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Hello everybody. Welcome to the testing part on the course on Embedded System-Design

Verification  and  Test.  So,  as  you  know  that  now we  are  actually  talking  about  the

Advances of an Embedded System Testing. And now in fact in this module, we already

discussed that we look at testing for advanced fault models, and then we look for built-

in-self-test, and then fault tolerance. 

So, already in the last lectures on this part, we have already seen basically how real time

that is the one of the main the (Refer Time: 00:56) of embedded system nowadays is to

meet the real time requirements. And how advanced fault models like that is delay fault

models are required for such cases, and how they are tested basically. In this lecture, we

are going to sees that what is something called build-in-self-test of embedded systems

and in the next two lectures; we will go for fault tolerance. 



(Refer Slide Time: 01:14)

So,  basically  what  do mean by testing,  which you have  been learning in  the first  3

lectures that a device is manufactured, then we put it into something called the automatic

test equipment; we apply the patterns, test it, and sell it to the market. Basically, that is

actually called chips are tested OK are shipped to the customers with the assumption that

they would not fail in their expected life time; this is actually called off-line test. 

So, what do you mean by off-line? Chip is manufactured; we know some of the very

important output test patterns we have already generated by the ATPG algorithms. We

put it in the tester, tested and ship it to the market. 

But,  whenever  the  embedded  system  hardware  are  becoming  more  complicated,

complicated in the system you are putting more and more system on chip on a single

code, making NOCs out of them or putting more and more transistors in a single die, and

feature size is decreasing, because of more advanced or lower level of some micro design

technology. These are actually already discussed that they are making the probability of

occurrence of faults more higher in case of such devices. 

So, now what is for such complex embedded systems or complex embedded hardware,

you cannot assume that once the chip is manufactured, manufactured and tested properly,

we will do so in its life time it is not guaranteed that way. 



So, what is the next step we can do? The first step is called actually the off-line test.

Because, in this case it is off-line verified tested basically, and then you are selling it to

the mark customer. He is putting into the board, and he is testing, and he is using it. With

assumption that as it is already tested, so he should not have any problem in this lifetime.

This is expected life time actually. 

But, nowadays it does not hold. So a fall can even occur, after it has been manufactured

properly tested, and it is being deployed in the system. And after 3 or 4 rounds of rounds

of usage, it may have a failure, which is month before its expected lifetime. 

So, nowadays what happens, how we can handle it? So, basically what they do, they

actually test this circuit every time it starts on. Now, it is very difficult, say that I have a

laptop and some of the ICs are already embedded systems are already placed in that in

that PDA or your mobile phone. 

Now, before every start of your rebooting of your system or switching on your mobile,

you should test the chip. How is it possible, can I bring the chip out of the mobile and put

it in tester? No. But, every time you have put tested, because that only can ensure you

that basically that every time before it starts up, it tests itself which actually that is called

built-in-self-test. I will tell you, why it is called built it? Because, before you starts its

operation it tests at itself, so that it gives you some kind of confidence and ok. 

Now, I am going to start my operation, I am normal basically, so that that actually gives

you more confidence that even if some failures, which may occur after the deployment of

the system can also be detected in that manner. And if that fault is detected, then it can

flag off an error or if they are redundant modules that can be switched on, and if there is

no redundant module like in a home appliance like a mobile phone or a washing machine

or a simple microwave controller, then it will give you in a error, and it will also tell you

that this chip is not working, and some vendor will come and replace this chip. 

So, what is built-in-self-test? Built-in-self-test is very similar to something like ATE base

testing, but in that case we do not have any equipment, and you cannot take the chip out

of it. So, you will have a on chip pattern generator, and on rep response analyzer. So, in

whatever test patterns you have generated, assume that we will put it in a memory and

put it into the chip. And same thing, we will also have a golden response comparator,



which is happening in the ATE can also be put on chip. So, we are making a miniature

ATE, and putting in non-chip that is actually called built-in-self-test mechanism. 

(Refer Slide Time: 04:38)

This is the pictorial diagram. So, basically if you look at the pictorial diagram, we will

basically have the circuit under test, and we have a hardware pattern generator. Here we

are going to put all the test patterns, which were generated in the ATPG algorithm. And

then we will apply it to the ATE to the cut under test, and then we can have a golden

signature that is the expected output, and we can do the comparison. 

Very simple story, then you can ask me, then why I should have a full lecture on built-in-

self-test. The story is not very simple. ATE is a physical equipment, it is a very huge

memory. And it test chips, you can erase the memory a new set of chips comes, and you

can keep on repeating it. And it the device is very big. 

Can I do something in the chip? If you are going to do it, the size of the test pattern

generator, and the size of the ramp, where the expected responses are stored and the

compactor would be so large that would be much much greater than the cut itself. 

Soon will be like killing a mosquito with a cannon, you are not allowed to do that. You

will be able to do a test provided that this hardware pattern generator, and this whole

output response analyzer circuit very very small compared to the cut, so that is what is

the challenge. Principle is same apply patterns, analyze response as in the off-line test.



But,  in built-in-self-test  and everything is  on chip there also some kind of hardware

which will do it, so you have to keep it very very small and limited in size. 

How can you make it smaller? First of all you have to take care of very few limited test

patterns, which are really required for doing the test that is first thing. Secondly, still you

cannot have a full rigid digital circuit to do it. Like for example, I can say you that I have

I have to apply patterns, say 1, 3, 7, 9, 12, 18 and so forth, a pattern (Refer Time: 06:09). 

We I can very easily generate a pattern generator circuit, which we have already done in

second year digital design course. Like we implement next (Refer Time: 06:15) present

(Refer Time: 06:17) we can have (Refer Time: 06:18) then you go for a queen necklace

your (Refer Time: 06:19) based optimization, and we can simply design a digital circuit

to generate the pattern. 

(Refer Slide Time: 06:32)

But,  assume that  if  is  a  512  bit  input  circuit,  the  pattern  generator  etcetera  will  be

actually become a very large circuit. Similarly, if I have say 72 patterns for which I want

to test this circuit, because the 72 test patterns so very important for some perspective.

Then the ram should have the expected response from for all the 72 input patterns, this

will actually make the things very very large.

So, the challenge of BIST is how I can make it very small in size, but still I have to

generate the pattern sequence. Like as I have told you like maybe 7, 12, 18, 19, 27 say



108 these are the patterns mean, I have written in decimal. These are the patterns, which

have to be applied to this circuit for doing the test. 

As we generate the same patterns maybe I can do it in a different order, because testing

of first stuck-at fault of the second stuck-at fault and or vice versa does not have any

impact. I can test the input fault first, I can test the output fault next or I can interchange

the position. So, if this is the sequence of patterns required to test a circuit for all faults, I

can also swipe, I can make it 12, 7, 108. So, I can easily change out the pattern sequence.

So, as well discuss later that if I can randomize or change the pattern sequence, which

does not affect testing, then this circuit for hardware test pattern generator will be very

very very very small compared to a deterministic pattern sequence generator like if I

want to have absolute like 7, 8, 9, 18, 20, if I can (Refer Time: 07:42) reorder them, then

I will show you like you can have a very very small test pattern generator circuit for that

purpose compared to the traditional digital design, which we all know for our second

year course. 

Secondly, this is how I can make the input response test pattern generator circuit lower in

size. Secondly, if you look at the output response. So, if I have say 72 input patterns, so if

I store the response for all the 72 test patterns, the wrong size also will be very very high,

which  is  required  to  your  golden  signal  matching.  So,  there  is  something  called

compaction. 

So, you have not going to store the expected response for all the 72 patterns. In fact, you

will clump many of the output patterns together, and then make a signature out of it. So, I

will tell you what do you mean by signature, signature mean is the compaction. So, this

is a lossy compaction. So, what do you mean by lossy? If my if I have not compacted

that, then all faults should have been detected,  but if I make a compaction is a lossy

compaction. 



(Refer Slide Time: 08:34)

So, may be out of 72 patterns, we can make a batch of 8 8 patterns, I am just taking an

example. So, 8 response, I will compact into 1 response; again 8 response, I will compact

into 1 response; then I will make a golden signature out of it, and I will do a match. But,

they will find that there are aliasing that if I have not the compaction was not there, then

all faults should have been detected, but if I make a compaction, some faults will be

missed. But, still will see the area overhead of the raw means very very very very low. 

So, what it gives me? Obviously, I cannot have as rigorous testing as in the ATE, but still

I will have a test, which is basically much much lower in quality and quantity compared

to ATE based testing,  but still  I  will  get something in based. Instead of something is

better than nothing, there is the philosophy. 

If I do not have a BIST, I cannot take my circuit before startup. But, if I have a build

circuit, even if is not very small part of the original test, which you are doing in off-line

ATE, but still  that I can apply with a very lower hardware area overhead for the test

pattern generator and the response analyzer with compaction.  But, still  some level of

confidence can be obtained if I have a base, so more reliability can be given. 

And research have shown that even very easily a very good compaction came, so that the

aliasing is less. There is very very low area over a test pattern generation by something

called linear feedback shift registers. And we will discuss in details today, which can

give the random order patterns, random order in the sense that the way the control of the



patterns may not be as you desire, but all the patterns will be generated, but in a different

sequence. 

For given sequence we if we change the order, we will show that very load very very low

area over hardware test patterns can be generator can be designed, so that you can have a

built-in-self-test for maybe around 50 percent level of confidence compared to the ATE,

but you can do the test. 

But, researcher says solve that we need such low area over it for the compaction based

output,  and the LFSR base test  pattern  generation,  still  you can have a very smaller

circuits will be there, but still you can have very good quality pattern generators, very

good quality signatures can be generated even with compaction, which will still maintain

the level of confidence of testing around 70 percent to 80 percent. 

So, if I say that 100 percent is for ATE, at least 70 to 80 percent confidence can be even

still obtained with such lower head circuit. So, for that a lot of researchers has been done

on how to compact the output, what are the different type of input sequences that can be

generated,  what  are  the very peculiar  very important  test  patterns  that  can be stored

(Refer Time: 10:51) do the testing. So, all this will discuss basically. 

So, the motivation is that build-in-self-test will can give you a certain more of (Refer

Time: 10:58) obviously more level of confidence compared may means before or for

reliability, because the circuit is tested every time it starts up. But, of course the testing

cannot be as rigorous as off-line test. 



(Refer Slide Time: 11:13)

Now, this architecture tells you that as is an on chip hardware, so there is a always a

multiplexer, which will be put in the front of the device. So, if the circuit is normal, so I

mean if the circuit is doing is normal operation that is test mode is not, then the circuit is

running. Then the test controller will make this line as 0, so the normal inputs will be fed

to the circuit, and the output will be going to the primary output. 

(Refer Slide Time: 11:37)

Now, if the test mode is 1, so test mode is 1 means the circuit is just about to start up, so

you have put test it devices. So, basically make the mask as 1, so normal inputs will not



go it too into it, it will this one will we (Refer Time: 11:41) I mean that depict a test

patterns, which are generated by this LFSR or the hardware test pattern generator will be

fed to the cut, and basically the wrong will be activated, and the output responses will be

compacted, and there is a comparator, which will tell you whether the circuit is properly

operating or not. 

If it is operating properly, then basically the test mode will become zero, normal inputs

will be coming, and the circuit will be doing its normal operation. But, if it is error has

been found out, then it will stop the chip, you have to replace the IC that is what is the

scheme of built-in-self-test. Now, this architecture is very very simple. Now, what we

will concentrate on is how we can go for designing a very low area (Refer Time: 12:17)

hardware test pattern generation. And how responses can be compacted, so that we gave

have a very low area over it.

(Refer Slide Time: 12:28)

So, what just as I told you, what are the different components again they are written in

this circuit. So, hardware test pattern generator basically what it does, it is simple means

it is a register.



(Refer Slide Time: 12:41)

Because, if you have generate patterns, and there is of course it is just some kind of a

counter, so n number of if the n bit if this a n bit input, so a n bit register will be there,

but so these are the n bit registers. 

But, these are some of the combinational, which actually feed these registers and also

take the inputs back to this. This is a simple algorithm for the digital counter up or a

pattern generator. So, these are the D-flops maybe, so the inputs to D-flops come from a

combinational circuit, the outputs of the D-flop again go to the combinational circuit. 

So, basically it is a counter, so if it is 0 0 0 0 present state is sorry the present state is 0 0

0 0, the counter the next state will be becoming 1 1 0 0 1. Let me just look here slightly

clear it up, and explain you. 



(Refer Slide Time: 13:21)

So, this pattern generator is says the n bit pattern generation, let us take n as 2. So, there

will be two flip flops. So, there is the input to these D-flops. So, this is actually your

combinational cloud, and the outputs of the flip flops are again feedback over here. So,

maybe the start may be the present state is 0 0, so it is a simple up counter. So, the next

this is the present state is 0 0, next state will be actually 0 1. So, the next state will

become 0 1, and this would be the present state, and the next state will be actually 2, so it

will be 1 0. And then it will become basically 1 0, the next pattern will be here 1 1, and it

will keep on going. 

Now, if it is a predefined sequence like 1, 7, 9, 15 etcetera, so this combinational circuit

will start becoming larger. So, you cannot do a magic, you cannot relieve if the n bit

counter or n bit sequence generator, the number of flip flops will be you cannot do any

magic over there. What role it is played basically, how can we reduce this combinational

circuit? If you look back your digital design fundamentals, you will find out that this size

is not very less. 

So, if it is a 512 bit counter is there, the size of this one will be extremely large. So, what

role people place or the intelligent the hydroid design techniques play is to reduce this

combinational circuit. Because, if it is a n bit input is there by no means, you can actually

make this input the counter or this one have less than n bit flip flops that is not possible. 



So, what is the hardware test pattern generator basically is nothing so it will have a state

register of n bits. So, but as the test pattern generator circuit is a circuit not an equipment,

its area is limited as I already told you. So, storing and then generating the test patterns

obtained by ATPG algorithm on the CUT using the hardware test pair generator is not

feasible. So, therefore you it cannot be a predefined counter. So, basically instead the test

pattern generator is basically a type of register, which generates random patterns, so that

pattern frequency have not containing. 

As I told you, if the first test pattern is tested last sorry the first fault is tested last and the

first and the last part fault is tested first, I have no problem fault should be tested. So,

basically test pattern sequence I do not control, but the number of test patterns I control. 

Like for example,  as I told you 1, 2, 7, 9, 12 see are the test  patterns ok, it  may be

detecting  the  1st  fault,  the  2nd fault,  3rd  fault  may  be  I  have  number  the  faults  in

numbers. But, this I have no problem if I start with 7, then with 12, then with 9, then

with 12, and the 9, I have no problem in that. So, as will show you there is something

called linear feedback shift register based pattern generators, where if you randomized

this order these size of this  combinational  circuit,  this combinational circuit  becomes

very very less. 

So, basically the main emphasis of the register design as to have low area yet generate as

many possible patterns in the flip flops, so because I mean as I give here I given say

example, like say 1, 2, 7, 9, 12. So, this test pattern the state space is bit (Refer Time:

15:56), but it may not be the case. It may be 1, 2, 3, 4 maybe one gap I will have 6

maybe 7. So, these are all the patterns, which is required for a 3 bit counter. So, maybe

only one is remaining that is actually say 1, 2, this 5 is basically remaining, which I do

not require as a test pattern. 

So, basically my main job here will be to reduce this combinational circuit area, but still

generate as many as patterns possible from 0 to 2 to the power n minus 1 full range. And

in fact, luckily the theory has been established that there exist circuits with very very low

area over it, which can generate patterns from 2 to the power n minus 1. In fact, I will

show you zero is not possible to be generated. 

So, we have patterns basically from 1 to 2 to the power n minus 1 almost full range

patterns can be generated from one to do the pair, but you know very low area over it,



but this pattern sequence cannot be controlled. Maybe 2 to the power n minus n minus 1s

will come over here first, maybe after that 1, then 9, then 7 and so forth, so that is what is

the hardware test pattern generator. 

(Refer Slide Time: 16:51)

Input Mux as I already told you, it tells that when the system is operating in a normal

operation, PI should come in primary inputs would coming in case of test the patterns on

the ATP that is hardware pattern generation should come in. 

Output response compactor as I have already told you that for each individual ATP test

patterns,  if  I  store  the  expected  responses  in  the  ramp,  so  it  will  be  very  large,  so

basically we compact the response, and it is a lossy compaction, so in that means, out of

say 100 responses would be making bunches of 10. So, every 10 10 10 10 or some type

of algorithm, I can use which can compact the responses and make a 1 bit or 8 bit or

some x number of bit representation for this 10 output responses. 

And it will be represent by single bit or 2 bits whatever you can decide. But, that is a

lossy compaction, but still we have to do it for is minimizing the area of it, so that is

actually call output response compactor. 



(Refer Slide Time: 17:40)

Then ROM, which actually stores the respected x respected response of the compacted

input sequence or the compaction means for all 10 output see first explicitly store the

responses wrong size will be large, so I have make a compaction. 

So, they say input pattern 1,  2,  7,  9,  12 I  made a club,  so this  is  the all  the output

responses may be 1, 0, 7, 0, 1, 9, 0, 1, 2, 3 these are outputs expected for these are this

inputs. Like see input as I say 1, 2, 7, 9 may be these are the four inputs, and may be the

output expected in this case is 0 1, 0, 0 say this is again 1 1 may be 0 0. So, this for these

four for every four the input sequences the output sequence, I will make it as a single

response as I am compacting. 

So, these four responses I will compact, and maybe I will represent it by 2 bit or 1 bit

some algorithms are there as will discuss, so but all the output explicitly, I will not store

the expected responses. Basically, I will make a compaction and store it into the ROM

mean row less bit on number of bits. Like here in this case 1, 2, 3, 4, 5, 6, 7, 8 eight bits

are required to do this. But, if I compact, it maybe I will be representing by 2 bits may be

0 0. How I am getting 0? 0 from all this, we will discuss that algorithm later. 

So, I will represent it in only 2 bits or may be 1 bit or even 3 bit also I can keep it, but

will less than 8 bits, and I will put it into the wrong. So, basically now whenever I am

getting all the responses for this pattern like 1, 2, 7, 8, this one will be compacted and



compared with the and that value be compared with the expected compacted response,

right for 1, 2, 9, 7 and 9 in as input vectors, the output respected at this and this.

So, explicitly I will not storing the ROM these four values, I will make a compaction

maybe at is a called a signature, which will be stored in the ROM with less number of

bits.  And  whenever  the  circuit  under  test  will  be  applied  with  these  patterns,  these

outputs should be again compacted, and compared with the expected compact expected

compacted response. 

So,  compare  done  compares  the  compacted  outputs  with  the  expected  compacted

response that is what is actually the ROM stores. So, comparator is very simple, it will

compare  the  expected  compacted  CUT response  with  the  golden  signature  from the

ROM.  So,  basically  this  is  your  golden  signature  that  is  the  expected  compacted

response, and basically this is the CUT outputs. They are again compacted and mastery

the golden signature. 

There is  something called test  controller, it  basically  decide when to start  the based,

when to  stop  the  based  if  there  is  a  fault,  what  it  should  do,  so  it  is  a  controlling

generation circuit.  Suddenly, what it does if the if the device has to be tested or this

device is starting up, it will actually make the mask in such away that random patterns

from sorry  the  patterns  from the  hardware  generator  is  applied.  This  is  the  control

patterns, and testing is done. 

And when the (Refer Time: 20:12) and after it test is ok, it will switch the input, so that

inputs from the normal primary inputs come to the circuit, so that is one of the job of the

test  controller.  If  any  fault  occurs,  it  will  flag  off  that  this  disease  having  of  and

something else can be actually done over these. So, these are actually all the components,

I have described for this hardware. 



(Refer Slide Time: 20:33)

Now, basically what we will do, we are now going to look in details about the hardware

test pattern generator, how it has to be designed, how it has to be tested, basically how it

is so such a miniature version. So, if it is generating all the possible patterns for a given n

bit number n give bit input bus or if the number of input bits are n, it is generally a large

sample space. 

Like for example, you should not call it 0, it cannot generate from all zeros that is the

only thing that is not possible to be generated, you generally generates all patterns or

very huge number of patterns from 1 to 2 to the power n minus 1, if n is the number of

basically your input with bus size right. So, we will see the (Refer Time: 21:10) very

interesting to see that even it just with a single motive modification that I can randomize

the input patterns, we will show that very very less area over a pattern generator can be

designed. 

So, now we are going to look, how such things can be designed by their to typically two

different type of ways to do it, which we call standard linear feedback shift register or

modular  feedback shift  register. These are the two specialized register design,  which

enables you to get a very huge state space of inputs from 1 to 2 to the power n minus 1,

now we will be looking at that.

So, what we are trying to look at is that how can we make that register size area small for

that combinational part, but still you have to generate a large spectrum of the input space



that is from 0 to 2 to the power n minus 1, but as we will see 0 is not possible to be

generated. 

(Refer Slide Time: 21:56)

Now, let us look at this circuit structure, which makes this magic. So, this is one circuit

structure, which is called standard linear feedback shift register. So, in this case if you

will  see,  you will  see that  basically  if  I  try to  zoom it  for you, so we will  see that

basically what happens? 

So,  there  is  a  sequence  of  flops  1,  2,  3,  4  and  up  to  X  naught.  And  everybody  is

connected these everybody is feeding the direct flip-flop directly to the next, but only

one MSB flip-flop is  connected  from the output  of  the  LSB flip-flop.  But,  it  is  not

directly connected as in the case of others, like these are the ordinary connections, but he

is a feedback connection. And in the feedback, you will have lot of XOR gates right. 

This one here is there can be an XOR gate, which will which is actually the output of X

1, XOR with the output X naught, even output of X naught 2 X 3, X 4 everything can be

there or it may not be there. What I mean to say is, this is the proper structure everything

will be a direct connection, simple shift register. 

But, the output of the LSB register b flip-flop to the MSB flip-flop there is a feedback

chain. And this output this output will be depending on X this one XOR, this one XOR,

this one XOR, this one, but everywhere you may not have a XOR gate. So, depending on



where you place the XOR gate, and where you do not place the XOR gate, the sequence

of patterns or the in output spectrum will depend. 

Here of course, you can very easily feel that all 0s cannot be generated. Like if I put on

all 0 over here, so what is going to happen? Everywhere the 0 will shift, and if I put any

number of XOR gates, XOR, XOR with XOR with 0s all XOR is the 0. So, it will be a 0,

and it will be locked at 0. 

So, any LFSRs know whether is modular or standard, if 0 is basically if given as the

initial  seed,  it  is  going  to  lock.  So,  accept  all  0s  huge  spectrum  of  inputs  can  be

generated, and what sequence, what pattern depends on where and how you place this

XOR gates. 

(Refer Slide Time: 23:47)

So, actually there are lot of mathematics from coding theory, which is involved which

predicts that givens if I put an XOR gate here, here, and I will drop it here. What the

pattern sequence generated,  what  is  the spectrum. So, the there is  a  huge amount  of

mathematical logic and theory, which exist in coding theory literature, which tells you

how you can orient is XOR gate to get this output patterns in a pre requisite fashion or I

mean in a randomized fashion, but still the input spectrum. 

Randomizing the sense that for a given sequence of or type of XOR gates and basically

for a given type if n length, what is the sequence pattern, and what are basically which



are the miss patterns, and which are the patterns, which is covered from 1 to 2 to the

power n minus 1 depends on how you select these XOR gates. 

(Refer Slide Time: 24:44)

But, that theory I am not going to go in, because proves etcetera quite involved. Only the

only from and for most of the test perspective, there is something called basically which

we  will  see  the  name  is  characteristics  basically  what  I  actually  call  primitive

polynomial, which is the term.

So, basically I will the just keep the term in mind for the time being that the theory exists

which tells you that is the primitive polynomial that terminology, which tells you where

you put this XOR gates, and where not to put the XOR gates. If there is no XOR gates,

therefore in that case it will not depend. Like if I do not put an XOR gate over here, so it

will be directly connected over here. So, this flip-flop will be just be a shifting flip-flop.

So, and the way the flip-flops are connected will define a mathematical function, which

is called primitive polynomial. So, for a given n and given the primitive polynomial that

primitive polynomial will tell you what are the input sequence generated, and whether

you can generate the entire sequence from 1 to 2 to the power n minus 1. So, depending

on your requirement, you can select a primitive polynomial, and accordingly you can

build this circuit.



So, why the primitive polynomial works that why only for this primitive polynomial, you

can generate an exhaustive set of patterns, because more or less our job is to require to

generate  as  many patterns  as  possible,  because  then  your  case  the  coverage  will  be

higher. So, why such primitive polynomials only generate such kind of exhausted pattern

set, it is a theoretically involve subject. You can go to any coding theory book, constantly

linear feedback shift registers you can know the theory behind it.

But, here what is our test engineers will do, they will given us (Refer Time: 26:01) the

value of n, then it will go to the literature and find out the primitive polynomials for that.

Accordingly, design the LFSR, and it will generate the huge spectrum of numbers. So,

we will go by this. So, how it is represented?

So, in this way it is represented by a matrix, these are matrix which represents it. So, here

basically it is a matrix with all diagonals as 1, this column everything is 0, there is a 1

over here, and the last row this is h 1 h 2 h 3 h n minus 1 and h minus 2 that is the h s.

So, what are the h s? H s are basically these values. So, if you are putting a flip-flop in

for this flip-flop that corresponding h will be 1. And if there is no flip-flop in this sorry

no XOR gate in that case, like for example, if this XOR gate is not there, then this is not

there, it is a direct feedback. So, in this case, h 1 will be equal to 0.

So, whether I am putting an XOR gate for the corresponding flip-flop or not, basically

these h values will remain right. And this is the column, so all 0s and a single 1. And this

is the matrix. So, this is what this actually represents this LFSR now how, will explain

this? Like for example, if you look at it, so for all cases like X naught is equal to X 1

next stage, X 1 is equal to X 2, X X n minus 2 is equal to X 1. So, how it happens? So, if

you look at what is the value of X naught, t t plus 1.



(Refer Slide Time: 27:20)

So, in this case basically if you look at, this is multiplied with this, this is multiplied with

this and so forth and all others are 0. So, X naught t minus 1 will be equal to X 1 of t.

(Refer Slide Time: 27:31)

Similarly, if  you look at  X 1 t  plus 1,  so in this  case if  you look at,  so this  one is

multiplied by this one is multiplied by this one will be something multiplied by this. So,

this one will be actually X 1, this one will be actually X 2 of t, so that way. So, similarly

you can easily calculate that basically this one will also will be depend basically this one

will be dependent on this and so forth.



(Refer Slide Time: 28:11)

So, for all the flip-flops from X naught to X n minus 2 like this will be just depending on

the previous flops (Refer  Time:  28:05) depend the previous flop values,  so which is

described by this part. Now, very interesting is how X minus n minus 1 that is the MSV

flip-flop decide, it is a function of this. So, always if know XOR gates are there, still

there will be a feedback over there. So, it is basically equal to X n minus 1 MSV flip-flop

is equal to X naught t, now if X h is equal to a 1.

So, if X is equal to a 1 that means, there is a flip-flop over here sorry XOR gate is over

here, so it will be again XOR with this gate. So, in this case h 1 is multiplied by this 1, so

it will be actually equal to XOR X naught equal to t, then it will be XOR with X 1 of t,

again  XOR  with  X  2  of  t  and  so  forth,  if  these  corresponding  bits  sorry  if  these

corresponding bits are 1. So, the everything is a 1, then it will be XOR with X naught, X

1, X 2, X 3.

So, if all the flip-flops are here is in this picture, this one will be an XOR of the output of

all the flip-flops. So, this row basically tells you what is the input driving for this. So,

just with a little careful looking at it, you will be (Refer Time: 29:12) is equal to find out

how this linear feedback shift register is represented by this matrix right.



(Refer Slide Time: 29:23)

So, in now basically this matrix can be represent as a characteristic polynomial like this.

So, I am zooming it for you, so it is just a simple way of writing x h 1 square n minus 1

and x n. So, this actually is a mathematical representation, the characteristic polynomial

representation of the matrix.  So, if you are not putting a XOR gate in the respective

position, such h s will be actually becoming 0. So, these terms will be going out example

that is better.

(Refer Slide Time: 29:45)



So, if you look at this is a LFSR right. So, in this case three bits, so the matrix also a 3

cross 3. So, this part is a matrix with all the diagonal elements as 1, so that is not a

problem, this is a standard. Now, if you look at, so in this case there is only one (Refer

Time: 30:00) only one flip-flop, which is at the output of X 2 or here actually there is no

flip-flop  over  here.  So,  if  you look at  this  corresponds  to  x  h  1,  so  this  is  0.  This

corresponds to h 2, so it is a 1 over here. So, these two represents this flip-flop that there

is a XOR gate over here, and this 0 represent there is no XOR gate over here.

Now, look at what is the value of X naught. So, X naught t plus 1 is actually equal to X

1. So, this one is very simple. Similarly, if I study the value of X 1 at t, it is also nothing

but the value of X naught of t. Now, X 2 of t. Now, important is, what is the value of this

one this guy, so it is basically equal to X naught this one; second bit is 0 XOR with this

one, because this is a 1. So, basically you can see the output of this is XOR of this one

and XOR of this one.

So, basically this is represent this circuit is represented by this. And the polynomial is 1 x

square x cube. So, 1 and x cube will be anyway there, but only x square is there, x is

term the term is missing, because this is not filled by XOR gate. So, I can put XOR gate

here also, all the four combinations I can use, no x basically no XOR gate is not the

combination to be used is all locking 0 sequence, either I can also put a XOR gate over

here, I can remove this or I can also put a XOR gate over here. So, this is how I can

basically do it.



(Refer Slide Time: 31:20)

Importantly what it can generate. So, first there is something called a seed, first you have

to put a seed, again as I told you can easily find out that if I put this seed as 0 0 0, so you

can see that it will be again a 0, because XOR 0, it will be locked. So, all 0s cannot be

generated by any kind of LFSRs, but that is not a problem.

Basically if you say that I have to put a all 0 as a test pattern, then what you can do is that

you can make all these reset make all these resets, first generate all the 0 patterns, and

then basically generate a seed pattern. So, how can I generate the seed pattern, the seed

pattern is 1 0 0. So, these are again reset, but it is a first bit X naught is a 1, so you can

make it as a set. After that, you need not put any set and reset, and automatically these

patterns will be generated. So, let us see how it is generated.



(Refer Slide Time: 32:06)

So, in this case it is saying it is a 1, it is a 0 and it is a 0. So, the next input will be a

basically if you look at, so X naught is 0. So, next this is the first sequence, so X naught

is a 1, and these are 0 0. The next batch what is going to happen, this X 1 is going to

become X naught right, then X 2 will become basically X 2 will become X 1 in the next

case. And what about this, this one is accurately find by this XOR gate. So, it is a 1 and a

0, so XOR is a 1, so we are going to get the value as 1.

Similarly, you can find out that this is the pattern sequence it would be generated one

after another. And if you look at it, what is the sequence? It is maybe I maybe I call it as

0 4 6 7 maybe it is 3 5 2 4 something like that. So, it sorry it is a actually a 4. And after

that, basically this is what is the generated. So, again it is a repetition, so it is a 4, then I

call it is a 1. So, this after see you have to see that after this one, again the pattern will

start repeating.

So, what basically I have found out, how many different patterns are generated. So, I

started with this, and this is what is a repetition. This one I if I call it is a 4, if I call it the

at the LSB, so it is a 4, and this is basically a 1. So, in this case 1 and 4, so basically I am

generating all patterns up to this. So, what are the patterns I have generated? Because,

from here the repetition starts, so it is a 4 1 6 7 3 and 5; so 1, 2, 3, 4, 5, 6. So, six patterns

are generated by this sequence.



(Refer Slide Time: 33:47)

1, 2, 3, 4, 5, 6 and 7. So, 2 to the power n minus 1. Just by using a simple XOR gate, I

can generate it. But again, the pattern sequence you can see, it is 4 1 3 7 5 right sorry 3 5

2. So, I have no controlling the sequence. So, with this simple XOR gate, I can generate

almost entire spectrum for a 3 bit keys. So, only all 0s are not generated, I accept that all

other patterns are generated right. So, it is very interesting.

But, if I would have (Refer Time: 34:08) sequence something like that that 1 3 4 7 say in

ascending order, so in that case is an up counter or a particular pattern counter. So, in that

case, you cannot do it with a simple XOR gate, it would be quite large circuit. Just by

looking at the digital design fundamentals, we can find out how to design such kind of

interesting counters, like up and down counters, the particular sequence generator. So, it

is never a single gate, it is a large bunch of gates.

So, for four 3 bits, only one gate is doing it. Very interestingly in case of LFSR as we

will see, even if the very high increasing the number of bit size bit width, the number of

XOR gates required will be not very high. But, if you are going first (Refer Time: 34:44)

pattern generator sequence using digital design final state machine based optimization

sequence, it is a very very large hardware maybe hundreds of gates will be required for

32 bit input or something like that. So, here this saving is huge.

So, again I am reemphasizing that why this LFSR is very good for (Refer Time: 35:03).

Because, it will for most of the cases like if you are using a primitive polynomial, entire



sequence is generally generated from 1 to 2 to the power n minus 1, but the order may be

slightly randomized. But, still I have no problem, because faults can be tested in any

order, but the gate size in this case is only one XOR gate.

But,  if you are going to generate  a pre-defined sequence,  this  combinational  clout  is

going to be quite high, so that is actually the big gain for LFSR seen based. That even if

it is a large number of bits also, the number of XOR gates will be (Refer Time: 35:33)

very very right, so that is what is the boon.

Now, some people had a problem over here in such kind of standard LFSRs, because

they complained that you see this one is comprising of so many XOR gate sequence. If it

is a 32 bit, there may be in the most case 32 bit input levels. So, it may be a very slow

design, because something can, because the delay of the XOR gate that can happen.

(Refer Slide Time: 35:56)

So, then people have showed that we can also design another kind of LFSRs, which are

called modular LFSRs. Well this delay is reduced, but some characteristics of generating

huge spectrum of inputs are possible with a very low area over it. So, in this case, what

they are doing. In this case, the first flip-flop is feeding the last flip-flop directly.

But, instead of in the standard LFSRs, we are having a connection like this. But, in this

case, it is not like that, you have you can put a feed XOR gate here or you may not put it.

So, the control comes over here. So, these are called a modular LFSR.



Standard LFSRs means here these were all directly connected, and we are putting XOR

gates in the top. But, in this case, it is slightly different, we are going a reverse about

connection, we are doing basically this. So, in this case you see at (Refer Time: 36:35)

between any two flip-flops, only there is a single XOR gate or no XOR gate. So, it is a

more faster design.

(Refer Slide Time: 36:40)

Again, it is I am extremely just a mirror map, I am not going to deal in more details, you

can just look at these slides for that. Same characteristics will be generate generated, but

in this case just a dual of it. So, here you will get this square matrix over here, and in this

case basically this is the all 1s h s, whether you are putting XOR gate or not, so this

column will determine the basically your this value for the next flop and so forth.

So, this is whatever I have discussed for standard LFSR standard LFSR, also hold for

basically the modular LFSRs, only it is a (Refer Time: 37:10) mirror image like that. So,

this is that means matrix representation for this.



(Refer Slide Time: 37:16)

Then there will also be a similarly characteristics polynomial, and other theory is more or

less similar. So, you can just look over these slides, and you will get a feeling.

(Refer Slide Time: 37:24)

So, in this case is also an example of a modular LFSR in which case also (Refer Time:

37:28) they have taken a 4 bit number. So, if you are counting it is 1, 2, 3, 4, 5, 6, 7 this

is the seed, so the seed is repeating over here. So, if you look at, it is a 1, 2, 3, 4, 5, 6, 7,

8, 9, 10, 11, 12, 13, 14, 14, 15. So, 15 numbers are generate entire spectrum, 2 to the

power 4 minus 1, because 0s are not generated.



So,  even by just  by putting  a  single  XOR gate,  you are  able  to  generate  the  entire

spectrum for 4 bit input cases. The characteristics polynomial is this, basically 1 and 4

will always be there, there is only one XOR gate. So, the XOR factor is there. So, initial

values are this, this is seed vectors, and this can be easily generated, you can easily verify

by this slide.

So, what emphasizing that for 3 bits, 4 bits, 5 bits. Similarly, it can be shown that with

very very few XOR gates, you can generate the entire spectrum of inputs. But, if you are

going  to  make  a  control  generation  just  like  we are  doing  digital  design  final  state

machine generation, it is a huge circuit that cannot be used in based, but LFSRs are very

very well (Refer Time: 38:27) for based ok.

Now, the question arises can any LFSR would generate these patterns, as I told you it is

no,  only  a  few characteristics  polynomial  the LFSR is  maximal  length  that  is  entire

spectrum is generated, they are called primitive polynomials. This is actually the paper,

so here lot  of proofs are presented that  what are  the primitive polynomials  for what

length  you  should  select,  what  is  the  area  impact  on  that.  Because,  based  on  the

polynomial size or polynomial type, you have to put the XOR gates correct.

So, if you are putting such kind of XOR gates, then the size may vary. Like for example,

in this case the primitive polynomial, you can directly find out that I require a single

XOR gate. But, if it is say x 1 plus x square plus x cube plus x 4, so (Refer Time: 39:06)

this bit and this one, no XOR gates are required, but here two XOR gates should be

required. If it is a primitive polynomial, you know that two XOR gates are required, but

it may be generating the entire spectrum, just I was giving you an example.

So, just by your requirement, you look at the characteristics polynomial available for

different  ends and you select  and do it.  So,  test  engineers  basically  do not  that  way

directly involved in the theoretical proof, rather they know the theory words. So, you

select the required means ATPG vectors, which you know which will be generated by

this LFSR, you can select a primitive polynomial.

And for certain cases, if you do not require the entire spectrum of values to be generated,

maybe only four or five different patterns to be generated, then accordingly you can put

the XOR gate and design the LFSRs; but, the key thing is that this size is very very less,

only a few XOR gates will do the (Refer Time: 39:50) that is why LFSRs have become a



boon for BIST. So, I can also say that if LFSR were not there, BIST was a very difficult

problem, because I require a very low area (Refer Time: 39:59) test pattern generator,

and which is being possible by LFSRs.

(Refer Slide Time: 40:04)

So, your problem of input generation is solved. So, (Refer Time: 40:06) LFSR, it will

generate the maximum spectrum of inputs and you are happy with it. Now, what about

the output? Because, LFSRs they are generating the entire spectrum of inputs for you in

a random fashion. Then for each pattern, should I store the output response, I can do it.

But, in that case, your ex expected signature that is wrong, where actually the values has

to be stored for the golden outputs required that is the expected output of the CUT will

be very very large.

So, what we do is basically, we go for compaction that is we block make a block off

some of the input, outputs or even all the outputs we can make a block that is given

output expected output sequence, we make some kind of a compaction arrangements,

and we represent by 1 or 2 bits in a very compact manner that is called a compaction, but

it is the lossy compaction.

Lossy compaction means, for some of the cases, the errors may be fault may be masked.

But, still to make the any optimization, we have to do it, and also theory exists that there

are lot of good compaction algorithms or techniques available, where the aliasing is very

very low. We are not going into more depth on this, but rather we try to see very two



simple  type  of  compactions,  and  see  what  is  the  aliasing,  and  what  how it  can  be

avoided.

So, (Refer Time: 41:10) simple compactions will look at this lecture that is called the one

count and transition count. One count means if they decide the output sequence is I told

you maybe 0 0 0 1 1 1 1 0 something like that, there will be counting how many 1s are

there that is 1 4. So, we will store the value of 4 that is in this whole expected output

values, the number of 1s are 4. So, you just count the number of 1s.

So, if some fault happens like in which case this is made as a 0 and this is made as a

basically  and this  is made as a 1, your fault  should be aliased,  because you are just

counting the number of 1s. Two faults occur, which may cancel each out, then it is gone.

So, another type of is called the transition value. So, transition value means how many

basically transition happens.

(Refer Slide Time: 41:54)

So, for example, if the input output sequence is 0 1 I am assuming a 1 bit is output 0 0 0.

So,  what  is  the  transition?  One  transition  and  another  transition,  so  you  would  be

maintaining the transition count as 2. But also, you can find out that this can also have

some aliasing effects like if something balance is out, maybe it becomes a 0 and this

becomes 1. So, faults are there, but the transition count will be 2, and errors will not be

detected.



But,  you  will  see  for  many  of  the  cases  however,  (Refer  Time:  42:15)  simple

compactions can detect the errors, but there are more complicated testing again, based on

LFSR, which actually can minimize the compaction like anything, but that theories are

more involved will not go into that. If you are interested, you can find out the entire

literature on LFSRs on built in self-test or basically in coding theory, we will find out the

entire spectrum of literature on that. But, we are going to see today simple compaction

techniques and what it results we are going to look at it.

(Refer Slide Time: 42:40)

So, for example, is a simple circuit, which we are taking, and we are taking a simple

stuck-at one fault over here, and we are taking this circuit, and we are generating this

patterns. And our compaction technique, we are taking is counting the number of 1s. So,

we are you applying these patterns, we will find out that the number of 1s are 1.

Now, I will (Refer Time: 43:00) zoom it for your help, so I am doing it, so I am zoomed.

This is the input, and also putting a stuck-at 1 over here. And if you do the operation, you

will find that the number of 1s are 2 at the output. Basically for this input sequence, so

this is the input sequence generated by this LFSR, already which we have designed, we

are applying patterns to that, and this is the output.

And for a fault, you will see that the number of output number of 1s has become a 2. So,

the compaction was in this case, the expected answer is a 1, I am not going to represent



explicitly all the values in the ROM. Only I will say that for this pattern set, I am going

to store 1 as the expected response in the ROM.

So, if the stuck-at fault happens over here, the number of 1s will be 2, so the error this

error will be detect or this fault will be detected, but there can be lot of aliasing cases

also.  In this case,  it  works. So,  this is  basically  compaction.  Instead of throwing the

signal explicitly as it expected value expected response and comparing bit by bit, we are

not going to do it. Rather for this block, we are going to take the total number of one cell,

and then store that as a in the ROM as a golden signature.

(Refer Slide Time: 43:48)

That is what actually I have written in this slide, you can easily read a get what I have

told you.



(Refer Slide Time: 44:03)

Another example. So, another circuit I have taken, again same input patterns I am giving

over here, these are the patterns, and this is the output, number of 1s are 2 for this circuit

also. Again, here I am going to take a stuck-at 1 fault. So, this is going over here, so this

is 1 and the outputs will be all 0s, if you compare the number of this what is the output.

So, surprisingly in this case, the number of 1s are also 2. So, if you look at it, the why the

aliasing  has  happened.  So,  simple,  if  you  look  at  it.  So,  if  somehow  I  could  have

managed this, so you can look at it.  So, in this case this is 1 bit,  the MSB has been

flipped over here, if you look at is 1 bit flip from 0 to 1. And on the contrary, this is

(Refer Time: 44:44) from 1 to 0. So, they are balancing each other.

So, the number of 1 still remains 2, but still there is a fault. Because, the (Refer Time:

44:49)  bit  can  itself  tell  you that  there  is  a  fault,  which is  occur,  but  it  will  not  be

captured, because we are not expressing the storing the full vector right. Then you can

tell  me,  which  is  a  better  compaction  method,  in  fact  it  depends on  size  circuits  to

circuits. So, from here, it may appear that counting number of 1s would have been a is a

very bad solution, we can take something else like transition count.



(Refer Slide Time: 45:10)

Anyway, this is the story for this slide.

(Refer Slide Time: 45:16)

Now, here so transition count. So, I am just going to give you a story about transition

count. So, from here, it may appear that sorry from there, it may appear that number of

1s counting is bad, it is aliasing. So, let us see about the transition count. I am taking the

whole circuit, which you have considered previously.

So, in this case, so this is the normal this is the input sequence from the LFSR, this is the

what is the expect (Refer Time: 45:32) output. So, you can see the number of transitions



count will be two; 1 and 2. Again, all stuck-at 1s this is a stuck-at 1 value, you will see

that this is what is the output. Here also, this transition count is a 2, because 0 1, then no

transition 2.

So, in this case, counting 1s, because there is one 1, there is two 1s, it could have been

detected by the counting 1 based aliasing, but transition count it fails in this case. Those

then I can say that transition count is a bad example, or a bad way of handling this type

of errors, or the bad compaction? (Refer Time: 46:02) answer is no.

(Refer Slide Time: 46:03)

If you take this one, where the number of one counts failed, here it will succeed. So, here

if you are looking at it, so we know that this is the normal 1, see transition count is 2. So,

this is the second circuit we are using. But here, the error is you know that, this is what is

the error output for this stuck-at fault. So, in this case if you look at the transition count

is 1, then again 2 and then 3. So, the transition count is 3. So, in this circuit, the transition

count based compaction works.

So, what we tells  basically  that for a  given circuit  and a given fault,  which aliasing

method will work better, it depends. So, here what I have tried to show you that, but

these are very very not very good kind of aliasing techniques. As I told you there are lot

of  theories  exist  for  LFSR based techniques  for  basically  compaction  with very low

aliasing within very low (Refer Time: 46:46) but they are more theory intensive. So, I



have not covered in this lecture, but as a future or part or an additional, you can read over

there.

But,  what  I  have  shown you  basically  is  that  compaction  can  actually  go  for  fault

detection with of course a compromise, but the area (Refer Time: 46:59) is very very

less. Because, here you just want to require the count, so it is a log complexity which

comes in, and here basically obviously, same thing when you are going for counts, so it

is a log complexity. As a transition count or the number of one counts, so it is a log

complexity. And if the variable size is n, only log 2 n bits are equal to story. So, the area

for the ROM is lowered, but still there can be some kind of a compaction (Refer Time:

47:20).

The lot of theory exists, which tries to modify this, so that they can get good compaction

algorithms,  but  again  area  is  very  important.  I  cannot  have  a  very  large  area,  and

explicitly store all of them and get a 0 compaction and I can get very good result that is

not actually allowed in BIST because, in BIST, everything is inside the chip, and you

cannot make your tester circuit more large then the circuit itself.

Then it can happen that if your (Refer Time: 47:42) circuit is much larger than your cut

itself, then the probability of occurrence of faults in such circuits also increases. Because,

what is the theory or the statistics it say is that if the circuit is large, then the probability

of occurrence of faults also in this case becomes larger right.

But, if you have a very smaller circuit, then you can properly design it with much more

spacing between the vias and the (Refer Time: 48:00) and you can have slightly less

probability of faults there. So, certain tweaks we can do, or even if you are not doing any

tweaks also, a smaller circuit tweaks to going to have less probability of failures.

So, therefore, we want to keep the circuit of the tester much smaller for both for lower

probability of errors, as well as for the cost. Because, you are nobody is going to pay you

for the test, everybody is going to pay you for the circuit functional circuit, so you want

to bring it smaller.

So, therefore basically what we have seen in class that built in self-test is very important

to boost the confidence of the working of the circuit. But, for that it is very important is

that we should have a very low area over pattern generator and very low over area low



area over a response analyzer. So, pattern generator is very good well solved by LFSRs.

Because,  by  with  a  very  little  XOR gate  into  business,  you  can  generate  the  entire

spectrum of inputs for the outputs what is the problem, you have to go for compaction.

So, here actually lot of aliasing happens and lot of theoretical works are done, so that you

can get a low area overhead using LFSRs etcetera,  but the compaction is  lower. So,

anyway that we are not going into details in this module, because it is a coverage of

design verification and test,  so you can look at  the very dedicated embedded system

testing courses, which deals more on this.

So, with this, we come to end of the lecture on BIST. In the next two lectures, we are

going to look at fault tolerance. BIST happens at the startup of the circuit. Offline test

happens, when the chip is manufactured. But, if some problem happens, when the chip is

doing its normal operation, then who is going to solve it. There is some testing test the

circuit itself, while it is doing its normal operation that is called concurrent testing or

online testing, which is mainly required for fault tolerance. The next two lectures will be

dedicated to that.

Thank you.


