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Lecture – 03
Supervisory Control Theory of Discrete Event Systems

Welcome.  In this  lecture,  we continue our discussion on the Modeling of Embedded

Systems.  In  the  last  lecture,  we  discussed  two  principle  strategies  for  modeling

embedded systems; namely the sequential program model and the finite state machine

based  model.  We also  discussed  three  extensions  to  the  finite  state  machine  model;

namely the extended finite state machine or the finite state machine with data path and

then we discussed hierarchical or concurrent finite state machines HCFSM, in which a

state of the FSM could also incorporate another finite state machine. And, we discussed

mechanisms for expressing concurrent  processes and also hierarchical  structure in an

embedded systems; how to model such concurrent processes and hierarchical processes

we understood and saw in the last lecture.

We  saw  two  types  of  decomposition  the  or  decomposition  for  hierarchical  for

hierarchical or type decomposition and the and decomposition where we could describe

or specify concurrent processes. Then we also discussed the program state machine in

which each state of a hierarchical it was an extension of the hierarchical and concurrent

finite state machine. And this allowed each state of the hierarchical and concurrent finite

state  machine  to possibly include  sequential  programs.  So, the  description  of  a state

could now include sequential programs.

In today’s lecture, we discuss a slight deviation of another slight deviation of the finite

state  machine modeling strategy called discrete  event systems. In fact,  discrete event

systems is not only a in strategy, but also allows automatic and correct by construction

synthesis of the controller of the embedded control task or the embedded controller that

we want  to  design.  So,  this  is  a  strategy  which  not  only  allows  modeling,  but  also

automatic synthesis of the embedded controller that we intend to design.

However, in order to do such synthesis we need to be able to accurately and formally

model  each component  on the embedded system using the discrete  event  systems or



DES. And if we can model the in all components of the system the different processes or

functionality is the different resources; all these the behaviour of all these components if

they  can  be  accurately  and  completely  and  formally  modelled  then  we  have  a

methodology  for  automatic  and  correct  by  construction  synthesis  of  the  embedded

controller. So, let us discuss this extension of finite state machine called discrete event

systems.

(Refer Slide Time: 03:52)

A discrete event system DES is a discrete state space, similar to FSM because it has a

finite set of states, is a discrete state space even driven system that evolves with the

occurrence of events. So, there is a change in state when events occur individual and in

this system we the supervisory control. So, a discrete event system is a discrete state

space similar to FSMs, as FSMs have finite states this also has a finite set of state. So, it

is a great state space even driven system that evolves with the occurrence of events. 

So, there is a change in state when events occur. All components of the system has to be

first model using such a discrete event system which changes states with the occurrence

of  events.  So,  individual  components  such  as  functionalities  or  tasks,  resources  or

processors other shared resources etcetera of the system are modeled by an automata.

Now, before going into these automata so, we first discussed the title of this lecture was

supervisory control of discrete event systems. So, what is supervisory control of discrete



event systems? The intention of these processes of this modeling methodology modeling

in this way as I told you is ultimate synthesis of the controller. 

This controller is called the supervisor because it controls how it controls the behaviour

of the embedded system in a way we want it to behave. So, that it does not behave in a

way that we do not want. So, the behaviour is restricted, the unrestricted behaviour is

controlled by the supervisor and how does it  do? The supervisor enables or disables

certain events at each state. So, it will disable or enforce certain events or it will or it will

not allow certain events and by that way it will control what the embedded system can do

and what it cannot do, ok.

With this introduction we go into the formal definition of a discrete event system. So,

discrete event system is a six tuple has six tuples Q, sigma, q 0, Q m, del and sigma;

where Q is a finite set of states like in an FSM, sigma is a finite state set of events: this

finite set of events includes both controllable and uncontrollable events. So, you if you

see this sigma consists of c sigma c, union sigma uc. Here sigma c denotes the set of

controllable events; that means, the supervisor can control or prevent the occurrence of

these events. These are controllable by the supervisor. So, the occurrence of these events

can be prevented by the supervisor if it so wants and it also includes union sigma uc, the

system will also include uncontrollable events. And these uncontrollable events cannot

be  controlled  by  the  supervisor  the  occurrence  of  these  cannot  be controlled  by  the

supervisor, ok.

There are certain events so, sigma another class. So, we can classify the events in terms

of sigma c, union sigma uc. Similarly, we can also classify the events as sigma o sigma

union sigma uo. So, here sigma o is the set of observable events those events that can be

observed externally the occurrence of these events can be observed externally and there

can be certain events that cannot be observed from the outside world.  So,  the set  of

events will include sigma o, union sigma uo, q 0 small q 0 belongs to capital Q is a

special event called the initial state. The entire embedded system this in whatever we are

modeling a particular component if it is the component will start from this initial state.

For example, in our earlier lift controller the idle state was the initial state of our system

at for the elevator.



Capital Q m belongs to Q it is a subset of Q sorry capital Q m is a subset of Q is the set

of marked states and it is a subset of states within q what do these states specify? These

are  the  states  at  which  the  component  the  behaviour  of  the  component  can  legally

complete.  So,  these are  the completion  states  for  the legal  completion  states  for  the

embedded control for the system that we are modeling. So, Q m denotes the set of states

in which the component can complete its execution, ok.

Del is the transition function. So, del is the transition from a function from a state within

Q capital Q and on a particular event from sigma. So, at a given state for a given input

for a for a given input event, so, I have an event that has occurred at a given state and on

that event I go to the next state which also is a member of capital Q. So, capital Q cross

capital sigma goes to Q is the partial state transition function. So, here is the difference

from finite state machine, it is not a total transition function; that means, that we do not

need to have definition for the transition on all events in sigma.

So, on which events in sigma do we need to have this definition of the transition at a

given state? It is all those it is for all those events that are defined in gamma which is

next. So, gamma is gamma is a part of Q and it is called the active event function. So,

there  are  a  set  of  states  called  the  active  event  set.  Meaning  that  within  any  given

particular state of capital Q within capital Q I take a state and there I will have an active

event set; that means, those events from capital sigma which are legally possible at that

particular state. Not all events in sigma will be legally possible at that particular state

within the system that we are describing.

We will take an example, but this is what it is. So, therefore, del will be defined for only

the active event set at a given state. So, a given state has an active event set which is a

subset of the sorry it has an active event set which is a subset of the events or in sigma

and on those events the del function or the transition function will be defined.
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Now, we will take first an example of an embedded system and we will also understand

what  we  want  to  design,  ok.  I  will  take  the  example  of  the  very  popular  dining

philosophers problem. And then, we will show how automated synthesis from that how

individual models can be developed for this embedded system and then how automated

sis synthesis of the embedded controller can be designed for it.

So, now let us first describe the system the embedded system that we have DES that we

intend has two processes and these two processors these two processes are functions we

name philosopher 1 and philosopher 2 and there are therefore, these two philosophers are

two processes in the embedded system that we two processes are functionalities in the

embedded system that we want to design two philosophers are seated on either side of a

table. So, this is how it is defined, two philosophers are seated on either side of a table

with a plate of food in front of them. So, these two philosophers are two processes and

the two plates of food are the input data that these processes will consume.

So, two philosophers are seated on either side of a table,  these are two programs or

processes and there is a plate of food that this program will execute with, on in the path

in the front of each of them, these are the data the plates of food are data. Only two

available forks; so, these forks are resources, but we will talk about the resources a bit

later. So, what are these forks we can enforce, but we can understand what these forks



are.  These  forks  are  the  processing  resources  based  on  which  the  philosopher  will

execute it is function.

So, the process philosopher will execute using the forks. So, it will execute using the

processing resources and what will it do the process is of eating. So, the processing the

that the processing that you will it will do using the resource fork is eating of what the

data which is the food. So, we have only two available forks, a philosopher can only be

in either two states. It is the philosopher is either thinking or it is eating, and to transit to

the eating state from the thinking state the philosopher must pick both forks one at a time

from the table in any order.

Now, how can the philosopher transit from thinking to eating, what will be the events?

So, initially it will be in the thinking state and then it will pick one fork. So, the event

will  be  the  picking  of  the  fork  so,  taking  a  resource  and  it  will  have  to  take  both

resources both the forks in order to be able to eat and this consumption of the resource

this taking of the resource that will happen one after another not together. So, to transit to

the eating state from the thinking state the philosopher must pick both forks. 

It requires both the resources one at a time from the table in any order. After eating a

philosopher puts back both forks and starts thinking. So, after eating is complete after the

processing is done it will relinquish the resources. Firstly, it captures the resources and

eats and then after eating is done it relinquished the computing resources together, ok,

both forks and then it starts thinking and goes back to it is initial thinking state.

Now, what given this so, I in this embedded system I have two concurrent processes two

processes  that  that  will  run and these are  two philosophers  which wants  to  eat  food

placed in terms or placed in front of them each of these philosophers are can be in two

states either thinking or eating in order to eat they will have to pick both forks eat. So, to

philosophers both the philosophers cannot eat simultaneously right. So, the objective of

the embedded controller is exactly to enforce this.

Design a controller that enforces mutual exclusion by disallowing a situation in which

each philosopher holds one fork and waits for the other fork indefinitely. Now, we said

that philosopher will pick the forks one at a time. So, a situation can therefore, happen

that  let  us  say  philosopher  1  has  picked  one  fork  for  eating  and  at  the  same  time

philosopher 2 also wanted to eat and therefore, it picked the other fork and then what



happens is that both the processors both the philosophers are waiting for the other fork

and nobody can start eating because the other fork or the other resource is taken by the

other philosopher.

So,  the  objective  of  the  embedded  controller  is  to  enforce  mutual  exclusion  by

disallowing a situation in which each philosopher or each process holds one fork or takes

one resource and waits for the other resource in indefinitely leading to a deadlock. With

this definition let us go about the modeling.

(Refer Slide Time: 17:30)

Firstly we define the events the event of picking a fork by a philosopher is controllable,

ok. So, the supervisor can control whether a philosopher can pick a fork, can take a

resource at a given time or not. So, it will allow or disallow a philosopher or a process to

be. So, that it will be able to pick a resource or not while the event of turning forks is

uncontrollable. So, after eating it the supervisor cannot control it from relinquishing the

resource, from leaving the resource right, ok.

So, what are the descriptions of events? So, we now symbolically describe the different

events and name the different event symbolically. So, the first event is f 1, 1. So, f 1, 1

means philosopher one picks up fork 1; f 1, 2 means philosopher 1 picks up fork 2; f 2, 1

means philosopher 2 picks up fork 1; f 2, 2 means philosopher 2 picks up fork 2; rf 1

means philosopher 1 picks the puts both forks down rf 1 relinquishing fork 1. So, re



sorry relinquishing forks by philosopher 1 so, rf 1 means philosopher 1 puts both forks

down and rf 2 means philosopher 2 puts both forks down.

Now, whatever the set of controllable events in this sigma c sigma c are f 1, 1, f 1, 2, f

2,1,  f  2,  2.  So,  the picking of  the forks  either  by philosopher  1 or philosopher  2 is

controllable  by  the  controller  controllable  externally  controllable  by  external  entities

which can control the embedded system and the occurrence while the occurrence of the

relinquishing of the resources fork 1 fork 2 is uncontrollable. So, sigma uc is rf 1 and rf

2.

(Refer Slide Time: 19:39)

Now, before the design begins we first model each of the components in the embedded

system using the discrete event system model. So, first philosopher 1 so, what does it

say. Firstly, the initial state is P 1 that is philosopher 1 is in the thinking state. When after

some time let us say philosopher 1 wants to eat and therefore, let us say he picks fork 1.

So, therefore, the event is f 1, 1 philosopher 1 picks fork one when he does this it goes to

the intermediate state I 1, 1 in this state philosopher 1 has picked up fork 1 and then off

after this intermediate state philosopher 1 will then pick the other form.

So, at I 1, 1 it he can pick fork 2, which is f 1, 2. So, philosopher 1 picks fork 2 and after

this he has picked both forks and he goes to the eating state E 1. After eating he both

forks using rf 1 and goes back to thinking state T 1. Similarly, if he if he picks fork 2, so,

f 1, 2 so, at the thinking state he could have first picked fork 2. So, from T 1on event f 1



to it would go to state I 1, 2 which is another intermediate state in which. So, what is this

intermediate state I 1, 2? Philosopher 1 has picked fork 2 and has not picked fork 1, that

is I 1, 2. After he picks up fork 1 at I 1, 2 he goes again to the eating state E 1. So,

philosopher 1 now again has both forks and he is eating after eating is complete,  he

relinquishes both the forks and goes back to the thinking state. This is the behaviour of

philosopher 1.

The similar behaviour also goes for philosopher 2. So, either he is initially in the thinking

state T 2 and then he can pick let us say fork 1 which is f 2, 1. So, philosopher 2 picks

fork 1 f 2, 1 and goes to the intermediate state I 2, 1. So, this is the intermediate state in

which philosopher 2 has picked up fork 1 and has not picked a fork 2 and then he picks

up the other fork and goes to eating in a very similar as that for philosopher 1.

Now, how does the resources behave? So, this is how the two processes in our embedded

system behaves. How does the resource what how do we model the behaviour of the

resources? The resources can either been available state or in the used state. So, fork 1

that is the resource 1 is first in the initially in the available state A 1 and how can it go to

the U state U 1 either through the event f 1, 1 meaning that philosopher 1 picks up fork 1

or through the event f 2, 1 in which philosopher 2 picks up fork 1. So, in either of these

two ways it goes from the available state to the used state.

Now, after U 1 it goes back to the available state either on event r 1, rf 1 or rf 2. So,

either philosopher 1 relinquishes the resource fork 1 or philosopher 2 relinquishes the

resource fork 1, in either way it goes from the U state back to the available state. And,

this is the same the same similar behaviour also holds for fork 2. So, it is in the initial

state a 2. Now, what are the events that it can it that can take it to the U state? Either

philosopher 1 or philosopher 2 picks up fork 2. So, f 1, 2 philosopher 1 picks up fork 2 or

f 2, 2 philosopher 2 picks up fork 2. In either way it goes from available state to the used

state. At the used state after eating rf it goes back to the available state through the events

are f 1 or rf 2. So, fork 2 is relinquished by either philosopher 1 or philosopher 2 in either

case it goes from U state back to available state.

Now,  how  do  we  model  the  concurrent  behaviour  of  different  components  in  the

embedded system. So, before we go about the design of the controller we have to define

the  concurrent  co execution  behaviour  of  the  different  components  of  the embedded



system in order to obtain the overall behaviour of the embedded system. First we are

modeling. So, what are we modeling? The behaviour of the embedded system first we

are going bottom up first we have modelled the individual components philosopher 1,

philosopher 2, resource 1, resource 2, now slowly we have to obtain the concurrent co

execution uncontrolled concurrent co execution behaviour of the entire embedded system

on which control needs to be imposed.

So, how do we get the concurrent  behaviour  of such an embedded system modelled

component component wise using DES to the composition of the DES through parallel

composition. So, concurrent behaviour is modelled through the parallel composition of

DES.

(Refer Slide Time: 25:43)

So, let us consider two DESs G 1 that is G i. So, the first DES G 1 is Q 1, sigma 1, del 1,

gamma 1, q 01 and Q m1 and similarly I have G 2 which is Q 2, gamma sigma 2, del del

del 2, gamma 2 and then q 0 2 and Q m 2. The parallel composition of these 2 is defined

as G 1 parallel G 2 equals to accessible part that A c, U c is the accessible part of Q 1

cross Q 2; that means, the comp the you have a composition of G 1 and G 2 what will be

the number of possible number of states in the composed composite automata combining

the behaviour of G 1 and G 2? 

It will be the number of states in G 1 product the number of states in G 2. So, q 1 q 1, q 1

q 2, q 2 q 2, q 1 q 3. So, these will be the states in the. So, Q 1 of G 1 and let us say Q 1



of G 2 this can be one state of the composite embedded system. So, the product so, the

number of states will be the product of the number of states in Q 1 with the number of

states in. So, these are pairs of states of individual automata. So, this will be the number

of states in the compost automata.

So, what will be the number of events sigma 1 union sigma 2? So, there could be some

events that are not there in say G 2, those events will be there in the composed automata.

The there can be some event which are there in G 2, but not which are dead in G 1, but

not in G 2 that those will also be there in the composite automata and the common events

of G 1 and G 2 will also be there in the compost automata. So, therefore, the events in

the compost or composite automata are sigma 1 union sigma 2.

Then is the transition function which we describe next sigma 1 parallel to so, this is the

active event set, we will we will just see that will also describe this next the initial states

are the individual initial state. So, q 0 1 comma q 0 2 so, we say that the states are states

of the composite automata are pairs of states of the individual automata right. So, what

do we mean by this? What do we mean by the composite automata? We are saying that

the composite automata, is composed of individual automatas running concurrently.

So, during the concurrent execution of the individual automata or processes at a at any

given time let us say you have two automatas G 1 and G 2, G 1 will be at a certain state

and  G  2  will  be  in  another  certain  state.  So,  if  we  consider  that  what  will  be  the

composite state it will be composed of that state where it is currently in G 1 and that state

where it is currently in G 2. So, let us say it is in Q 1 of G 1 and Q 2 in G 2. So, q 1 q 2 q

1 comma q 2 is the composite state in which the overall embedded system is in at a given

time at that given time. So, what is the initial state it is that pair state q 0 1, q 0 2 which

consists  of  the  initial  state  of  both the  automatas  and the  mark  states  again  are  the

product of the mark states in both the automata Q m 1 cross Q m 2.

Now, we go into the transition function del mm the transition function del. Now, we will

consider an example in which let us say I have a an even small sigma and the composite

state in which currently of the composite automata is q 1 of G 1 and q 2 of G 2. So, the

state of the composite automata is q 1 comma q 2 and we want to know what happens

when this is this event small sigma occurs at the composite state q 1 comma q 2.



Now, there are three separate cases. That first the first case is that the first case is that this

small sigma is in the active event set of active event set of both q 1 and G 1 and q 2 in G

2. So, if sigma is defined or sigma is part of the a given set of q 1 of G 1 and q 2 of G 2

then the first line of the on the RHS of this equation comes in. So, the next state is going

to become del 1 q 1 sigma comma delta q 2 sigma. So, the composite state in which the

automata will go from q 1, q 2 is that pair state which is defined by where q 1 would go

on sigma and sorry, where G 1 would go on sing on this small sigma on from q 1 and

where G 2 would go on small sigma from q 2 that pair state which is defined by what del

1, q 1 sigma comma del 2, q 2 sigma. So, it would go to that state. Why? Because, this

small sigma is defined on both q 1 and q 2.

Now, let us say sigma is not defined in the entire behaviour of G 2. So, the second line

comes the second line in the RHS says that when sigma belongs to. So, if you see in the

RHS when this happens when if sigma small sigma belongs to gamma 1 q 1 that is it is in

the active event set of G 1 at q 1, but it is not defined in G 2. So, it is not part of capital

sigma 2, ok. So, if that happens then the next step; so, so if that happens. So, it is not

defined in small in q 2 of G 2 because sigma small sigma is not defined in q 2 of G 2 it

cannot go anywhere in from q 2 at G 2.

So, therefore, the next state will be del 1, q 1 sigma because it because small sigma is

defined in q 1 of G one. So, it can move from q 1 to somewhere to the next to our next

state from q 1 on sigma on small sigma. So, therefore, del 1, q 1 sigma is defined and it

will remain in q 2 for G 2. So, the next state will become del 1, q 1 sigma comma q 2.

The third line the third line of the RHS happens for the opposite case. So, let us say small

sigma is not defined as part of the active event set of q 1 in G 1, but small sigma is

defined in the as part of the active event set of q 2 in G 2 therefore, in that case the next

state would be q 2 comma del 2, q 2 comma sigma. So, it will remain in q 1 the automata

the composite automata is going to remain in q 1 state of G 1 and it is going to move to

the next state in G 2 from q 2 on the event small sigma. So, therefore, the next state

becomes q 1 comma del 2, q 2 comma small sigma.

It is undefined otherwise. For example let us see what can be an undefined case. Let us

say that small sigma is defined as part of let us say small sigma is defined as part of

capital sigma 2; meaning that small sigma is a valid event in G 2. However, it is not



defined at state q 2 of G 2 small sigma it is not defined at a state at the state q 2 of G 2;

however, small sigma is a valid event in sigma 2. So, it is part of the active event set of

some other state in G 2, it is not defined in q 2, but it is part of the active event set of

some other state in G 2. It is not completely undefined. So, therefore,  it  is a part  of

capital sigma 2.

If that happens then the second line cannot take place the second line of the RHS the

second line of the RHS in the equation cannot take place. So, del 1 q 1 comma sigma

comma q 2 cannot happen if small sigma is part of capital sigma 2. Although it is not

defined in q 2, ok. So, it is not defined in q 2, but it is part of the active event set of

capital  sigma 2,  then the second line of the RHS cannot  happen and it  will  become

undefined, ok.

So, then comes what is capitals capital gamma 1. So, what do we mean by the active

event set at q 1, q 2 of the composite automata. So, the active event set of q 1 of at the

state q 1, q 2 of the composite automata is defined as follows. It is it is sigma 1, q 1

intersection sigma 2 q 2. So, whatever is the common active event at q 1 and q 2 those

events are part of the active event set of q 1, q 2 first. So, it has it is composed of three

components, right. So, union it has two union operators in operations in between. So, I

am talking of the first part the first part sigma 1 q of the RHS the first part of the RHS

what does it say sigma 1 q 1 intersection sigma 2 q 2, what does it mean? So, all the

common active events at q 1 and q 2, so, those are part of the composite active event set

of the composite state.

What else is part of the active event set of q 1 q 2? Those events that are defined as part

of q 1 so, it is part of the active event set at state q 1 of G 1, but that those events are not

defined in the entirety of G 2. Those events will also be included as part of the active

event set of q 1, q 2 and then the opposite as well those events that are part of q 2 of G 2,

but are not defined in the entirety of G 1. So, it is not part of capital sigma 1 those events

will also be included in the common in the active event set of q 1, q 2.

Now, as I told accessible part what does this accessible part of, tell me; the accessible

part of the composite automata. So, we say that G 1 parallel G 2 is the accessible part of

the  composition  that  we have obtained  through this.  So,  what  is  the  accessible  part,

denotes the operation of deleting all the states of G. So, after all this operation that we



have got this composition operation we can get some states which are not reachable from

the final from the initial state of the composite automata. So, those states which are not

reachable from the initial state of the composite automata will be deleted.  So, A c G

denotes the operation of deleting all the states of G that are not reachable from the initial

state of the composite automata.

So, this is the definition of synchronous parallel composition and with this definition we

will see how we slowly build the behaviour the composite co executor behaviour of the

embedded system that we are given; the embedded system consisting of two parallel

processes p 1 and p 2 the two philosophers and the two resources f 1 and f 2.

(Refer Slide Time: 39:43)

So, first we will see further resources because first we will try to compose two to the two

resource models. So, we will try to find out what happens what is the possible concurrent

behaviour and the states that are there that will be there in the concurrent behaviour of

the two resources? What are the possible states that can happen when these two resources

are being used concurrently? What are the possible states that can happen when these

two resources are being used concurrently; this is what we will see.

So, the left one is fork 1 or resource 1 the right one is fork or resource 2 we have seen.

So, what are the events what are the possible events for resource 1 or fork 1, f 1,1, f 2,1

rf 1 and rf 2; either philosopher 1 picks up fork 1 or philosopher 2 picks of fork 1 and

then  both  I  philosopher  either  philosopher  1  or  philosopher  2  relinquishes  fork  1.



Similarly, for fork 2 or resource 2 the events are f 1, 2, f 2,2, rf 1 and rf 2. Now, what are

the common events what are the common events in f 1 of the two resources. So, sigma f

1 intersection sigma F 2 is rf 1 comma rf 2.

Hence  in  the  during  the  transition  if  when defining  the  transition  f  1  and f  2  must

synchronize on rf 1 and rf 2 because rf 1 and rf 2 are defined as part of both automata,

then they must synchronize. I cannot take the second line and third line of the RHS of the

transition function defined in the earlier in in the in the earlier slide for the transition

function only the top line will be applicable, the top line where I get where I go del 1 and

del both are applied. So, if sigma belongs to gamma 1 cross 2 q 1 comma q 2 ok.

So, F 1 and F 2 must synchronize on rf 1 and rf 2 and what are the events that are defined

in F 1, but not in F 2? f 1,1 and f 2,1 are defined in F 1 and not in F 2 and what are the

events that are defined in f 2 and not in F 1? f 1, 2 and f 2, 2. So, the event of picking up

the forks by picking up picking up fork 1 by philosopher 1 or philosopher 2 is defined in

the resource model of a fork 1, but not there in fork 2. Similarly, the events of picking up

fork 2 by philosopher 1 or philosopher 2 is defined in the resource model of f 2 and it is

not part of f 1.

Now, the number of states in the composite model will be given by Q f 1 cross Q f 2 and

is equal to 4 because fork 1 has two states and fork 2 has two states. So, the total number

of states in the composite model will be Q F 1 cross Q F 2 equals to 4 and what are the

states the initial state will be q 0 1 comma q 0 2 which is a 1 comma A 2, A 1 is the initial

state in F 1 and A 2 is the initial state in f 2. So, the initially the composite automata is in

state A 1, A 2 and because it is also the marked state it has two circles. So, mark states I

forgot to tell previously marked states in the automata are represented by these double

rounded circles, ok.

So, the automata finally, why are these double rounded circles there it says that it  is

initially in available state then it is in U state. And then finally, it will go back to the

available state when process 1 will relinquish let us say any process will relinquish fork

1, in F 1 say in F 1 it goes from A 1 to U state. And then goes back after it is relinquished

it goes back to A 1 and that is it is idle or initial state and also that it is final or marked

state.



So, therefore, in the composite automata A 1, A 2 is the initial state and also the mark

state. At A 1, A 2 either philosopher 1 or philosopher 2 will first pick up let us say fork 1.

So, if it can take an event for the let us say it in the event that fork 1 is picked up the

event fork 1 is picked up is represented by the arrow going from a 1, 1 to U 1 comma a 2,

ok. So, when fork 1 is picked up either by fork either by philosopher 1 or philosopher 2

that can happen through the events either f 1,1 or f 2 1. If either of these two events occur

fork 1 goes to the used state and fork 2 remains in available state. So, the state that it

goes to is U 1 comma A 2.

How does this happen because this let us say let us say f 1,1 has occurred at A 1, A 2. So,

A 1, A 2 is the state and F 1 has occurred. So, del A 1, A 2 comma f 1,1 will be what will

be del 1 A 1 comma f 1,1 comma A 2. Why? Because this event f 1,1 is defined as part of

f o1ne, but it is not defined as part of F 2. So, capital sigma 1 contains f 1,1. So, capital

sigma f 1 contains f 1, 1 but capital sigma F 2 does not contain f 1,1. So, line 2 of the

transition function will be applicable.

So, therefore, A from A 1,1 in the composite automata from A 1, A 2 in the composite

automata the next step that will be that that it the transition will happen on f 1,1 will be

to U 1, A 2. Similarly, the transition can happen on f 2, 1. At U 1, A 2 what has happened

fork 1 has been used, but fork 2 is available. Now, the next fork can be picked up the

next fork will be picked up. When the next fork is picked up both the forks go to U state.

So, at U 1, A 2 on event either f 1,2 or f 2,2 so, fork 2 is picked up either by philosopher

1 or philosopher 2 this happens and it goes to the composite automata goes to the state U

1 comma U 2.

Similarly, at A 1 comma A 2 I can reach the fork 2 can be picked first at A 1 comma A 2

fork 2 can be picked first by either philosopher 1 or philosopher 2. If this happens the

lower edge will be taken from A 1 A 2 the lower edge will be taken and it the automata

moves to A 1 comma U 2. So, from A 1 comma A 2 f 1 on the transition on the event f

1,2 or f 2,2 you move to the composite automata moves to A 1 comma U 2 in which fork

1 is in available state because it is not picked, but fork 2 is in used state and then from A

1  comma  U  2  the  other  fork  which  is  fork  1  will  be  picked  either  by  f  either  by

philosopher 1 or philosopher 2. So, from A 1 comma U 2 on the event f 1, 1 or f 2,1. I

will again go to U 1 comma U 2.



Now, once I meant you I am I am in U 1 comma U 2 that is both my forks are in U state I

will go back to A 1 comma A 2 either on rf 1 or rf 2. So, my composite automata will go

back to the available state on the event rf 1 or rf 2. So, either philosopher 1 relinquishes

fork 1 or philosopher 2 relinquishes fork sorry both the forks either philosopher fork 1

relinquishes both the forks or philosopher to re-link which is both the forks and then both

the forks go from U state back to A 1, A 2 which is the initial and mark state. So, this

represents  the  concurrent  behaviour  of  the  resources.  Similarly,  I  can  obtain  the

concurrent behaviour of the philosophers of the two concurrent philosopher’s functions

in my embedded system.

(Refer Slide Time: 49:28)

Now, what do I want to obtain the concurrent behaviour of the two processes of the two

individual functions in the embedded system this is what I want to obtain. So, these two

philosophers we have already modelled and seen how they are modelled and in this 1 the

point to note is that sigma P 1. That means, the active the act the sorry the event set the

total  set of events that are possible in P 1 are f 1, 1 f 1,2 and rf 1. So, f 1,1 that is

philosopher 1 picks up fork 1, f 1,2 that is philosopher 1 picks up fork 2 and rf 1 that is

philosopher 1 relinquishes both the forks these events are defined in P 1.

What are the events that are defined in P 2 what are the events f 2, 1, f 2, 2 and rf 2 that

is philosopher 2 picks up fork 1 or philosopher 2 picks up fork 2 and philosopher 2

relinquishes both the forks. So, and there are no common events. So, they know they do



not need to synchronize on any events. Why? Because sigma P 2 intersection sigma P 1

is 5 so, there are no common events as part of this one sigma P 1 intersection sigma P 2.

What will be the number of states in the composite automata 16 because there are 4

states in P 1 and 4 states in P 2. So, 4 cross 4 is 16 and this is a partial con concurrent

execution model for P 1 and P 2 together because the number of states are large 16. So,

we have shown this contrary behaviour here.

So, let us take one or two states and how this happens here. So, initially the concurrent

automata will be in T 1 comma T 2. So, both philosophers are in thinking state. Now,

from this thinking state so, the program for T 1 let us say the program for philosopher 1

mm that they open that picks up or asked for the resource or takes up the resource for 1.

So, philosopher 1 picks up fork 1, then what happens? When philosopher 1 picks up fork

1 we go to the state I 1, 1 comma T 2. 

So, for the first automata philosopher 1 goes to the intermediate state at which it has

picked up fork 1 and has not picked up fork 2 and philosopher 2 is still in the thinking

state.  Why this  is  feasible? Because f  1,1 is  not defined as part  of the behaviour  of

philosopher 2 because f 1,1 is not defined. So, line 2 of this definition of the transition

function line 2 of the RHS of the definition of the transition function can be applied and

by that we move from T 1, 2 T 1 comma T 2 to I, 1, 1 comma T 2.

And, then if philosopher 1 let us say happens to pick both the other fork as well that is on

event f 1 comma 2 then I move from T 1 comma T 2 that is philosopher 1 moves to

eating state and philosopher 2 remains in thinking state,  ok. So, likewise we get the

composite  model  for  the  philosophers  for  the  concurrent  behaviour  concurrent  co-

execution behaviour of P 1 and P 2 by the composite automata P 1 parallel P 2 whose

partial diagram is shown here.
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Now, given the composite model for both the processes and both the resources so, I have

P 1 comma P 2 partial diagram shown in the previous slide which is on the left and on

the right I have F 1 parallel F 2. So, P 1 parallel P 2 and F 1 parallel F 2 is on the right

side  and these  two are  the  individual  composite  models  for  the  function  that  is  the

functions and the resources. Now, when the resources and the function work together the

composition of F 1 and F 2 gives the composite system model the system model consists

of the processes that will be executing and also the resources which will be consumed by

the processes.

Now, the behaviour of the resources when composed with the behaviour of the process of

the  processes  gives  the  composite  system model  P f  and;  that  means,  given by P 1

parallel P 2 parallel F 1 and F 2 and here we see that sigma of P 1 parallel P 2 has the has

all  the states has all  the possible has all  the six states that we have defined and F 1

parallel F 2 has all the six states that we have defined. Therefore, the composite automata

must synchronize on all events. So, only the first line of the transition functions. So,

again the transition function del q 1, q 2 comma sigma goes to del 1, q 1 comma sigma

gamma del  q  2 comma sigma this  is  the only applicable  one because all  events  are

common. All events are common in both the automata and hence they must synchronize

on all events and because this is going to be a big automata we again show a partial

diagram.



So, let us take the initial state of the composite behaviour. So, what is the composite

behaviour?  The  philosophers  are  in  state  are  in  thinking  state  and  the  resources  are

available. So, T 1 T 1 comma T 2 the philosophers are thinking and A 1 comma A 2 the

resources are available. Let us say in this state you take the you take that event the event

f 1,1 occurs. So, if f 1, 1 occurs then in the ca in the ca in P 1 parallel P 2 I must go to I 1

comma T 2, ok. So, I will go to I 1 comma T 2 and it is if f 1,1 is also defined in if f 1,1

is also defined in F 1 parallel F 2 at a 1 comma a 2 at the available state and. So, F 1

parallel F 2 moves to U 1 comma A 2, and by using the transition function we move to

the state I 1, 1, T 2 U 1 A 2. So, I move to I 1, 1 comma T 2 of P 1 parallel P 2 and U 1

comma A 2 of F 1 parallel F 2. So, in the composite automatic I move to I 1, 1 comma T

2 comma U 1 comma A 2.

And, then let us say at the state I 1, 1 comma T 2 U 1 comma A 2 I the event f 2, 2

occurs. What is event f 2, 2? Philosopher 2 picks up fork 2. So, remember f 1,1 occurred

previously meaning that philosopher 1 had picked up fork 1 and then we moved to I 1,1

T 2 U 1 A 2 and now, philosopher 2 has picked up fork 2. So, I moved to I 1,1 comma I

2,2 and U 1 comma U 2. So, what is the event? Let us say if you look at P 1 parallel P 2

and I am at state I 1,1 comma T 2 and the event f 2,2 occurs we see that we move to the

state I 1,1 comma I 2,2 and let us say we are at T 1 comma A 2 and the event f 2,2 occurs

where do I and the state f 2,2 occurs and I go to the state U 1 comma U 2 that is both the

forks are used.

So, now, I have reached a state where both the philosophers are in that intermediate state,

none of them has reached the eating state and both the forks are in the nude state. Why?

Because philosopher 1 has picked up fork 1 and philosopher 2 has picked a fork 2, none

of the philosophers have been able to pick both the forks. Now, at this if at this state we

see that there are no common events meaning that at I 1, 1 comma I 2, 2 at I 1,1 comma I

2,2 none of the events that are active at U 1 comma U 2 are defined. So, what are the

events that are activate at U 1 comma U 2 of f 1,1 parallel f 2 2? Only rf 1 comma rf 2.

So, rf 1 and rf 2 are defined as active events at U 1 comma U 2 of F 1 parallel F 2 and

these two events are not defined on I 1,1 comma I 2,2.

Similarly, so, the automata cannot move from the composite automata cannot move from

the state I 1,1 comma I 2,2 comma U 1 comma U 2 because rf rf rf 1 comma rf 2 is not

defined at this composite state. Similarly, f 1 f 2 or if f 1,1, f f 1,2, f 2,1, f 2,2 all these



the picking up of forks these are not defined in U 1 comma U 2 ok, but is defined in I 1,1

comma I 2,2. So, on these events you cannot move. So, there is no way on which you can

move in the composite automata from the state I 1,1 comma I 2,2 comma U 1 comma U

2. There are no defined active events on which you can move and therefore, but and the

final and the final mark state of this automata has still  not been reached because the

marked state is what T 1 comma T 2 comma A 1 comma A 2, T 1 comma T 2 comma A 1

comma A 2 and that state has not been reached.

Hence we have reached a deadlock in which there is no way in which I can move to the

marked  state.  So,  therefore,  this  concurrent  uncontrolled  behaviour  of  the  system

contains deadlock states which must be avoided by the controller. And it is absolutely

possible that you can reach these deadlock states if not controlled appropriately and you

will never be able to reach the marked state and you will remain deadlocked with none of

the processes being able to move in the embedded system.
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So, if we draw this draw if you do this composition completely we get these composite

automata on the right. The very partial automata that we showed in the previous tab that

we showed in the previous slide here on the right side c, c part on the right side; this path

or these two transitions can be seen how here. So, from T 1,1 in if you see the right

automata if you see the right composite automata from T 1, T 2 A 1 A 2 on F 1 I go to I

1,1 T 2 U 1 A 2 and then I take F 2,2 to come to the deadlock state. So, this part is



present in here. So this represents the this figure this model on the right that you have

represents the composite behaviour over using all the resources and processes that I have

in the embedded system.
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Now, given this I have to be able to control these automata. The, I have to control this

concurrent  unrestricted  behaviour.  So,  how  do  I  control  this  concurrent  unrestricted

behaviour? By designing a specification that we want so, what do we want? We want we

want that if fork 1 is picked up by philosopher 1 only he should be allowed to pick fork 2

or if fork 2 is picked up by philosopher 1 only he should be allowed to pick fork 1. The

other way for the philosopher 2 if philosopher 2 picks 1 of the forks only he should be

allowed to pick the other fork and this is say enforced by this specification automata here

which we need to define our model.

So, in the specification or in the legal specification that we want in the initially I am in

state I 0 at state I 0 either eh philosopher 1 if I take the top transition the transition on the

top what happens, either fork 1 or fork 2 is picked up by philosopher 1 and I go to

intermediate state I 1. So, intermediate state I 1 tells me that philosopher 1 has picked up

either fork 1 or fork 2. At I 1 therefore, what are the valid events that I should allow? I

should allow philosopher 1 only to pick the other fork.

So, the valid events at I 1 are f 1, 1 or f, 2; that means, philosopher 1 should be allowed

to pick the other fork. So, I if I have reached I 1 from I 0 1 f 1,1 then I will allow the I



will allow f 1,2 to occur at eh I 1, so that I can go to I 3. So, if I have used up f 1, 1 f 1, 1

is no more possible at  I 1 because fork 1 has already been picked. So, f 1, 1 is not

possible. So, what is possible and allowable only is f 1, 2. So, I should disallow f 2, 2 at I

1.

Similarly, if you look at their transition on the bottom from I 0 philosopher 2 can pick

either fork 1 or fork 2 and move to I 2 and the other fork philosopher 2 can only be

allowed at I 2, philosopher 2 is only allowed to pick the other fork and move to I 3. At I 3

either philosopher 1 or philosopher 2 relinquishes both the forks and moves back to I 0

which is the marked state as well. So, it is the initial as well as the marked state. Now,

given this legal specification what we do is then compose what we do is then compose

parallel composition similar parallel composition of the system of the specification and

unrestricted behaviour.
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So,  we  compose  the  specification  which  is  what  the  system  should  do  legally  and

unrestricted behaviour  and when we do that we obtain a supervisor or the controller

which is shown at the bottom at the right of the arrow. So, at the right of the green arrow

shows what is the supervisor that we get through the composition. Let us see one or two

states how this transition how this transition system or the supervisor of the supervisor is

obtained.



So, initially I will be in T 1, T 2, A 1, A 2 of the unrestricted composite behaviour and I

will be in state I 0 of the specification. At that state let us say I allow f 1, 1 the event f 1,1

occurs. So, where will I go? I will go to state I 1 of the specification and to the state I 1,1,

T 2, U 1 comma A 2 of U 1 comma A 2 of the composite unrestricted system model. So,

at this system model we see that if I am in state I 1, 1, f 2, 2 is not defined. However, f 2,

2 is defined in the automata. So, the transition system because all events both the specific

the events in the specification and the events. So, we have a total of six events and all the

six events are there in the specification all the six events are there in the unrestricted

behaviour. So, with during composition if the system must synchronize on all events, ok.

The composite system must synchronize on all events.

So,  therefore,  only  the  first  line  again  going  back  of  the  transition  system  del  is

applicable  of  the  transition  function  del  is  applicable,  ok.  So,  because  f  2,  2  is  not

allowed  at  I  1  so,  in  the  composite  behaviour  in  the  composite  behaviour  in  the

composite controlled behaviour the event f 2, 2 will be disallowed. So, there will be no

event the in the composite behaviour I cannot go from I 1 comma I 1,1 comma T 2

comma U 1 comma A 2 which is the composite state and go to a state such as I 1 comma

I 1,1 comma I 2,2 comma U 1 comma U 2 such a transition to such a transition is not

allowed.

Now, if you see the composite automata the supervisor figure here. So, initially I am in

state 0 I go to f 1, 1 and I move to the state 1. At state 1 at state 1 of the supervisor or the

controller  I see that the event f 2, 2 as we discussed has been disallowed I have not

allowed f 2, 2 what have I only allowed the only possible allowing which if you go back

to the specification at I 1, 1 the two events that are possible are f 1, 1 and f 1,2 and

because f 1,1 has only has already been taken the only event that is possible is f 1,2. So,

at 1 I allow f 1, 2 to happen and I go to 5.

Therefore,  the  specification  eh  when  I  when  I  compose  or  parallel  compose  the

specification  with  the  uncontrolled  behaviour  I  get  the  supervisor  which  disallows

transition to the deadlock states of the deadlock states of the composite behaviour, ok.

So, I  nm the event  the controller  will  only allow those events  which do not  lead to

deadlock states the controller or the supervisor is such that it allows only those events

which disallows transition to the deadlock states.
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Now, after this finally, we how does it occur how does the entire system function? I have

the unrestricted system which is the system behaviour the physical system. Now, let us

go back and think of the cyber physical system or the con control system that we had

defined the cyber physical system or the control system that we had defined in lecture 1.

We had a physical system which is the system in green shown here we had a controller

which  controls  the  physical  system which  is  shown in  yellow over  here  that  is  the

supervisor I sense what is the current state of the physical system through a sensor that is

fed to the controller and the controller generates appropriate actuation actions.

Now, suppose thus the initial system and at the initial state of the system f 1,1 is taken.

So, I know that the sensor tells me that I am I was in the system I am in state 1 and I

have taken the event and the event f 1,1 has occurred. So, the supervisor sends from the

sensor the input that I am in state and event and event f 1,1 has occurred this goes to the

supervisor and the supervisor then says that what are you allowed to do? 

You are allowed to take only the supervisor therefore, goes in this in the in similarly

supervisor  accordingly  goes  from the  initial  state  on  f  1,1  goes  to  1  and  then  the

supervisor says that you are only allowed to take f 1,2 and you are not allowed to take f

2,2. So, the actuation that it tells the actuator that please tell the physical system to only

allow f 1,2 and not allow f 2,2 because f 2,2 will led will lead to a deadlock state and

thereby we have obtained the controller which controls the physical system.



So, in this lecture, we what we have we studied? We have studied how to formally model

the behaviour of the entire system and we studied how to obtain a controller. Now, there

are tools such as supreme cart, TTCT, there are automated tools where you can define

these  individual  models  and  there  are  automated.  So,  these  formal  transition

methodologies  on which  these transition  functions  will  be automatically  applied,  the

tools will automatically apply this transition function, compose them and we will have a

correct by construction supervisor controller depending on the behaviour.

So, if the behaviour of the system is it has been modelled correctly, if the specification

has been modelled correctly then we have a current correct by construction procedure by

which we will obtain a supervisor or controller for the system that can be applied on the

on the physical system to control it appropriately.

With this we come to the end of this lecture.


