
Embeded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 34
Concurrent Testing for Fault tolerant Embedded Systems – 1

Part-3: Embedded System Testing

Hello everybody, as we know that we are in the 3rd part of the course which is on

testing. And within this 3rd part on testing now we are in the advances of embedded

system hardware testing in which case we have already the discussed about two main

aspects.

(Refer Slide Time: 00:35)

One is about some kind of very realistic fault models which are required for advanced

embedded system hardware like real time fault models or we can say delay fault models

which meet the real time requirements.

Then we have seen that basically what is called built in self test that as these fabrication

technology of the embedded hardware are becoming more and more sophisticated, so we

have to test each of the devices before this data. And we have discussed at length in the

previous lecture on built in self test. Now, with the next two lectures we are going to see

a very very important concept and a very new concept of testing which is called online

testing or concurrent testing that is very very important.

(Refer Slide Time: 01:18)

So, that is basically see or this first two test cases that is lecture 1 and some sort is a

lecture 2 basically or all the basic concepts of test we have seen till now are something

called offline testing. So, what do you mean by an offline testing? So, basically what do

you mean by an offline testing and base we can categorize both of them in this part of a

offline test because, offline test is something like when the device is not doing is regular

activities.

Now, the first basic concept of test which was we call as manufacturing test or which

also call it as the ATE based testing. So, in ATE based testing what happen? Test patterns

are generated beforehand by or ATPG algorithms and then the device is test into the

automatic test equipments, patterns are applied to the circuit and that is device and the

expected fault free response or analyze by the ATE.

So, basically it requires something called a non-operational mode of circuit and of

course, this is not at all deployed in the system at all. So, basically already discussed so

many times that ATE based testing is devices fabricated pushed in a tester and you test

by physical signals.

So, of course, there is no question of operational mode of the circuit because the circuit

is not yet deployed in the system. So, the main issue here is that you can test it only once

after it is manufacturing. So, if it develops any faults during it is lifetime this take place

test these test technology cannot cater to that. So, for that we have something which is

called built in self test. So, a difficulty of ATE based testing is basically ATE speed

testing is bit difficult or with expensive I should say because more number of test pattern

means more high speed ATEs are required.

(Refer Slide Time: 02:54)

And also secondly, basically the we should also add that it is an offline test. Offline test

basically in the sense that if the system develops a fault after it is deployed in the system

ATE based testing cannot handle that. Secondly, to do this what we have seen to address

such cases we have seen there is something called a built in self test. So, built in self test

basically the test pattern generator and the test response analyzer are on chip circuitry.

And what it allows it permits the permits to test the circuit under test every time when it

is powered on. That is first is called offline or simply I should call it ATE based offline,

after manufacture the chip is tested sold to you. Then after that is some manufacturing if

some defects come up after it is deployed in your system you have to use something

called built in self testing.

(Refer Slide Time: 03:41)

But, again always in both the cases like ATE based testing or built in built in self test

based testing we call it as offline test, because we need to withdraw the circuit from

normal operation for testing which always may not be permissible. So, I mean I am not

going to the second clause right now, but this DFT base test, this ATE based testing or

BIST based testing what you have to do? In ATE based testing forget about the normal

operation of the circuit even circuit is not deployed here.

 But even in case of BIST what happens you have to halt the normal operation of the

circuit because already we have seen the architecture yesterday that is a multiplexer. So,

either you give the test patterns from the hardware pattern generator or the normal inputs

come through. So, in that way you have to stop the operation of the circuit and then you

apply some patterns or in fact, you should not call it stop basically even before the circuit

starts it is operation you have to apply the BIST.

 So, while the BIST is going on normal inputs cannot come. So, at many points of time

sometimes not only BIST is applied at the startup, in many many cases nowadays people

apply BIST in intermediate points of time also there is if you have some ideal time of

your circuit you can apply the BIST and test. But in all these cases you have to be very

very important to remember then normal circuit inputs cannot go. So, the circuit has to

withdraw itself from the normal functional mode or if it applied at the start time, so of

course, the circuit has not started it is operation yet.

So, all these test technologies which you have discussed at length in the last 2-3 weeks

are basically all offline. Why offline? Because the circuit is not doing normal operation

or basically or it is not yet deployed even. Even if you are talking about BIST still the

circuit has to stop it is word or it is applied at the start up. So then the circuit cannot or

the in the all these procedures the circuit cannot be tested why it is doing it is operation

so, either at manufacturing after manufacturing or just before you starts it is job.

Now, a very important question comes. See I have a very very important till mission

critical application like a anti locking break system or it is used in automatic avionics

control. So, this system is through it is operation and mean time of fault develops. So,

what you will do? So, the direct answer should be I should stop the operation

immediately and as soon as possible I should switch to a redundant module. So that is

ok, that is the only way you do, that is actually fault tolerance.

But, there is someone to detect that the fault has occurred online that the and in that case

you cannot stop the circuit from doing it towards to test it. In other words, I cannot say

that I hey I want to test this circuit, so stop it is operation I want to test it if only find then

you can start it is operation again. That is known as is not possible in mission critical

must be, in any of the system is basically because if you want to stop somebody’s job

then basically either it will be delayed we will lead to deadline misses and so many other

things can happen in picture.

So, in most of the real time systems or real time; real time embedded systems there is no

liberty to stop the operation of a circuit and test it on the run and then again say, the hey

it is fine you will start the operation again. So that actually philosophy will not hold in

any of the real time embedded systems because we are very hard placed on timing

requirements. So, therefore, the another class of testing which has to be a very new

concept of test has come up which is called online testing OLT or also called concurrent

testing.

Can be define as a technique to monitor a circuit and detects the of occurrence of a fault

within a finite time of it is or occurrence during it is normal operation, very important to

observe the clauses. It is called monitoring; circuit is doing it is job in the monitoring

what is happening because the all offline testing you stop the circuit and you can apply a

test patterns at your will. Because, ATPG means as you have seen you are going to

generate very very good test patterns, that this test patterns are very good, they can detect

all the faults and their minimal set of test patterns so you can apply that. But for that you

have to stop the operation of the circuit and apply your desired patterns.

But when the circuit is doing it is normal job then basically what? Then you cannot apply

your required patterns, patterns are already coming which is it is normal flow of

operation. You can just observe or monitor this circuits operation for those patterns and if

any fault is detected you have to do some action. So, therefore, there is no test pattern

generated to generate test patterns in online test. Online test basically you cannot stop the

circuit from it is operation, so there is no test pattern generation required because you

cannot apply any test patterns at your will.

Normal inputs are coming and you have to observe whether there is some deviation from

the normal behavior or some fault is detected and then you have to occur a decide the

occurrence of a fault within a certain finite delay. Why I should say finite delay? Because

a fault has occurred and you are not able to detect it for years, will actually lead to

catastrophic situations.

Because in case of online test you do not have a you cannot apply your desired test

patterns so that you can immediately detect the fault that you cannot do. You have to

only relay on whatever patterns are coming or input patterns are coming and you have to

observe the circuit based on some kind of a some kind of techniques as we will discuss

today and then you have to declare whether the circuit is having any faults or not. And

that also we should our techniques should be such that after the occurrence of the fault

you should do it within a very short amount of delay.

So, they are saying there is no test pattern to generate test set because you cannot apply

any test set, but of course, there are lot of DFT circuitries which will basically use this

patterns that are normally coming to the circuit and use it to find out whether there is any

problem of problem in the circuit or not. So, the philosophy I can till every nice nutshell

that in test mode you can apply your patterns and get the circuit testing.

 But in normal in online testing you do not have any patterns because you cannot apply

any patterns. So, whatever normal patterns are coming in it is normal course of operation

you have to use it and you have to monitor, basically you have to monitor the circuit and

find out whether any problem is there or not and that has to be done without stopping the

circuit.

So, if you cannot stop the circuit means you have to totally relay on whatever inputs are

coming in normal codes and based on that you have to detect whether a fault is

happening or not. So, it is a very very difficult way to do it and very expensive also

because you have to put lot of extra circuitries to do all this. Because, in case of the

offline test we have seen the extra circuitry in sequential circuits are nothing but your

scan chain and you have to find out basically your patterns and you can analyze that, but

in case of a online testing things are becoming are extremely difficult.

(Refer Slide Time: 09:52)

With this I can just take you 2 minutes for a very interesting technical story on this I

think we all know about our very famous Cardiac Surgeon Devi Shetty. So, once he went

with the car to a person for repairing then the car mechanics said that we also repair the

car heart you also repair human heart, but your and our pay difference are so high. So,

why is it? The answer was very interesting that you do a offline repair on the car and I do

a online repair on the human heart. That is you stop the cars operation, you remove the

engines and repair it, but I cannot do that on the human being.

Human heart is running and I have to do the repair or test on that so that is the

philosophy of online and offline test. Offline test is the pretty simple job you stop it and

test it, but online testing is the circuit has to do it is normal job among the in that period

of time you have to do it. And nowadays it is a very very important concept coming in all

embedded system because all mission critical systems are having basically embedded

electronics, car avionic, car crews, obvious automatic breaking system, even the whole

aircraft control is based on embedded controllers. So, it is a very very important stuff

which is coming into embedded system testing.

So, we have dedicated two lectures on that. So, today we will see some of the techniques

and in the next class some other kind of techniques were online testing or sometimes also

called concurrent testing of hardware in embedded systems. Basically, the if you look at

your online testing of VLSI or embedded systems can be mainly categorized into

signature monitoring in final state machine self checking design partial replication and

on line BIST. So, today basically we will try to have a look at the first two because the

other two will be looking at the next class. They are slightly simpler, in theory sense

compared to the first two.

(Refer Slide Time: 11:28)

So, what do you mean by for signature monitoring base test techniques for online

testing? So, whenever we call a online testing in terms of finite state machine modeling,

so we all know that all sequential circuits can be model in terms of finite state machine.

Then we find out some kind of signatures in the finite state machine model of the circuit.

And then basically the signature is such that the runtime signature of a faulty circuit is

different from the normal circuit. And of course, you cannot I mean if you just arbitrarily

take any input patterns or sorry any input sequence or any state encoding sequence that

will not be a signature.

So, signature has to be very well quantifiably found out from the FSM model. That is

circuit is there, you make an FSM model and therefore, and then very carefully set select

some state and state bits or output bits so that the normal flow of the circuit and the

faulty flow of the circuit the signature will be different. Now of course, if I take all the

output bits and all the state bits then of course, if there is any deviation from the normal

behavior you can catch it, but in that case your monitor itself will be the circuit again.

I will give you can example and I will tell you. That again one thing you have to know

that whatever extra circuits you are using for monitoring should not be as large as the

circuit itself because then nobody will take your technique. That one circuit is given to

you another circuit you are reply applying to monitor it which is a as large as itself

because, then who is going to have a fault probability your circuit under test or your

working circuit may have a fault and if you have a very large circuit also to monitor it

that may also have a fault. So, nobody can keep a faulty or a similar kind of a fault nature

circuit for it is monitoring.

Something like this a circuit, a x is there which is doing your job you are putting another

similar circuit to monitor it both are equal probability of having failures online so, you

will not relay. So, basically what happens, so in this case what we do we take a circuit

under test which is your working circuit which will be quite large and then you take a

miniature version or you take a miniature modeling or miniature sized online tester to

monitor it.

And it is expected that and statistically also we have found if a circuit is more the larger a

circuit is more number of gates and more number of faults it will have. So, higher

probability of faults they were or high probability of development of faults in a bigger

circuit is there compared to a smaller circuit.

So, our philosophy is that for online monitoring the circuit under test should be large and

the monitoring circuit should be small. So, therefore, we cannot explicitly I mean have

such kind of signatures so that the monitor itself becomes as large as the circuit. So, we

have to take certain bits of the circuit state encoding, certain bits of the output so that you

can make a signature so that if the normal circuit is there and the faulty circuit is there

the signature should be different in the faulty circuit. But again this monitor size should

be small.

And there is something called a signature invariant property that is this the BIST we will

be used to may make a signature should be such that the normal and the faulty behavior

should be should be different. But always it may not be possible just like we have seen in

the last class or in the few classes already we have seen then that there is something

called signature compaction in BIST you have seen that there is something called output

compaction. We do a output compaction to reduce the law so, sometimes there may be

aliasing.

So, similarly in this case if you are making a signature that is nothing, but lousy

compaction so, sometimes some faults may be alias. But still, there are lot of techniques

to improve such signature invariant properties so that even and there should not be very

less or no aliasing. But anyway those details coding theory will not be going into rather

this codes we are going to give you a broad idea than what is a signature monitoring

based techniques and you can easily appreciate that there will be aliasing.

(Refer Slide Time: 14:56)

So, for example, this is some circuit and this is the final state model. So, you can see the

state bit represents 0 0 0, 0 0 1 and 1 0 1 and if there is a fault there is a back loop. There

is a self loop which is in the fault and it is in normal case there is no fault. So, this is

(Refer Time: 15:11).

Now, you can tell me that if I want to make a monitor basically you can what you can do

is that if you say that I can just observe that there is that there is a basically the it should

go like this and there should not be any kind of a loop like this I want to make a circuit to

monitor. So in fact, you will be landing have been modeling a circuit like this. What I

mean to say is that if you want to observe that there should not be any kind of a loop in

this position and if the loop comes I will declare, it is an error.

So, I want to make a monitor like this that means, basically you are making a circuit like

this to monitor this. So, that is an explicit monitoring on the circuit which actually do not

like because of the area over it; rather we would like to take a signature. So, if you

assume that this is the only fault that can happen or the fault effect basically. So, what we

can do? We can you can make a signature which would be comprising of this or the last

bit of the circuit. So, what is the signature pattern if you see? 0, then 1, then again 0, then

again come back 1 and again it is a 0. So, it is a alternating 0s and 1s; 0 1 0 1 0 1 that

port so, this is a normal this is a signature on the normal case.

But in this case what happens if there is a loop over here. So, signature will be 0 1 0 and

there will be a repeat 0 so, ifs the repeat 0 you know that is a fault. So that now you

really observe that to monitor the same circuit the circuit size will be much much lesser

than the circuit corresponding to this finite state machine.

But of course, as I told you there can be lot of aliases. In this example there may not be

any aliasing because, but I think from the because this is a lousy compaction based

scheme. So, from the BIST examples I have given you can easily appreciate that there

can be some kind of aliases. And there are lot of other techniques to this remove this

alias fault aliasing, sometimes they modify the circuit itself so that the invariant

properties preserved.

So, what is the invariant property? Invariant property is that whatever signature you

select like or this case signature our case is the last bit of the circuit LSB of the finite

state machine states. So, the signature invariant property is that with this failure or

whatever the failures or circuit faults you have consider the normal signature will always

be different from the fault signature. So, always it may not be possible as I told you for a

given signature and a given circuit. So, there are lot of techniques means which is you

can read through which are called anti; anti means techniques for I mean which are

actually basic idea is called to maintain the signature invariant property or maintaining

signature invariance. There are a lot of techniques to do that sometimes we change the

signature, sometimes we modify the circuit itself so that this invariant properties always

get maintained and there are some other techniques to do that.

But, in this course or in this slide I have try to give you an idea what is a signature and

what is signature invariance and how to maintain a signature invariance is a long story

which are not going into. But of course, you should appreciate that without such ensuring

such signature invariant properties not all faults will be detectable there can be aliasness,

aliasing. But why do we take a signature? To reduce the size of the monitor circuit. So, in

this case you I have shown you that you have to this is this is a signature of a alternating

0s and 1s this is a signature, any error you have we will get double 0. This is only

assuming that there are only one fault of this nature in the circuit.

(Refer Slide Time: 18:09)

So, whatever I told you to obtain a signature with signature invariance property this state

assignment procedure has to be modified to take into considers related to such an

invariance. There are lot of theory in picture so, in which case if you say that the

alternating 0s and 1s is my signature and that is that should be the invariant one.

So, there lot of techniques the state bit encoding, state bit modification and say a several

other ways which will require to change the circuit structure or redesign the circuit

structure so that such invariance is required.

And many people may not like this because you can do a lot of things with the DFT

because this the monitor is the test design a sperogaty, but I am the circuit designer and

this is my finite state machine design. Without changing the basic functionality if I do

certain kind of modifications I maybe very unhappy about it but of course, you cannot

change any functionality of the circuit.

Like for example, I will give you this is a 3 input and gate whatever job you do with this,

this is also the same job will be done by this structure also, but you may say that there

can be a delayed in there may be slight delay increase because of the two levels of two

levels of the circuit.

So, in that way people sometimes modify the circuit design or state encoding so that the

invariance is maintained. And within the invariance maintained no there will be no fault

aliasing. But we call it actually intrusive nature of a circuit that is you change the circuit

itself for online testability. So, sometimes people have not people do and appreciate

much about the circuit invariance or circuit sorry circuit intrusiveness. So that is one

challenge in finite state machine based online testing that it changes the circuit at many

many points of time.

Finally, also the second problem is that finite state machine is not a scalable model. So,

for very large circuit you cannot at all make a, I mean cannot make a finite state machine

itself. So, no question of how do you test it using the signature monitoring property of

FSMs.

So, it was a very good starting point for online testing circuits. For this was one of the

first propose methodology which are done online testing for small circuit. But when

things started becoming larger this technique could not be applied, mainly for

scalabilities issues and also even in the beginning phase also some people are not happy

with it because, they were asking you to change the circuit structure to maintain

signature invariance.

(Refer Slide Time: 20:16)

Then there is some anther concept came up which is called self checking design. A self

checking circuit can be defined as the ability to verify automatically if there is any fault

in the circuit without the need for externally applied test patterns. So obviously, here also

it is same case there is no externally applied test patterns only you have to look the look

at the monitors. But, they have given a very specific name for such class of circuits in

which case without applying any external test patterns you can obtain the circuit, you can

derive whether it is a fault in the circuit. And they use they encode the circuit outputs

using some coding theory some codes like parity codes, Berger codes, m out of a n

codes.

Even you can tell me that signature monitoring is also some kind of a self checking

design because, there is a signature invariance, you have to check just the signature

invariance property. But, I mean self checking design was a new term which was coin

after this finite state machine signature monitoring, in which case they say that a circuit

is self checking if you are able to automatically determine whether there is any fault in

the circuit without any applied pattern.

In how; all the outputs of the circuits will be always encoded by a particular mechanism.

It will be either parity, I think we all know about parity codes. That is the output if

normal we will follow a odd parity or a even parity. Sometimes there is a hot one

encoding so, the output of the circuit will always be a hot one encoding or m-out-of-n,

like if there is a n bit output always n number of ones will be there for all cases so that

way the output of the circuit will be always encoded by a particular encoding I mean

encoded theory by coding theory and encoding. And any violation, any fault in the circuit

with lead to a non-code word so that is the basic idea of a self checking design.

(Refer Slide Time: 21:52)

So, we will take an example so, it basically looks like that. So, the functional circuit

inputs a normal flowing inputs whatever is coming you have no control on that, but the

outputs will always be a code word. Either is a parity code m-out-of-n code, Berger

codes many coding techniques are there and there will be there. And this is a checker; the

checker will just check whether the output is a proper code word or not even parity odd

parity m-out-of-n, hot one. So, if the code is matched it will say that there is no error. The

idea of such a circuit is that if there is a fault and the circuit is effected by a fault it will

go to a non-code word.

Like for example, if I assume that is a odd parity circuit so, this is a odd parity circuit.

So, always the output will be the odd parity, if there is a fault in the circuit it will just

become a even parity. But it can never happen that under fault there will be a another

code word can come therefore, example I say that for input one this is the output for

input two under normal condition this should be output not by a fault input two cannot

lead to this one. If by input two and failure if you go to this pattern as the output then

your circuit will say it is normal, checker will say it is a normal because this is a odd

parity, but that will never happen in a self checking design and the faults consider.

Later what will happen, if there is a fault I two can be mapped to something like this

which is a non-code word, so that is the basic idea of self checking circuit is the code

words. That is the if there is a failure the output will be a non-code word, but on the low

circumstances the output will be mapped to a wrong key code word so that is how you

can easily detect the faults. But of course, again some invariant properties that is the

invariant property that this should happen, if there is a fault it should be a non-code word

if there is a if there is no fault always should be a code word which is correct.

But there cannot be a mapping wrong mapping to a code word. With the fault you cannot

map one odd parity code to another odd parity code it will not happen it will go to a even

parity. To get all this basically the circuit will have some kind of a invariant property

sometimes again the circuit must be modified and some stuffs are there as we will see.

So, but the means we are not going to as much depth of the theory, but finite state

machine modeling requires a very huge amount of circuit change into obtain the

signature invariant property.

But in case of means self checking code based output theory this change is very very

minimal as we will see. So, therefore, this is a more popular architecture which is applied

for online testing, examples we will making things very very clear. So, I take a simple

half adder circuit so, we know that this table is basically for your half adder circuit, I

think which you all know this is your half adder circuit.

(Refer Slide Time: 24:21)

So, 0 0 sum carry 0 0 0 1 sum will be one carry will be 0 and for 1 1 the sum is 0 carry is

1 very simple. Now, we know that in this case of a circuit any of this inputs can come

sorry, any of this inputs may come and we have no control on the inputs, but still we

have to detect whether there is a fault or not. So, basically what I will do there are say

that I will use a parity code. So, what the parity is? They have taken an even parity.

Now, the property of this circuit has to be made such that if there is a fault the circuit will

be odd parity and if there is normal there will be even parity. So, I will add an even

parity, so 0 0 0 all other cases will be 1, right. So, this is this function for sum, this is the

function for carry and this is the function for parity that is x or y. Now, this is your

circuit, let me zoom it for you, if you look at it this is your circuit.

(Refer Slide Time: 25:08)

Now, very interesting this is your cut this is the device under test inputs are there and

basically if you look at it this is your parity generating circuit this is your parity circuit

and we have already seen the parity circuit here is nothing, but x or y. So, I have put an x

or y in it and this is your parity output, correct.

And this is a checker this checker job is nothing but it just checks even parity that is it.

So, now, you can see of course, the size of the cut is much larger than the circuit of a

parity generator and you can assume that if the circuit is quite large your cut will be

much much larger, cut in the sense is circuit under test which is your basic circuit

functionality which is doing your mail function of the circuit.

And the parity generator which is the DFT circuit will be much much smaller than this,

so you assume that the failure probability here or the failure probability here is much

much lower than the circuit which is large in nature. Because, statistically it is found

larger a circuit is more number of gates larger silicon area so the fault probability is are

higher. So, if you apply the pattern 0 0 so, you will find out that basically sum and sorry

sum and carry are 0 and the last pattern parity is again also a 0. So, it will find out that

the parity is all 0 even parity knowing.

Now, again let me just take a stuck at fault in this line. So, it is the stuck at fault in this

line so, basically here x and y will go. So, this is the fault over here inside the cut and

one more assumption I should tell you we are not going to the exact proof, but here again

we are assuming a single stuck at fault principle either the fault will be in the cut or the

fault in the circuit or the fault in the checker.

(Refer Slide Time: 26:35)

And it has been shown mathematically that this checker based scheme if there is a fault

in any of the either 3 circuits this faults can be detected by the scheme, not only the fault

can happen in the cut it can also be there in the parity generator also in the checker. So,

anyway such a stuck at single stuck at fault is there this cycle will give you an error. But

I am not going into the theory of this because it involves lot of coding theory principles.

Means, whenever you talk about VLSI testing the areas after BIST or starting from BIST

is the entirely involved in a very very complex coding theory.

So, why it happens, what is the proofs of all this are very very involved and we have

separate courses of coding theory on that. So, for the for this course I would request you

just you take the word from me and just assume that this is the case, because most of the

testing errors relay on this theory and if very interested ones can go for the proofs. But

we all know that this property will holds we can we can apply in the test. So, for the time

being the fault can be anywhere only one fault at a time s, basically the same property

will hold.

So, in our case we are assuming a fault in the cut because this is main of the

consideration. So, if you look at it your output will be basically 1 0 1 because this is

XOR, so 0 XOR, 1 is basically 1 so, now, this will be 1 0 0. And basically what happens?

So, the output is 1 0 1 means a 1 0 0 so, is a odd parity through the fault it is going to be

detected, right. So, this is a very simple way of handling parity.

So, in parity what happens? This parity checker is such is augmented with the circuit so

that if the, so that with this expected working output basically it will add a bit here so

that always in the normal circumstances of the cut or it generate a circuit the output will

be a even parity. Any stuck at faults basically anywhere as in the cut or parity generator

will lead to so called odd parity it will be detected.

Now, so it seems that parity is a very good way of handling it just add one bit parity and

your job is basically done. So, I even we are applying any input patterns if I observe any

problem in the output your job is done. But, before going to this we all know the parity

based coding technique has some kind of issues what they are. Say for example, there is

a circuit something like this there are lot of circuits over here and I mean I have a parity

stuck at fault over here and I am using a parity bit encoding and may be this is a gate

which is a fault over here. So, it is output of two circuit cones, cone means I mean this

circuit you representing these are gate whose over the output primary output of this part

of the circuit depends on this another primary output also depends on the same gate.

So, let us say that due to this fault it changes the output from 1 to 0, right and the same

time as this gate is depends also depends also controls another output primary output of

the circuit. So, also it changes the values from 1 to 0 and we are assuming that there is a

also a one more line which is always giving you the one which gives a answer is

basically correct. So, you should have got the answer as 1 1 and 1 right, but due to the

modification it will be 1 0 0. And we are assuming that we are having a or as in the case

we are using a even parity. So, here also you were using even parity so, also we are

having a even parity over here.

So, even parity means which will be generating a 1 over here and also it will be

generating a 1 over here, this is the error case and this is the normal case. So, this is your

expected output say that it is a all ones are there. So, this will be the parity bit will be 1 to

make it as a 1. Again due to error what happens basically this 1 is anyway generated and

this 1 is again this one should be 1 1 1, but actually the output you are getting as 1 0 0.

But, still again it is an odd parity even parity sorry the even parity 1 1 1 is a even parity

so, I have to add a 1.

Here also one is added because the output was expected to be 1 1 and 1, but due to fault

there are two bit flips. So, two bit flips from 1 to 0 and 1 to 0. So, even that is what and

again you are not able to detect this why? Because parity is a single bit error detecting

code I think is a very well known theory. So, what happens if there two bit flips? So, one

bit flips which is in the case you can very easily detect because it is changing from even

parity to odd parity, but here are two bit flips in this hypothetical example 1 to 0 and 1 to

0.

(Refer Slide Time: 30:37)

So, if there are two bit flips basically you cannot do anything because the parity is

maintained. So, if there 3 bit flips you can easily detect, 2 bit flips you cannot detect

because still the even parity will be maintained 4 bit flips we cannot do that. So, we all

know that parity is basically a single bit or even number or odd number of errors which

is can detected.

So, but it can always happen that there can be a gate whose who is controlling two

outputs of the circuit and basically it is affecting both of them. So, in that case parity

circuit parity error detecting codes will be a huge aliasing in fact, that is true. Parity

technique has lot of a aliasing properties, so in many of case the fault coverage will be

very very less even less than 50 percent or even lower because wherever there is a fault

which is having multiple gates and there is and we also sometime call this unidirectional

error that is from 1 to 0 and 1 to 0 same direction in the error happens. So, the parity is

balanced and you cannot be able to detect it.

So, people also we will first tried with parity bits parity way of detecting circuit faults

online, but then we find out lot of aliasing property as a expected and then they started

moving to more advanced kind of error detecting codes. So, we will see there, this as I

told you the literature is huge, but today we will see another one which is slightly better

than with parity bit parity technique. Before that we will just give you a small definition.

So, basically one definition is called multi bit error. So, what is actually a multi bit error

means the there is a change from 0 to 1 or 1 to 0 and it should happen in more than 2, 2

or more number of bits very obvious. And there is something called unidirectional error;

unidirectional error means basically either the error will be in all the bits will be from 0

to 1 or 1 to 0, but there cannot be two lines where one is the error here and one is the

error here. So, we will see later today that multidirectional errors are very very difficult

to be detected, unidirectional error means both way 0 to 1 or 1 to 0, but there are multiple

bits can have it.

But again I have seen you have seen in parity that in parity if there are two such

unidirectional errors also it cannot be detected. Unidirectional means all 0 to 1 or 1 to 0

same direction in the error changes. And I should tell you that why it basically why such

means why such type of failures are slightly less because as means will have predicted

that unidirectional error are more possible end circuits there statistical finding.

So, bidirectional errors or multidirectional errors means some of the bits will go from 0

to 1, someone going to 1 to 0 then extremely difficult way of such type of faults are very

very difficult to detect and you require a very sophisticated coding theory will do this.

And more sophisticated test codes you are going to use more sophisticated will be your

code generator circuit will be and your checker circuit will be. I can do that, I can use a

very very advanced codes and I can find out that it will detect multidirectional errors

multi bit errors, but again this size will be larger and your exercises will be few type.

So, basically, so today we are going to look at a simplified case in which case we are

saying that it is basically nothing, but a multi bit error is possible, but again as you are

again repeating multi the bit error is not possible to be detected in parity 2 bits not

possible, 4 bits not possible even if it is the unidirectional error. And multidirectional

errors of course, if one bit goes from 0 to 1 and one bit goes from 1 to 0, so parity cannot

do anything because the number of 1s are balanced, correct. So, because there is will be

no parity change but, so anyway. So, we have already discuss the disadvantages of parity.

Parity is mainly basically for odd number of bit changes that also unidirectional, right.

So, now, we have been focusing on slightly modified slightly making the problem bit

tougher where there are bit flips, but the bit flips are unidirectional all from 0 to 1 or 1 to

0, but it can be in the more number of bits. So, multi bit unidirectional error is what you

are going to consider. And further the parity bits of course, will not hold because already

we have given the example because, if two bit flips are there then it will actually change

the for it will still maintain the odd parity or even parity, correct.

So, now, basically we will see that there is another type of codes which can handle

multiple bit, but unidirectional codes. They are actually we called unordered codes or

unidirectional to detect unidirectional errors the codes are called unordered codes and

some example of unordered codes are m-out-of-n code. So, m-out-of-n code means if

this number of bits are say 1, 2, 3, 4, 5 so, out of that we can say 4 out of 5 code. So, 4

out of 5 code means basically only 4 will be 1.

So, this is one way out of n codes of 1 1 0 1 and so forth and finally, you will have 1 1 1.

So, any of the 4 bits will be one among the 5 codes this is actually called 4 out of 5 code.

That means, if the circuit does not have a fault the output will always be following this

code of 4 out of 5 and if there is an error it will be having some other different codes

which will not be 4 out of 5.

Another is called Berger codes; in Berger code basically is the binary representation of

the number of 0s in the information part of the main output of the circuit. So, in this case

number of input ones are 1, 2 and 3 so, the Berger code will be sorry 1, 2, 3 ok. So, it be

the output should be 0 1 one not 4. So, as many number of ones in the output sorry in this

case is number of 0s, so anyway you can take a either 0s or 1s. So, number of 0s are 1, 2,

3 4 so, the value of C is 4 or you can also take the number of 0s also.

So, this will be the information part and instead of the parity part or some other part or

that is the code part we have to put the binary component, this is also a unordered code.

We will tell you what is the meaning of exact meaning of unordered codes right now?

But, for the time being we have to just learn the fact or till now we have carried out the

fact therefore, parity bit the problem is it cannot have multi bit multiple bit errors may

not be detected and of course, multi directional faults cannot be detected at all.

And also we will see later that multidirectional faults are very difficult to be detected, but

still can we try to do something about multi bit unidirectional errors. So, in that case we

are trying to focus on a new type of code coding theory which is called unordered codes.

We will see the definition, but before going to your definition of an unordered codes

basically, we are basically telling you about two code coding styles one is Berger and

what is m-out-of-n code. So, I think we just remember this then we will go to the next

slide.

(Refer Slide Time: 36:47)

So, what is a unordered codes? Unordered codes are nothing but there are two codes

which cannot one cannot cover the other. So, what do you mean by a code covering? Say

for example, I have the numbers like this one, 1 1 0 1 and the other number is basically 1

0 0 1. So, in this case you can see here 1 1, here 1 1 and basically this is a 0 and this is a

1 over here that means, this guy which is x has one in all the positions in which the value

or the vector Y has a 1. So, X has a 1 here, X has a 1 over here, here 1, 1 is extra and it is

a 0 over here so, you can say that X will cover Y.

But, of course, means the idea is that X covers Y means that X has a Y 1 in each bit

position where Y is 1, so X will cover Y. But, unidirectional codes are something which

nobody covers the other. For example if you see X is 1 1 0 0 0 and y is say 1 0 0 0 1. So,

in this case you see this is X and this is Y. So, this guy has a 1 over here and it is a 0 over

here this are matched and this is having a 1 over here. So, you can see here Y is having

an extra 1, here X is having a extra 1. So, X and Y cannot cover each other so, we will

say that X and Y in this case are unordered codes.

Now, what is the beauty of unordered codes? You can very easily appreciate the fact over

here that multiple single direction bit flips cannot can be detected by this code. So, again

I want to reemphasize that in coding principle based online testing the output of the

circuit will always be one code word. So, if I take these two as the code words say which

are covered. So, 1 1 0 0 1 and 1 is 1 0 0 0 10 so, of course, as you have seen this guy is

actually covering.

So, now, what happen? Due to some kind of error you again I am telling unidirectional

error. So, what can happen? So, unidirectional is a multiple bit flips so, but single

direction. So, let us assume that this guy is changing to 1 and again we are saying that

multiple bit will 0 to 1 and so again we can say that this guy is changing to 1; let me just

take and take the 1. So, 1 1 0 0 1 and this one is 1 0 0 0 1, right so, X is basically

covering Y.

And now let us see that what is the case? So, we will see that basically if the multiple bit

flips then what will be the issue. We will show basically that unordered codes will can

withstand the effect of multiple bits unidirectional error that is what we are going to see

in elaboration. But if there is the as I told you if, so this one will not be a able to tolerate

a unidirectional bit flips multiple bit flips.

But, if the codes are something like this in which nobody covers each other it will be

easily able to resist the multiple even, if the multiple number of bit flips unidirectional

bit flips that is what we are going to show with examples. So, I think till now we have I

mean if you are with me. So, we are looking at some kind of a advanced codes compared

to parity which can withstand multiple bit flips, but unidirectional and for that we are

going to use the unordered codes.

And of course, I as you have seen that this is actually a unordered code you can easily

appreciate. Now, of course, you have to appreciate that this m-out-of-n code I am taking

an example of 4 out of 5 codes you will be appreciating that this is a unidirectional code.

Why? Sorry it is a unordered code. Why? Because you see all the lines all the bits all the

vectors will have at least four 1s. So, you can see that this one is this one is having a 1,

this having a 0, here this is having a 1 and this is having a 0. So, what it means? It means

that basically none of them can actually cover each other.

Similarly, if you look at it last two bits, so these two is having a this one. So, the last two

bits basically if you look at, so this one is having a 0 and this having a 1 and this is

having a 0 and this is having a 1. So, none of the vectors can cover each other. So, hot 1

encoding, hot 1 means only one bit is a one m-out-of-n code I have given the example

with 4.5, none of the code words can cover each other.

So, basically what we have said, we have we have basically what we are discussing over

here is something like. So, the that means, the m-out-of-n code basically is a unordered

code because none of the bits are covering each another. That we have explained using 4

out of 5 coding technique, that is the m-out-of-n. And by this definition we have looked

at that this is a Berger m-out-of-n code is a unidirectional is a unordered code.

Now, what remains we will try to develop the philosophy that such unordered codes can

detect unidirectional multiple bit errors. So, indirectly we will show that if you are

having if you are saying unordered codes like m-out-of-n code, Berger’s codes and apply

to circuits. So, if it happens that a fault will lead to multiple bit unidirectional errors this

can be detected.

So, it will be a much better efficient compared to a parity code. Why? Because the parity

codes can only withstand mainly single bit flips and if there even number of bit flips are

there even if there are unidirectional it will not be able to do it because the parity count is

maintained ok. Same example we are going to do and we will try to get the philosophy.

 (Refer Slide Time: 42:07)

So, in this case same half adder you are using, but instead of basically using the parity bit

here we are using a 2 out of 4 code so, only 2 bits will be a 1. So, 0 0 means your option

is nothing, but you have a only the option of having 1 1. 1 0 so you are using the option

of 1 0 over here. 1 0 again you are using this one, this two we have we have bit careful

because the two numbers are same as the output 1 0 and 1 0, but you are using the code

of 1 0 over here and 0 1 over here as the code. But, again if you count there only two

ones in each position; again it is a 0 1 they have put the value of 1 0 over here.

So, basically this is basically your information part and this is your code part. Now, you

see so, in case of parity the extra bit was 1, here the extra bit is 2. So, the I keep on

always telling that hardware cannot create any match. Hardware is always better

performance you want you have to pay a cost. So, parity you are one can detect only

single bit errors. Here you are detecting multiple bits errors single unidirectional errors.

So, you are using some kind of a code techniques which are unordered codes, still use

the number of bits are entries output bits for the parity was 1. Now, it is basically two of

course, some benefit you are going to get, but again of course, the cost etcetera will be

higher.

So, again this is the function for sum, this is the function for carry and the two bits in this

case. So, this is the function for U 1 and this is the function for U 2. Now, you look at it

so, if you look at the parity circuit there was just a single gate required for this. Now, for

this one you see you require a quite larger circuit to check for to check bit generation. In

this case basically is checked bits, right so, more facilities I want I will require a larger

circuit. So, here you may argue that this check bit generation circuit is much larger than

the cut.

In fact, this is a small example so it looks like that but if there are in case of real practical

circuits the technique of error detection codes of the Berger or m-out-of-n codes are

much much lower than the circuit itself. So, if you take a large circuit which is

automatically happens after a synthesis of the circuit. So, I apply a 0 0 sequency I have a

applied 0 0 over here. So, basically the output is normal case will be 0 0 and the parity

bit generated will be sorry the I mean or the means self checking codes generated will be

1 1. So, in this case the output will be 1 1 as you will see over here will be generated by

the circuit. So, it is 0 0 1 1 so, the checker finds that there are two ones out of it so, it is

detected.

Now, so again apply a stuck at fault in this case. So, I apply a stuck at fault if you apply a

stuck at fault you will find out that this parity generator circuit will always put 1 1 is the

output because the expected output was 0 0, but because of the faults this bit has been

basically changed. So, this bit has been a change and in this case you are going to see

that the three 1s are coming as the output which is violating 2 out of 4 codes and the

checker will basically detect an error.

So, this is the so, in this example if you cannot exactly find out what is the benefit

because your both detected using stuck at using parity as well as you are detecting using

a m-out-of-n codes the 2 out of 4 codes then you can ask me what is the benefit.

Just as a homework you can try doing it. You take a as I told you take a circuit where is a

gate correct and basically there are two flips out of it. So, the fault over here is basically

making a flip of 1 to 0 over here and 1 to 0 over here and assuming that there was a 3rd

output as I told you which is a 1 and you take even parity. So, in this case the parity will

be generating as a 1 and in this case also now this one is a 1 and in this case also parity is

a 1, but as the two bit flips parity will not be able to detect.

Now, you go for a m-out-of-n code, is you take m-out-of-n code. So, basically in this

case you will not be a parity. So, in this code this take a let us take a m out of code. Then

assuming that it is a basically 3 out of 4 that you can ensure so 1, 2, 3. So, 3 out of 4 code

means basically or you can take 3 out of 5 code so, this is the 1st output 2nd output 3rd

output. So, all are 1 and this is the code words are all 0 0 because we are assuming that

basically it is a 3 out of 4 code.

Now, basically in the normal mode the output is going to be a 1, as simple as that and

basically as expected it will give the value of 0 0. Now, you see the error will be is

incurred. Why? Because the number of 1s is 10 0 0 0, so only 1 is the output. So, parity

will not be able to detect it, but the m-out-of-n code in a in this case the m-out-of-n code

is 3 out of 5 it will be able to detect it. Why? Because normal case the answers will be

number of ones will be 3 and the fault gets the answer will be actually 0.

Again I mean just again appreciating the fact even if this bit also becomes a 1 sorry, even

if this is the 4th bit we are considering. So, if you are taking the 5th 4rth 1st bit basically

or the 4 output even this also gets flipped from 1 to 0 that can also be detected because 1,

2, 3 all 0s basically output should be basically 3 ones out of 5. Again this is very

important so, again I am just repeating for the sake of understanding in a very different

manner.

So, in this circuit as I told you the difference is not actually being captured. The idea is

why because in this case even if it is stuck at one the this is fit into the AND gate so, the

effect of the fault is not observed. Like in this case also this is a stuck at 1 and if you look

at it this wire is also going to the AND gate. So, AND gate stuck at one does not get into

a picture for this input case, right. But as I told you what and what you can try out

basically something like you take some other inputs maybe this in circuit or some other

circuit you try to take a picture where there is a single gate, but it will affect two outputs

error time, also you should have a third normalizing output.

In this case it is only two outputs are there both will be affected, but in your example you

can take a another output which is not be affected. And assuming that the output should

be normal case should be 1 1 1 and parity I have already told you and you are using a 3

out of 5 code so, you put a 0 0 as the code. Fault as I told you it may have it flip from 1

to 0 it can be have the flip from 1 to 0. So, and this is your normal one normal bit which

is not changed at all. So, as the bit added were the coding will be 0 0, because the

expected answer is 1 1 1. So, I had been basically detecting the error because the number

of one counts changes.

Similarly, we can also appreciate the fact that basically for parity it cannot be called.

Same thing also can be tried out in the example, but you just check for a different test

data. So, our now one idea is there saying you say in a and you can ask me that I am

telling you that for the same circuit for different input pattern the fault will be alias. Then

I should worry or I should not worry. In this case I should say I would not should not

worry because in this case I require at least some of the test patterns should detect it.

 It may not be always possible that all for all patterns the fault will be immediately

detected. If you want to do that the cost will be exorbitantly high; high means what for as

I told you for this circuit for this scheme or even for the or let me take the not the good

scheme basically that is the parity scheme if I see I can tell you that for this input pattern

for this fault this even by the single parity bit it is detected.

But, you can easily find out that in this circuit it may happen therefore, some other

patterns basically the fault will not be detected by the parity scheme. Then you should

ask whether I should worry basically it is a matter of fact that you should worry or not it

depends on the 7 circumstances because I know, therefore, at least this pattern 0 0 the

fault will be detected by the parity scheme.

But, it may not be detected by for some other patterns say 1 1, it may happen then

basically what should I do. Of course, it by the pattern 1 1 it will not be detected because

this stuck at 1 over here and the fault will not be activated. But should I worried because

here you want to understand that here I do not have a any scope to apply the pattern of 0

0. So, if the pattern 1 1 comes the faults will obviously, not be detected by any scheme

even forget about parity because the fault is not sensitize at all.

But, again I have no scope of directly applying the pattern 0 0 I have to wait till the

pattern 0 0 comes. So, I should not bit I should not be very worried about it because I am

expecting that sometime 0 0 will come and the fault will be detected. Only my main

concern should be if there is no pattern which can detect a fault that means, there is for

any of the patterns which could have detected the fault the fault gets aliased because of

this the error detecting scheme then I should be very very worried.

(Refer Slide Time: 50:31)

Again repeating this is the very important concept so, I am repeating it again. That given

a circuit maybe for some of the input patterns and the what is scheme selected the fault is

aliased or the fault is not sensitive even not sensitize at all I do not worry at all or I

should not worry that much. Because, as long as there exists some patterns for which the

fault will be sensitize and it will be detected by the parity or by the coding technique then

I should not worry that much because I expect that the pattern will come.

But, if it happens because I always think that all patterns basically come at regular

interval. But, if you are you have if you have made a mistake or there is a problem in

which case what happens, basically if you try to thing in that direction that you are you

have you are landed into a situation where for the circuit none of the patterns will be able

to detect the fault. Because of a aliasing properties of the circuit fault or fault getting

mast or some other reason as you have shown the parity code or some other code may

not be able to take the fault and for any of the pattern the property holds there is a

question of be worry.

So, we should always try to think in that manner that there should be some patterns for

which the fault will be sensitize and detected by the coding thing then I am happy with it.

But, on the other hand we should not we should be very worried if no patterns can do

that for the coding technique used that is what is the idea. So, therefore, in a nutshell we

have seen that basically we will take a circuit have some coding technique applied and

ensure that at least for some of the patterns the code will be detected then I will be very

happy. So, this is one way of handling the online testing methodology.

But again, so in the conclusion what they have said that single stuck at faults in the

circuits can be detected if such a fault result in either a single bit error or unidirectional

multiple bit errors at the outputs and the outputs are encoded using single or

unidirectional error detecting code. That means, it has been shown theoretically if the

circuit has been encoded using single error detecting code that is parity or unidirectional

multi bit code like m-out-of-n code or unordered codes.

Then stuck at faults will be detected if they lead to a single bit output fault or multiple bit

multiple bit unidirectional fault. But again if I change this statement then if a fault results

in multiple bit non-unidirectional fault that is one will be going from 1 to 0 another will

be going from 0 to 1 such situations also happen, but that is very very difficult to get

detected by simple error detecting codes very complex techniques exist, but that will

make the circuit tester avoider very very large. How will you handle such kind of non-

unidirectional errors? That we will try to focus in the next lecture.

Thank you.

