independent test.

(Refer Slide Time: 36:30)

So, therefore what are the different blocks in FPGA. So, there is the interconnection, so

there can be interconnect defect. So, interconnect testing is very simple, there are two

wires. So, you send a zero are zero should come you send one, one and one should come.

So, generally what happens either two lines or three lines get stuck together or the lines

get opened, so then they call it open and stuck type of a faults.

So, basically testing off these interconnects simple model, because anyway we are not

going into details full FPGA testing, because that can be another course in itself. So, we

are just going to take very simple stuck that wires are there you send a 0, you receive a 0,

send a 1 receive a 1.

CLB, so you have to test the three components the LUT, the flip flop, and your

multiplexer, because you have to test it basically. So, it is very simple in most of the case,

again I am repeating the philosophy, to CLBs you take, keep the same inputs, dump the

outputs to a loss of basically an XOR gate, and see if they match. So, it is very very

simple philosophy of testing, interconnect will be just sending the values here and there.

And there is something called IOB defect, basically the if the input, output pins. So, in

case of FPGAs the input output pins are also some kind of a blocks. So, there should also

be some test principle for that. Anyway, in this course we are mainly limiting up to this,

because IO blocks, which scan enables, boundary scans many interesting staffs are there,

but which we are not covering in the course for the sake of brevity.

(Refer Slide Time: 37:51)

So, basically let us come because mainly in FPGA most of the textbooks or lectures you

find, mainly we are concentrating on inter connect and CLB level tests. So, this is your

CLB. So, what you have to test, you have to test this you have to test this and you have

to test this, how to do that.

(Refer Slide Time: 37:56)

So, one of the different type of the staff in the LUT, you will have this sorry you will

have the LUT address lines, and LUT memory cells, it is a memory test a memory. So,

you have to test the address lines that is the address decoder, and basically your memory

cells.

So, generally this memory is not very large. In Xilinx may be most of the cases there are

4 4 is to 60 LUTs are available, 4 bit inputs, 1 LUT size is 8. But, in the older generation

this one, mainly we had four 2 BIST LUTs, but there are lots of LUTs. So, you combine

them to together make a larger function. So, each CLBs are very very simple. Flip flop

multiplexer data input output that has to be checked in a CLB.

(Refer Slide Time: 38:34)

So, we typical procedure is very simple; repeatedly by implementing a configuration that

is very very important. First you have to configure and alternatively apply an input

sequence to be configuration. You take a configuration that this is the two testers. Block

under test, you take the outputs put it is an analyze block, some other some other blocks

to give the inputs, so there is a configuration. You take the configuration apply the test

patterns.

Again basically a test pattern is represents a sequence of pair consisting of a

configuration and an input sequence, this is very very I will come back to this. So,

basically configuration download a test pattern sorry applied a test pattern see what

happens rearrange it. Then again put another test pattern, and check it. More or less the

test patterns are similar. Some inputs check or the take the outputs in a XOR, XOR series

see, if it is similar.

So, here more important is a configuration. So, in this when you call about test of FPGA,

basically it means two things. Input sequence there is the test pattern as well as the

configuration, because configuration here actually takes the main time. So, most of the

research in FPGA testing is how to make intelligent configuration, so that this testing can

be done faster. Anywhere as I told you we cannot tell about the full FPGA testing into

lectures, whether in this well try to give you some main ideas or will a preliminary

thought, then how what configurations, and how it has been can be done for testing.

(Refer Slide Time: 39:45)

So, it is a simple logic where again taking. So, let us test this two LUT l l 0, l 1 which

you have taken. So, if you look at if you look at a very general sense, so if you take a

very general sense, they are 2 inputs and basically 4, it is a 2 is to 4 memory. So, how

many functions can be there put the power force, 16 functions can be there standard

theory.

But, should I should I be able to do all those tests, you can do it, but it will take more

time. So, basically you have to decide that same inputs. So, whatever input I will give to

this, same input I will be giving to this. I will take the output for this MUX, I will take

the output and I will put a XOR that is what is the idea. Same inputs, I will giving I will

be giving to the both the CLBs outputs will be there, and I will check it.

So, as I told you for most of the cases the inputs are 2, but for high in FPGAs maximum

4 inputs for a single CLB. So, therefore checking a seeing single CLB is not very much

complex basically, because the number of inputs are not too high. So, maybe 16. So,

there can be 2 to the power 16 different functions, but still people you are try to explain

all possible functions.

All possible functions means, this is one function. So, this can be all zeros can be one

functions. So, n number of different implementations can be possible by a 4 bit 2 to 4 bit

memory, 16 different functions can be there. But, people they need do not go about a you

have to decide what type of vectors can be there. May be all zeros, I will give over here.

And I will check that this bit all the matching’s are there. May be I will put 0 1 1 0 as the

this one is 1 0 1 0 get also 1 0 1 0.

And I will do the test, test means what? I will first access this bit, I will access this bit

sorry access this bit, and there should be equal. Next, I will axis this bit, I will axis this

bit, it will be similar, and I will go for the 4 4 4 memory locations. So, it should be

similar. But, again you thing is that I cannot if I test for all zeros over here all zeros for a

the average may not be high, so I can be testing for all 0s, for all 1s, alternative 0s,

alternative 1s that is generally what people do.

But, most of the cases first they will test with all 0s, then they will test with all 1s.

Generally, two patterns they take. Pattern sensitivity basically, as I told you can take 0 1

0 1, and same thing you can try over here. So, different combinations you can try. But,

generally if you recall more rigorous, then you can try different combinations are the

inputs. But, most of the cases if this surprises with 0 0 0 0 1 1 1 1, important is

configuration.

So, this is simple. You apply you keep all this series maybe this series, and you start with

0 0 0 0, so here the answer should be this should be a 0 over here, this 0 should come

over and XOR should match. So, 4 combination 0 0 0 1 1 0 1 1, but after this

configuration has been tested; I have put try with another configuration maybe the other

configuration will be 1 1 1 0 this configuration, I may be trying to test.

So, now important is that, it is very easy to apply inputs pattern as 0 0 0 1 1 0 1 1. But,

you want to change the content of the CLB, then the whole FPGA has to be erase, and

new data has to be downloaded, so that the value will be now 1 1 1 0 1 1 0, and that can

be tested. So, therefore in this case applying this patterns is not very important, it is

simple very very simple. But, the whatever the value you want put into the CLB for test

that has to be done by a reconfiguration and reconfiguration of very very time consuming

process.

But, what is the another advantage? Another advantage is basically FPGA difference

CLBs can be test at a parallel. So, maybe this a this is actually n cross n, why it large

FPGAs happen. So, maybe these are very large components. So, this one you are maybe

in maybe in for test, this was the test, this is for analysis.

Similarly, this one also can be parallelly tested, analysis tested right. So, this is another

for tested. So, the idea is that the FPGA I can with the CLBs of the FPGA can be divided

into chunks. And basically, they can we actually parallelly tested or concurrently tested

that is why, if testing is passed. If it to have been the case that you have to take to two

CLB tested, erase it again download average pattern test it, then it would take they have

taken years to test the FPGA.

So, the advantage of FPGA is concurrent test, which is not possible in a what do I see in

a (Refer Time: 43:52) in a normal ASIC, whole ASIC has to be tested together in

sequence. But, in this case you make a cluster of different CLBs of the FPGA, which

have to be tested. And for each of the clusters, you can of test parallel like the example I

have given you.

Now, once may be with this sequence you have tested, you have to try for different

sequence called different combination in the LUT. Then you erase the whole FPGA,

download different configurations. Maybe with the same clustering, but you change the

values, so that is why, it is not very difficult. If you think that, you will take a long time

to test the FPGA. Because, if you have tested for one sequence, then you have to test for

another sequence, everyone this input combination can be given externally, which can be

very fast.

But, this is what is the content also should be change, change that content means

reprogramming that may make a long amount of time. But, again to the FPGA

architecture things can be done concurrently. Once set here, once set here, once set here,

you make a cluster of the CLBs, what to be tested, and what to be analyzed make some

common clusters, and test in parallel. The idea is stored predefined values in the LUT,

and retrieve back. There is actually called application-independent responses. Compare

the responses with multiple compare the responses of multiple LUTs by XOR gates.

So, you take you can take 10 testers together and 1 or 2 will CLB, you can make as a

analysis block. And you just you make some clusters and you repeat it, so that the testing

happens in concurrency. How you can take the D flip flop is also very very simple, only

thing is that basically in this case the configurations is to be 1. So, maybe 0 0 0 1, so

instead of directly sending as the flip flop you have to apply a clock, So the value will be

coming out to do multiplexer. Same thing you have to make is a one, this value will

come toward towards the flip flop, and you have to go for an XOR.

So, it is very simple. Just like the normal what do I say, basically you have to you are

taking the CLB, just taking the just testing CLB. Here this is just the same thing instead

of directly putting the CLB value as a output, you would just basically send it through

flip flop. So, just very very simple, only thing is that you require a clock, and there

should be done synchronously.

(Refer Slide Time: 45:56)

So, testing of the flip flop as well as your CLB is very simply done. What about the

multiplexor is trivial as you know that this is what is a multiplexer fault model. Already

we have discussed at length, when you were discussing about high level fault models.

And basically, it says that the conditions may be inter switched single condition may

come out the second condition main causes output as the permanent values.

But, in this case, we have will check for all combinations like 0 0 0 0 1 1 0 1 1 1, so

maybe basically someone fault model is that in all cases this what is going to come out,

this is never going to come out. So, but anyway if I am what about the test I have told

you, for MUX sense CLB if you do it, so the LUT you do it. Of course, both the lines of

the input lines of MUX will exercise, also the configuration bit has been exercise though

MUX is auto tested.

So, if you test for the flip flop, and if you test the CLB sorry the LUT automatically the

MUX is already tested, because this is the well known fault model of the multiplexer. So,

as of now what we have see the idea is very simple that basically test patterns are very

simple. Only it is non-trivial that how you can apply to all the patterns or this is more

challenging that how you may clusters.

(Refer Slide Time: 46:56)

Like for example, this one will actually clear it. So, in this case maybe, he is trying to

test concurrently number 7 8 all the flip all the CLBs if you can see, which are in grey

color are been testing in concurrency. So, this is a pattern generator.

So, pattern generator in this case is nothing but 0 0 0 1 1 0 1 1, all the BIST of the CLB,

it is excessing. So, this is going to has an input to 7 the same is going to input as 9, 7, 8

the thick line basically it is going to the input of 4, then it is coming back an input to 1.

So, is same input have been given to 7, 9, 7, 8, 6, 4, 5, 1, 2 and 3. So, all this gray color

FPGAs CLBs same input has been given by the pattern generator is nothing but 0 0 0 1 1

1 0 and 1 1 this is something like, these are the cases; so, one generating this all possible

combinations.

So, all the values an output of all these CLB are actually fed to XOR tree. Some blocks

have been configure to an XOR block. Every if everything is normal, everybody good

should give the same output, which has been told as the LUT. So, if everything may

check, all the XORs are 0 fine. Any error somebody some of the some of the values are

different there is a problem with the CLB.

So, maybe I can it is a one way of testing. Some of the CLBs, I am converting in XOR

gate, which is are not tested. These are the analyzers. And the pattern generator some of

the CLBs, I am using to the generated pattern generator, so it is call the PG. So, this is

one way of clustering. Now, if we again change rule, so this one will be now under test,

maybe this also this will be under test, this one will also under test, second this one will

be under test, this one will be under test, all the blocks which have been tested now

should be converted into analyzer and pattern generator.

So, basically that is actual call configuration changing. Again repeating in case of FPGA

testing pattern generation and application is very simple. Same patterns we applied to

multiple block, you should get this same answer. And there is can be XOR is to do it.

But, again you have reorient among themselves you change 0. So, you have to do

reconfiguration. Reconfiguration means erase the FPGA, download the bit file, which

takes actually takes time. So, here the philosophy is slightly different.

(Refer Slide Time: 48:53)

Now, last but not the least if you check this switching matrix so, switching matrix is very

interesting. So, if you look at the this the switching matrix, so in this case as I told you

the lines can go over here, it can go over here or it can come over here it can come over

here, it is a 2 cross 2 switches, n cross n switches are also there, 4 cross 4 switches are

also there. Similarly, this line can go over by this way, similarly this can be going in by

this way, similarly also we can have something like this one can be going by these lines.

So, basically this dotted lines are showing, which pins can be connected to with pins. So,

as I it is something like the I means any line can be going by this, it can be going to this,

it can be also going to this. So, any line can be going in these four directions. So, it is a

simple nomenclature they use west, north, east, south. And if they say that E 1 can be

connected to only other one, so it can be connected to this, it can be connected to this,

and it can be connected to this.

So, anyone it can be connected. E 1 cannot be connected to S 2, it cannot be connected to

W 2, so that is a simple way of handling. By and similarly for all like N 1 can be this

bold lines you can see N 1 can be connected to here, connected to here, connected to

here. So, N can be going in the three directions possible. So, for all the let us the same

thing is possible, so it is a 2 by 2 switch, 4 by 4 switches are also available, 1 by 1

switches are also available right.

So, in this case it can be connected to any of the four direction. So, the all the numbers

with same numbers are all connecting pins, and where it cannot go like E 1 cannot be

connected to is to they are call non-connecting pins. Now, I have to just do see whether

these connectivity matrix as well as the interconnection fine all. It is very simple. You

make a connection all possible connections you make, and then you apply 0s and 1s you

get it.

(Refer Slide Time: 50:36)

Now, you may think there is a quite complicated type of connections, lot of connections

can be possible, lot of permutations can be possible, interestingly low. Basically, (Refer

Time: 50:38) before going to that let me tell of the fault models, one is called the

permanent connection, and one is called the permanent disconnection.

So, what is mean by permanent connection that means, these two will be permanently

short, you cannot remove the connection. Permanent this connection means, you want to

make this connection, but it will not be connected. So, this may be between the

comfortable lines. So, to these are two comfortable line N 1 and S 1 may be directly

connected or you may not be able to connect any point of time.

Also there can be a fault, this is a permanent fault kind of a thing. If say this one gets

connected to this, although I do not allow N 1 connect to S 2, it can be also connected to

this point that is that can also be an error. So, this is called permanent connection a short

between any to non-connecting pairs, and with into comfortable lines there can be open.

So, you want connecting not connecting and permanent connection means, you want to

open it, it is not opening.

(Refer Slide Time: 51:34)

Now, very interestingly all combinations must not be tried or whether need not be tried,

only by three configurations everything is possible. What are the three configurations, it

is called orthogonal you are by straight. One is by diagonal, and this is call actually

diagonal two diff of connection. Why three, basically if you look at, this point can be

connected to here, this point can be connected to here or this point can be connected to

here. There is a only three ways are connection can be possible, similar for the all other

nodes.

So, I should able to see if all the possible connections are exercise properly or not that

means, I will give 1, I should get 1, I should give a 0, I should get 0 that is it. Similarly, 0

0 0 0 1 1 1, I should be able repeat it for all. So, sequential again the beauty of FPGA

testing is that, sequentially it is not required. Parallely, I can check 0 0, here also 0 0 0 0 I

should be able to get it. Similarly, I will be parallely, I will put 1 1, I should get a 1, put

1, I get a 1 I put a 1 put a 1, I get a 1, I get a 1 similarly sorry I can get it parallelly.

So, in one configuration all test, and it is will be take checked. Next, I will go for this

connection and apply parallel testing, putting all the 1 1 1 1 1 and get the value put 0, and

this is another connection. So, by three connections, three different configuration, I will

be able to test the all types of faults permanent disconnection, permanent connection.

Permanent disconnection means, what you apply a 1 over here basically, your

disconnected you are going to get a 0 over here, and that is it actually called a

disconnection base test right.

So, I am not going in to the very detailed theory, why only these three is there, there

mean formal proves that tells that by only these three connections, you can test all the

different type of fault models in case of these interconnections. But, I think I have been

able to give you a philosophy that a point can be connected to either this or this or this.

And I by applying 0s and 1s, it properly they are being transmitted to the counterpart all

faults are basically kind tested. And I can do it in concurrence this one, this be

configuration, this configuration, and this configuration are three different

configurations. But, I can take this line take this line, this line, this line in one go.

Similarly, this I can testing one go, and these four I can test in one go that is the beauty

of FPGA testing, you can apply concurrency.

Now, this has been shown basically in this slide that what is simple that is a sender and a

receiver. You send a 1, you should receive 1. You send a 0, you should been receive a 0,

then the call open and all you are not going to get it that simple analysis can be done. So,

this may be one CLB, this may be another CLB, this is pattern generator, and this is

pattern analyzer. So, similarly this can also be PG, and this can be PA, so just you send 1,

0s and your job is basically done.

Of course, there are bringing fault models also there, than if these two lines are bridging

and all. So, advance fault models also do exist for this kind of interconnect test. So,

slightly complex test patterns will be apply, but again the interesting fact will be very

much much simpler compared to normal combinational or sequential ASIC.

Only problem is that whenever you have to go change to go from one configuration to

another to another configuration, it will take time because FPGA has to be erase, your bit

map has to be download it. But, test application is very simple, because all these LUTs

whatever these blocks all the blocks, which have been placed in different parts of your

FPGA can be that is connectivity blocks can be tested in parallel that is what is the

beauty. Disadvantage is configuration changes are required, it takes time, but beauty is

that lot of concurrency can be possible.

(Refer Slide Time: 54:51)

Like here, I have shown you this one example, this your and somebody’s people also call

scheduling this is test application as well as scheduling configuration and scheduling

basically. For example, say you can see that this guy’s giving as the input, this guy’s

giving the output, and this guy’s going to test it. Similarly, this is also giving an input to

this guys is blue are on the test, and this guy’s actually doing the analysis, this is under

test, under test, under analysis.

So, basically which is being test it is testing. So, basically it is analysis, it is analysis. So,

this one configuration; in the another configuration, the just the rolls are reverse. So, you

have to properly configure and properly schedule at which node will be in test mode, and

which node will be in the analysis mode. And you can see because of the symmetry

similar test patterns can be given and lot of parallelisms can be obtained.

(Refer Slide Time: 55:35)

So, there is and this one way of testing. Some people also thought in the other way,

which is called global input output. Like instead of basically putting these test analysis or

everything in a single on the FPGA itself, they try to make a global connection. Like this

is one configuration of different connecting blocks. So, you can see this input will be

going over here, this will be going over here, this input will be traveling over here,

travelling over and coming at the out output. So, this is one way of travelling.

So, in this case basically what they are trying to do, they are trying to basically in this

case also you can see, this is going to the input output. Then in what is this matrix

basically, they are trying not trying to put any analyzer on the chip itself. What they are

trying to, they are trying to make full utility of these blocks, apply the test patterns over

here. And get the test pattern out going to the output of the chip while define

configurations of your connectivity blocks. So, in this case what is the thought behind

this is analysis and test pattern generation, I will keep of chip.

So, in this case what happens basically the idea is that number of configurations will be

less. So, here what happens as if is my look at it, so the roles are being continuously

change analysis testing, analysis testing, in this case all are under test. So, basically what

happens all the test patterns are applied over here. And these are given at the output. So,

your ATE is the test pattern generator, this is your TPG and this is your response

analyzer, which is off chip. So, in this case the number of test configuration will be less,

but again are nothing is a magic in any science.

So, in this case what happens basically test pattern generation is complex, there can be

lot of controllability, observability problem, just like because is a now become a

combinational or a sequential circuit. Because, test patterns are applied from the output

input and the out and the values go out the output any and you have to go a match in the

ATE. So, normal become a normal sequential combinational circuit test. Problem here is

that there is no standard fault model, like your stuck at fault model or bridging fault

model etcetera.

So, even if you say that configuration global IO, you can use a technique when you can

you should not chase the rows like in the previous approach basically some block is

tested, some block is analyzer; so, in this case to avoid such reconfiguration. All the

inputs are given from the ATE proper routing is there, and all the answers are thrown out

of the chip, so that you analyze outside.

But, again as I told you here ATPG is more complex, test pattern generation is more

complex over here, application is simpler, then analysis also simpler, because they are of

chip. But, test pattern generation and basically what values to give, what controllability

and observe becomes a major problem. Because, there is no standard stuck at stuck fault

model is the more challenging way of handling it, but still I just mention it to you,

because this was another direction of thought that if I try to bring every output to the

output world, and try to do the test.

The major problem as I told you again one thing, I forgot here basically in that case, here

this type of circuit is more suitable. This type of architecture is more suitable, if you are

testing for application dependent FPGA. In this case, your one of the beautiful thing we

found out of the FPGA testing was a symmetry. Same pattern can be applied to all, so

that was actually bringing of the beauty of concurrency base tested.

But, if it is a application-dependent circuit such concurrency will not be there, because

all the modules will be implementing different different functions. So, in this case may

be this global sending the value, taking out the value will be a easier way of solving the

problem. But, again repeating this is not as simple as you are doing in normal sequential

and combinational ASICs, because there is standard fault model.

(Refer Slide Time: 58:59)

So, with this we come to the end of this lecture. So, what you have found, ATPG is very

trivial in case of FPGAs, same for all LUTs or all kind of these routers. So, it is simple

parallel testing. Important is intelligent configuration for faster test. So, you have to

reorient very quickly, and you should to minimal reorientation. So, are in one orientation

or in one configuration, you can do maximum testing, so that is why many people and of

course, it is more or less BIST kind of an architecture, because on chip test pattern

generation resources on chip. Some of these CLBs are configure, some of the CLBs are

actually configured into test response analyzer.

So, basically FPGA testing is some kind of a BIST in itself. But, still it can again I

should mention in the end that this type of architecture in which case the input or output

are from the external world in a FPGA are basically mainly applied for application

specific or application dependent FPGA.

So, with this we come to the end of this lecture. And I should again tell you that we are

here in this two lectures would be show you the tip of the ice berg, because if embedded

system based, programmable devices based FPGA implementation is slightly an newer

concept, and lot of works has to be still done or is being undergoing. So, we are in these

two lectures, we will not going to the entire picture we cannot give you. But, rather we

will try to show you in if you are having reprogrammable or hybrid kind of software

hardware co-implementation in FPGA, in which direction on or what is the paradigm

shift require.

So, with this we come to the end again. And the next lecture, we will try to see

something more on testing of application dependent FPGAs or if you have a some kind

of a processer in the FPGA or in the hardware itself, how it the software implementation

can be used to test itself.

So, thank you.

