
Embedded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 25
Symbolic Model Checking

Hello everybody, Welcome back to the online course on Embedded System Design

Verification and Test ok. In last class we have discussed how to represent and transition

system with the help of an ordered binary decision diagram ok. Now, today we are going

to see about a symbolic model checking. We already have discussed about the model

checking algorithm.

In symbolic model checking algorithm, we are going to implement the same algorithm.

But we are going to use data structure BDD to represent a transition system as well as set

of states. Now, we will see how we are going to look for the correctness of a given CTL

property in a BDD representation of the transient system ok.

(Refer Slide Time: 01:23)

Already we know that, for model checking we should have a model which is some sort

of your finite state machine. And we are having a CTL property, and one we are going to

look for the correctness of this particular CTL property in a given model. Then the model

checking algorithm returns as the set of states where the given CTL formula is true ok.

Now already we have seen them; ROBDD can be used to represent the transition system

ok. Because we are dealing with the transient system which is a finite state machine with

additional property which is basically says about the leveling function. And we know

how to represent all those things. So, this transition system can be represented with the

help of ROBDD.

Similarly, if we are going to consider a set of states of that particular transition system

then that set of states can be represented with the help of an ROBDD Reduced Ordered

Binary Decision Diagram. So, these are the two bases that we have in our hand. Now we

are going to use these two things to implement the model checking algorithm so which

will be known as symbolic model checking.

So, what is a model checking algorithm? We know that it is a graph traversal algorithm

and if you look into the operators. So, what about operators we are going to say if that

here exist X say EXp it holds there exists a part EXp holds or in all path in future p

holds, or maybe there exists a path, where p remains true until q becomes q maybe these

are the three basic operators we can consider. And if we are having algorithm for these

three methods then other methods can be expressed in terms of these three operators.

Now, when we are looking for the implementation of these three operator it is nothing

but a, graph traversal algorithms. And what is the task of these particular graph traversal

algorithms? Such we need to find out the Predecessor states of a given set of states or a

given set ok. So, if I am having some states like that, then in my transition system, I may

have some scenario. So, if say in this particular state say p is true. Then they are exist a

path in next step p is true, then we have to find out what are the predecessor of those

particulars states or these set of states.

So, this is the basic notions that you have to find out the predecessors state of a given

state or a given set of states. So, this is next operator for future and until operator we

have to do these job repetitively until and unless we are going to get a fixed point. That

means, there is no more additional states in that particular set of state at that part we

terminate ok, we terminates or algorithm. So, the basic crux is to find out the

predecessors.

(Refer Slide Time: 04:56)

Now, already we have seen that how to find out the predecessor states. So, we are having

or we define two operators one is your Pre they are exist and Pre for all. So, Pre they are

exist X, where X is a set of states. So, Pre they are exist says that at least, we are going to

look for those particular states at least one transition is coming to the state of states; or

committee a particular states which is a member of this particular state X ok. Or for all

X; that means, you are going to look for those particular states where all the transition

will lead to a next state which a member of this particular subset X ok.

So, if this is the scenario. Then for their exist we are going to get both the state s 1 and s

2, but for all we are going to get only s 1, because all the transition are coming to a states

which is a member of this particular X. Now our job is to if I am having this particular

set of states. Now I have to find out what are a predecessor of this particular state

satisfying those particular properties for their existence it should satisfy this property and

for all it should satisfy this particular property.

So, our job is to find out this particular set of states which are predecessor of this

particular set of states. Now if we are representing our transition system with BDDS.

Now we have to see how you are going to get those particular predecessor states. So, we

are going to look for those particular scenarios. Again we have seen one important

relationship between Pre they are exist X and Pre for all X.

(Refer Slide Time: 06:57)

So, this is the relationship we have seen the Pre for all for all X is equal to S minus Pre

they are exist S minus X. Where S is the set of all states, in a transition system we are

having several state; we are going to consider all the states and we said this is the set S

and X is a subset of S. Then from that we are going to find out what are the predecessor

of those particular states which belong to X.

So, if we are having a method to find out to Pre they are exist X. Then we can use this

method to find out Pre for all X and we will use this particular relationship. Now we are

going to see how we are going to find out or have a method for Pre they are exist X ok.

(Refer Slide Time: 07:47)

Now, this is simple method that we are going to say what is the procedure for Pre they

are exist X, we are going to have the set of state X which is a subset of given set S ok.

And we are having a transition relation ok.

Now, we are going to represent the transition relation with the help of BDD and we said

this is the B arrow. So, B arrow is the BDD representation of the given transition system.

And B X is the BDD representation of the set of states X. Now in the procedure we are

having two step, in the first step we are saying that rename the variable in X to their

prime version called a and call the resulting BDDs as B X prime. So, basically what will

happen? To represent all the states so we are taking help of some variables say this is the

variable set x 1, x 2, x n. If we are having total 2 to the power x n, 2 to the power n states

then we need that many variable.

Now if I am having a transition from one particular state say s i to s j, then you are

representing this transition like the order pair s i s j. So, s i will be represented by the

state variables similarly s j will be represented by the state variable. To represent the next

step we use another set of variable which are nothing, but the prime version of those

particular variable; that means, x 1 prime x 2 prime x n prime.

So, this transition relation will be represented by x 1 to x n, and x 1 prime to x n. So,

these are a variable that will be involved while we are going to represent this particular

transition, like all transition will be represented by distance. Now B X is the OBDD

representation or the particular state or a state of states ok. To, what will happen? We will

just rename the variables of this particular BDDs.

(Refer Slide Time: 10:11)

So, what is the effect? You just say if I am going to have the scenario, like that if I am

making a Boolean function f is equal to say ab plus say bc. And if I write the same

expression, f is equal to say xy plus yz. Then both these Boolean expressions are going to

represent the same function. Because what will happen? Here in one expression I am

writing x, but this x variable is represented by x in the other one b it is renamed by y and

c it is renamed by z.

So, which assume whatever we are having these variables are nothing but a, some sort of

placeholder which can take values that are 0s and 1. So, variables can be different, but

the functional values will be same. So, we can have similar scenario. So, this function

can be represented with the help of an BDD or in particular OBDD.

So, we are going to get an representation which is basically B f. Then for this function

also we are going to have the same Bf provided, we are using the same variable ordering;

the variable ordering should be a b c for the first equation and x y z for the second

equation. Because we are having this particular way mapping.

So, if we are having the same variable ordering. Basically with respect to their

corresponding mapping we are going to get the same BDD. So, now, what happens we

are having B x which is a BDD representation of the state of states. And it involves the

variable say x 1, x 2 to x n. Now we can rename those particular variable ok, but still our

BDD representation will remain same ok. That means, I am going to say that x 1 is

replaced by x 1 prime, x 2 is replaced by x 2 prime, similarly x n will be replaced by x n

prime. So, we are going to have the same BDD.

So, in that particular case what will happen? I say this is the BDD B X prime ok. Now

consider a some small transition diagram or maybe say one finite state machine. So, if I

am going to consider this particular set of state X ok. This states will be represented by

variable x 1, x 2 and x n ok. Now this BDD whatever BDD I am getting over here I am

going to say this is B X.

Now, I simply rename those particular variable by its prime version and we are going to

get the BDD B X prime ok. That means, if we are having this thing that same BDD we

are representing this particular state of state. But we are taking the next state variables,

and now we want to find out the predecessor of those particular set of states ok. Then

what will happen, what is the predecessor I must get? These two things ok. Now what is

the relationship having those transition this is basically s i to s j, if this is say s i and s j.

Now, what is why we are doing that pre damming? Now you just see these transition i

have to concept that on these transition to find out the predecessor of this particular state

s j. So, this transition is represented by present state variable and next state variable. So,

that is why we are saying we are renaming the variable of this particular state it is by

next state variable and. Now the other state s j now we will map to this particular B X we

will see how we are going to map these things. Basically we are going to look for this

particular transition and going to have a predecessor of this thing. So, since we are

concentrating on these things; that means, this transition has to be represented by its

temporary variables.

So, in this particular case these state variables are basically now prime version and this

state variable is my predecessor version ok. Now with the help of this renaming we try to

find out does predecessor state.

(Refer Slide Time: 15:10)

Now, how we are going to do it? Now we are going to say that compute the OBDD for

exist X prime apply dot B arrow the BDDs of the transition system, and B X prime using

the apply algorithm and exist algorithm. So, when we are using this particular apply

algorithm we are using two BDDs, BDDS for transition system; and BDDs for the set of

states ok.

 Now when we are going to apply this particular apply algorithm or use this particular

apply algorithm then would B X prime or B arrow must have that compatible variable

ordering. That means, they are going to use the same variable ordering. So, for B arrow I

may think that it is the variable ordering x 1, x 2, x n, x 1 prime, x 2 prime, x n prime

may be this is the variable ordering that I may have or B arrow. Then the variable

ordering for B X prime will be your x 1 prime, x 2 prime, x n prime ok. Now they are

having the compatible variable ordering, but B X prime is independent of those

particular variables x 1 to x n.

So, this is the scenario now we are having. Now we are going to use the apply algorithm,

and see what is the result that we are going to get. Now consider such type of scenario.

And say we are considering that this is the state X, X is the set of states ok. Now we are

using that particular B X prime to represent this particular set of states. And B prime is

the, and B arrow is the representation of this particular enters that transition graph.

Now, when we use this particular algorithm apply. Then what will happen you just see, it

is going to have an product of this interstate transition system, and this particular B X

prime. Now while after applying this thing it is going to give me an BDD, that BDD is

going to involve all the variables x 1 to x n and x 1 prime to x n ok. This is going to have

these things, and basically if you see what we are going to get in this particular case; we

are going to get basically those particular transitions. Because we are going to look for

there exist a states ok.

So, basically it is returning this particular transitions ok. Now, all those transition are

having variable from x 1 to x n and x 1 prime to x n prime. So, I am getting an OBDDs,

which are having the ordering x 1 to x n and x 1 prime to x n, which basically returning

us all those particular transition ok. Now, from those particular transition our objective is

to find out the pressure states, where from this transition is originating. So, for those

particular transition that presence that is represented by the variable x 1 to x n. And the

next state is represented by x 1 bar prime to x n prime. Now we are going to use this

particular exist algorithm on this particular x prime. Now what is this x prime? It is

nothing, but the set of variables x 1 prime, x 2 prime, x n prime.

That means we are going to apply this particular exist on the resultant BDD on all the

variable of x prime; that means, you are trying to relax the constraint on those particular

variable x prime. So, when we are going to relax the constraint on the x prime then the

resultant BDD is going to have the variable only x 1 to x n ok. Now, what we are

considering? We are considering all those particular transition. And now we are relaxing

on the next state variable, now we are going to get an BDD which have only the present

state variable; that means, the resultant BDD is going to represent this particular set of

states Y ok.

So, this is the inherent meaning of this particular operation. And this particular Pre there

exist X method ok. Now from here what we have seen that, we can find out the

predecessor states or by given set of state using this particular Pre they are exist X ok.

Now whatever BDDs we are getting for this particular set of states Y. It is an OBDD, and

it is going to have the same variable ordering the variable ordering will be your x 1, x 2

to x n ok. This is the way that we can look into it, now the resultant BDD may not be a

reduced on then we can use those particular reduction techniques. That we know we are

having only three reduction technique we can use those particular three reduction

technique to get the ROBDD out of it ok.

Now, what we have seen, that if we are giving the transition system or representing the

entire transition system with the help of an OBDDs, you are considering a set of state of

that particular transition system. And representing those particular state of state with

another OBDD, but the variable ordering of both the OBDDs must be computable. That

means, they must have the same variable ordering then after application of these two

operation apply an exist we are going to get an OBDD which indicates the predecessor

states of the given set of states ok.

So, now we are having a method to find out the predecessor state of a given set of states

which basically says that Pre there exist; that means, there exist at least one transition

which are coming to this particular set of states. Now, we know the relationship between

Pre for all X and Pre there exist X. So, now, we can use those particular relationships to

get the Pre for all X also ok. Now we are having a method how to find out the

predecessor state of a given set of state ok, already I have explained a method with

example.

(Refer Slide Time: 23:07)

So, we are having an BDDs or basically say OBDD, B arrow for a state transition system

we are having an OBDD, B X for set of states ok. So, x is a subset of the entire states S.

Then with the help of these two BDDs now we can find out the predecessor states of this

particular set of states.

(Refer Slide Time: 23:40)

Now, just see we are going to look for now the model checking algorithm. And see how

we are going to have a symbolic implementation, and symbolic means we are going to

represent or going to use OBDDs to the represent the entire systems and the set of states,

and it says that we are not enamoring the set of state, but symbolically we are

representing with the help of BDD. That is why the term symbolic is coming into picture

and it says symbolic model checking.

 Now what is the CTL model checking algorithm simply look into it, for operator EXp

there exists a part next state p holds. So, we know the matt haughty it basically says that

first we are going to take all the set of states where p is true. Then we are going to

collects those particular states as 0 belongs to X, such that it satisfies these particular

properties from s 0, there must be one transition to s 1 where s 1 belongs to X ok.

Already we have seen this particular algorithm and finally, we written one. So, how we

are going to represent we are going to have an implementation for this particular method

symbolically.

(Refer Slide Time: 24:55)

So, this is the symbolic representation or maybe symbolic model checking algorithm, for

there exist a part in next state some formula phi 2. So, in that particular case what will

happen we are going to take the BDD B phi. It says that set of states where phi is true ok.

Now we are having a CTL formula phi, now we know the set of state where phi is true.

So, we are going to collect those particular set of states and going to have a BDD

representation I made. And I said this is your b phi. So, this is analogous to X equal to set

of phi. The way we are saying in this particular statement ok. So, this is analogous to this

particular statement of the model checking algorithm. Now, B arrow is the OBDD

representation of the transition relation or entire transition system. And now, B phi and B

arrow must that, compatible variable ordering.

Now after that we are just using this particular operator Pre there exists B phi. B phi is

the BDD representation of the states where the formula phi is true ok. So, it is analogous

to like that we are going to loop for the predecessor states s such that from S we are

having a transition to s dash and s dash belongs to X. This is the predecessor operator

basically does. So, finally, we are going to return this particular thing, and what it is

going to return? It will return a BDD, that BDD is going to basically talk about or going

to represent a state of states which is having a transition to this particular set of state X or

basically these are the state of states where that formula EX phi is true.

(Refer Slide Time: 26:51)

So, basically now we can think something like that, we are talking about EX phi. So,

consider a small transition system, now just say these are the states who have phi is 2;

that means, I am going to get this particular set of states. And I say this is basically B phi.

This is the starting point and I am going to have the BDD representation of this particular

entire state space, which I said this is your B arrow. Now we apply this particular model

checking algorithm, then what will happen? It is going to give me those particular states

where the in next step phi is true.

So, in this particular case it is going to return me those particular state maybe this is s 0 s

1 and s 2 ok. Because in this particular state the next state five is old, for here also at

least I am going to have one state. So, after performing this operation it is going to return

me this particular set of state s 0, s 1, s 2 where this particular formula EX phi is 2. So,

this is the way I can look into it, now I am having the implementation of this particular

EX operator there exist a part in next state phi holes where we are using the BDD

representation only, BDD representation of the transition system and BDD representation

of the set of state.

(Refer Slide Time: 28:58)

Now, similarly the another operator is your A F p. There exists a part oh sorry A F p says

that in all part in future, we are going to some state where p is true. And this is the

algorithm that we are having first X is equal to S; that means, I am going to take the

entire state space and Y is equal to SAT of p, where I am going to take the set of state

where this particular atomic sorry CTL formula p is true. This is the satisfy some

relation. So, I am going to considered all the states where p is true. Now repeat until X

equal to Y, we are going to repeat it like that when X become equal to Y and initially I

am going to mark X is equal to Y.

That means wherever that p is true in the particular state A F p is also true. Because this

is as per the motion of our time future includes the presence in area also. So, this is the

initial state where that A F p is true. Then I am going to collect such type of state and

going to append with Y or union with Y, what those particulars must have this particular

property for all s dash, we have a with the transition s to s dash, we must have all as this

must belongs to Y; that means, if here A F p is true. Then the assigning A F p will be true

over here also because all the transition is coming to a state where A F p is true. So, this

is the scenario now we have these things will be again implemented with the help of

symbolic model checking algorithm where we are going to use the BDDs.

(Refer Slide Time: 30:51)

So, similar to your EX phi here I am going to say that B phi is an OBDD representation

of the state of state where phi is true. This is analogous to Y is equal to certification of

part. B arrow is the OBDD representation of the transition relation ok. So, one I am

taking B phi these are the state of BDD representation of the set of state where phi is

true, B arrow is the BDD representation of the transition system. And B X is the BDD

representation of the all states of the system, say one is your transition relation and B X

is the all states, this is the BDD representation. So, this is analogous to your X equal to S.

So, these are the three things I am having X equal to X and Y equal to set of p.

Now what we are doing repeat until B X equal to B phi; that means, BDD a presentation

of the set of state where phi is true will be equal to the previous iteration. Basically, now

here first step we are going to assign B phi is equal to BX; that means, we are returning a

set of state where phi is true. Because we are going to appends states to this particular set

of state Y; that means, you are going to appends state to this particular state or to this

particular B phi. Now what will happen? Now B phi will be now we are going to modify

it. How we are going to modify it? Apply plus B phi and Pre for all B phi ok. So, this is

analogous to that we are appending Y with Y union and all such type of states which

satisfies this particular property.

So, we are using now Pre for all, and we know that Pre for all can be observed by this

particular relationship Pre for all X equal to S minus Pre they are exists S minus X. So,

we are having a matter to this thing. So, this is plus is going to have the union. So, we

have a use this particular apply method or apply algorithm to get the union of these

things. And we are going to repeat it (until and unless step that Previous states or set of

state this is equal to the set of states that we are getting after this iteration.

So, once these two BDDs become equal; that means, we are not adding any more new

states to it and we terminated and finally we return this particular B phi. Now B phi is the

BDD representation of the state of states where this particular AF phi is true. We are

looking for the formula a f phi. So, we are getting an ordered BDD representation or the

state of states where this particular formula is true. Now after that we can use those

particularly reduction technique to get the ROBDD representation of those particular

state of states. Now this method is giving us the returns the state of state where this

particular formula is true and it gives me the BDD representation of those particular set

of states ok.

(Refer Slide Time: 34:17)

Now we are having another porter called e until ok. So, p until q or there exists a part p

until q. So, this is the method, now what we are doing? Going to take the set of state

where p is true, we are going to take the set of state where q is true. And we are going to

look for entire states all the states of the system ok. Now we are repeating until X equal

to Y then we are going to these things. Now in Y these are the set of state where q is true.

Now we know that where q is true, then E p until q is true according to our notion of

time, where we says that presence or future includes the present behavior also.

So, wherever q is true and E p until q is true. So, that is why this is the initial state of

state where E p until q is true. Now X equal to Y. Now we are retaining the previous set

of states now here this is the operation that we generally perform already we have

discussed in our model checking algorithm. So, Y union and what sort of state of states

we are going to take? We are going to consider those particular state of state, we are

going to collect those particular states which is going to satisfy this particular property;

that means, at least there is one transition to the set Y and after that intersecting with W;

that means, where p is true.

So, we are going to look for such type of scenario. If say E p until q is true over here, E p

until q is true over here and say it is p is true over here. Then when I am going to take the

predecessor state? We are going to look for those particular Predecessor state where p is

true; that means, this particular state will come into picture because this is the W union

and what is W? Where the set of state where p is true so these predecessors will come,

but this Predecessor will not come interface. So, this is the way we generally collect the

set of state where p until q is true. And we repeat these things until and unless we cannot

add any more new step.

(Refer Slide Time: 36:47)

So, this is the represent symbolic model checking implementation, where we are using

the ordered BDD. So, this is B psi one is the BDD representation of the state of state

where psi 1 is true. And B psi 2 is the set of state where the CTL formula psi 2 is true.

So, these are the two BDDs we are having then, we are going to take another BDD B X

which is going to BDD representation of all states ok. And B arrow is the BDD

representation of the transition system.

Now all those 4 BDDs must have compatible variable ordering then only we can perform

the operation. So, it says that B x is the OBDD representation of the system this is

analogous to X equal to S if you compare that or model checking algorithm. This is B phi

1 is the OBDD representation of the set of state where psi 1 is true. This is analogous to

W into set of psi 1, B psi 2 is the BDD or OBDD representation of the set of states

whereas, psi two is true. So, this is analogous to Y is equal to set of psi 2 and B arrow is

the OBDD representation of the transition direction. So, these are the four BDDs we are

using.

Now, repeat until B X is equal to B psi which is analogous to your X equal to Y and here

you say that initially wherever that psi 2 is true we are assigning to B X ok. So, again

you just see that whenever we are going to have E. There exist a path psi 1 until psi 2 all

the state where psi 2 is true. In those particular states we said that E psi 1 until psi 2 is

true. That is why this is the initial set of state or BDD representation of the initial state of

state where psi 2 is true. Now we are going to conduct more and more step. So, what is

this? So, this is the scenario first we are using this particular apply dot to B psi 1 and

these things. So, this is basically B psi 1 is the set of BDD representation of the state of

state where psi 1 is true. This is equivalent to this W ok. Representation of the set of state

W and this is the intersection of such type of states.

So, that is why for this intersection we are using this particular dot operators. So, B psi 1

Pre there exist B up psi 2 ok. Taking all the states like that previous example all the

taking predecessor states where the E p until q is 2 and p must be true over l. So, this is

W intersection of these things. So, this is dot operation is there and we are going to add

those particular things to the state of state where already we have founded, E psi 1 until

psi 2 is true this is the union. So, this union is again given by this particular plus operator.

So, we have applied or use this particular applied method twice to find out B psi and we

repeat these things until and unless it is going to satisfy these particular property. Then

finally, we are going to return B psi 2 where this particular formula E psi 1 until psi 2 is

true. Now you just see this is the symbolic implementation or I can say that where we

have used the BDD representation for the entire system. And a state of states to

implements the operator E psi 1 until psi 2 ok.

(Refer Slide Time: 40:49)

Now, what happens we have seen these things for EX p AF p and E p until q. And we

know that, if we are having of implementation of these three operators. Then other

operators can be converted or can be written with respect to these three operators.

So, now we have a method where we have use the BDDs to find out the state of state

where a given CTL formula is true. Now when we are using OBDD’s or say ROBDD’s

up to some extent we able to contain the states plus expression problem. Because in

many a case it is observed that the OBDD representation of the entire system or maybe

set of state coming to be a very small one if we can find out a proper variable ordering.

So, we try do we use defined heuristics initially to find out the appropriate variable

ordering. And once you get the appropriate variable ordering then we use this particular

variable ordering to represents to represent our entire state space as well as the set of

states. So, when you use this particular symbolic method, symbolic model checking we

can take care of many more states ok. It is at least getting better result with compared to

the graph Bessel algorithm or graph traversal algorithm. So, that we have thus

implementation of model checking algorithm with BDDs alright.

(Refer Slide Time: 42:32)

Now, whatever this things so whatever we said this is the in nutshell I can say that BDDs

are used to represent the transition system and set of states or in particular I can say it is

the ordered BDD. Because we are using several BDDs and we are performing operation

of several BDDs. So, they must have a computable variable ordering. So, we are using

ordered BDDs to represent transition system and a set of state. Use of ordered BDD

helps to contain the state space expression problem. Because already I have mentioned

that in many a times or many a cases we are going to get a compact representation of

those particular set of states and the transition relation, but main thing is that we have to

find get an appropriate variable ordering.

So, here already I said that variable ordering plays a major role in the size of the BDDs.

So, we use some heuristic to shows the proper variable ordering. So, these are the basic

ones that we have to know, we have to keep in our mind while we are going to

implement the model checking algorithm symbolic where; that means, we are going to

use the OBDDs to implement our model checking algorithm.

(Refer Slide Time: 43:44)

Now, along with that with model checking what we need we need a temporal logic ok,

and in this discussion we are using a particular temporal logic which is called CTL

computational tree logic. And what are the temporal operators we are having? Basically

we are having the next state global user and until.

And for CTL all those temporal operator will be preceded by a part quantifier, there are

two part quantifier a and e a is for all part, e is for there exist a apart. And when you

proceeded in those particular temporal operator with part quantifier that all becomes a

step formula; that means, we are specifying the properties of the system in a state. And

CTL model checking basically taken care of the state formulas only, and whatever

operators we have discussed till now that X G F and U here the, if you look into the

notion of times these are qualitative illnesses, what we say? A F p whether in all path in

future p holds; that means, we are going to look for all the transition from a particular

state in such a way that somewhere in future or eventually we are going to get a state

where p is true.

So, this is quantitative in nature we are saying that in future we have to get it ok. And

similarly, if I say that E p until q what we are saying. That p must remain true eventually

q becomes 2 in a particular state; in an particular execution or in a particular execution

trace because it is taking for E part quantifying; that means, we are not concerned about

all the part.

But at least in some path p must remain true until q becomes true. Again it is qualitative

in nature we are not having any quantity we are not saying that in all path in future we

did not 5 units of time p must hold true. So, that will be quantitative in nature.

(Refer Slide Time: 46:03)

So, how to look for the quantity of time? So, quantitative in nature; that means, I can say

that I am looking for some property to be to hold within say 5 unit of times or maybe in

between 7 to 10 unit of times. So, these are the time notions. So, along with the temporal

operators we can give the bounds also.

So, one such logic is developed we say on this logic is called RTCTLs this is Real Time

Computation Tree Logic. So, one such logic is there RTCTL where we say that time will

be specified in quantum ok; that means, it is quantity business or whatever algorithm we

have discussed this is qualitative in nature. But now, we are going to specify the quantum

of time. So, we are going to say that that time will be quantitative in nature, which is

very much required in a real time system. Because always we want to have the response

with a specific time. So, with the CTL operators or temporal operators we can give a

bound to indicate the quantum of time. So, for that what will happen all those operators

will be given as some bounds.

(Refer Slide Time: 47:19)

So, X is basically next state, we do not have any problem if we are having a step in the

next time it should get it, but for G globally whether we are going to look for all features

or we are going to bound it to sometimes. So, it will be something like that at has looking

into some bound Y. So, within this Y all state should satisfy this property or in some

notion it says that from current time present state to that particular bound Y.

So, we can help the sub script bound 0 to Y or we can say that less than Y; that means,

from this particular state through the time instance Y. So, similarly in future we can say

that within this particular Y time unit that p must be true or that given property must be

true or we can give a bound that in between X and Y it must be true. That means, if I

look into transition part. Then if I say it must be less than equal to y and say this is the

time instance y; that means, from this particular state somewhere p must be true.

If I am going to look for say AF p or AF p or if I give a bound like that x and y then p

must be true during within this particular bound. So, both are possible similarly in case

of until also I can give a bound and you can say that less than equal to Y. So, we (Refer

Time: 49:07) or maybe that total bound from that current state to thing things. Now, this

is the way we can have the quantitative in nature how can implement the, or we can

indicate the quantity. So, those algorithm whatever model checking algorithm we have

discussed, those can be implemented to get take care of those particular bounds also you

have in the implementation.

So, in RTCTLs real time computational tree logic competition tree logic we generally

provide such type of bound. And we say that within some specific time my given

properties would hold. So, such type of reasoning can also be done if we are going to use

those particular bound or reuse the RTCTL. Now, what is the basic restriction or

limitation of this particular RTCTL? Here the bounds basically takes integer values only,

maybe you can say that within time period time stamp 3 point 3 and 5 or maybe within

10 time units.

So, it can take integer values only. But now people are looking for the real handle real

time also. So, for that we are having one logical TCTL time CTL. So, in case of time

CTL then what will happen we are trying to consider the real numbers also as a bound

maybe you can give 3.5 or say 7.35 like that, but the system becomes more complex

when we are going to handle real time. Because you can see that if I am having a

transition maybe in quantum of time I can say this is in one time unit it can come to the

next state ok.

So, now when I go for the real time then what will happen I consider within 0.5 may be

0.25 all those particular states will come on all those particular behavior you have to take

care of it. So, this Y that we are going to have a time region and p, people have come up

resources have come up with a method where we can handle the real numbers less time.

But system is very complex ok. So, it is we are not going to discuss those particular

methods or particular issues in this particular lecture just I am giving an idea that we can

handle quantum of time, quantum of time may be integers or quantum of time may be

your real numbers also. So, if you are interested then you can have a look into those

particular research papers where people have introduced TCTL .

(Refer Slide Time: 52:00)

Now, what we have discussed till now? There you see that we are going to design a

system then we know the behavior, say when we are going to design a system we know

the behavior of the system. How it is going to be a so; that means, it is that system is

having different configuration that configuration is basically nothing, but the

combination of those particular state variables. And we are having several transition from

one state to the other state.

So, if a particular instance say if we are doing some activities then it should lead to some

result. Most of you might have seen the coffee vending machine, if you use the coffee

vending machine. Then what will happen? You go to the coffee vending machine and

you press the button coffee then what will happen, it will take the premix of the coffee it

will bring it out then it will mix with your milk and finally, it will give it to the coffee,

readymade coffee in your cup that this place inside the outlet. In the same machine if you

are going to press the button tea then what will happen it will take the premix of tea mix

it with water and finally, give you the tea.

So, how we are going to control all those things? So, when I press coffee then what will

happen? I have to open the part where I have kept the premix of the coffee. When I press

the tea then it must open the fall, where we have kept the premix of the tea. Now you just

see; that means, in one particular state the coffee fall of the coffee is on, but tea and other

stocks are off. So, this is a particular configuration where I am going to make coffee. So,

another configuration I am going to get where the pulp for tea is open, but the pulp

others items are closed.

So, this is another configuration. And we are having transition from one to the other

depending on the way we are going to use this particular coffee vending machine. So,

this behavior we are going to captured in our design. And generally we are going to get a

finite states and most of the cases we are going to use the finite state machines. And here

in model checking what happens we said it is a crisp case structure because it is having

two more criteria’s need to be satisfied. One is that whatever transition relation we have

it must be complete; that means form all step there should be an next state also.

And Secondly, we are having a leveling function. With the help of leveling function so

we are going to say, what are the atomic proposition to in a particular state. So, this is

formally we are capturing our design. Then we know that whenever we are going to

design it it must satisfy some property. So, in that particular case those properties we are

going to capture with the help of CTL. Because in this class we have discussed about the

CTL model checking only, but you can look for some other verifier also where we can

specify the property in some other way.

So, these are the two things because we know my system should behave in this particular

way. So, that behavior we are going to captured with my CTL which is a property of this

thing. Then we use the model checker to check whether this property holds in this

particular model or not. So, if properties is true in my model then what will happen that

model verifier is going to give say going to give me the answer yes.

So, if all the properties are true then what will happen I can go for the implementation of

my design ok? Now if the some of the properties are not true. Then what will happen that

model verifier will say that what about system you have designed it is not satisfying

some of the properties, along with that it will give me one indication or you can give me

a press to so that, if you follow this particular execution trace the given property is falls.

Then as a designer what I can do? I will consider on those parts of my design to rectify

those particular errors and finally, again I am going to look for re verification. Once it is

correct it is give me some confidence that whatever I have designed it is correct. Then I

will go for the next phase of my design or next phase of for design phase where I am

going to implement this particular design. So, this is the states that involve when we are

going to design it. Now, when we are coming to the embedded system basically what we

have seen? embedded system is nothing, but a combination of hardware and soft

software; that means, we are going to design a system where both hardware and

software’s are involved; that means, some part will be implemented in a hardware and

some part will be implemented as a software program.

So, when I am going to design a system to fulfill some of my criteria some of my

requirements. Then we are going to identify what are the different tags that we have in

the system. What are different tags we need to perform? A nd for every task we are

going to have the modules. When we say that these are a models that we need to

implement to get the solution to get the final product, now after having those particular

tasks or particular module now we have to identify what are a models that we are going

to implement in hardware and what are a modules we are going to implement in

software. If you are going to implement everything is hardware its fine, but why you are

looking for both the option going to implement something in hardware and going to

implement something here software just to meet all our requirement.

One is that we are having some per formant criteria’s that my system should respond

well behave within specific time. Which is basically their performance another criteria

we are having that cost factor. It should remain within my budget it should not exceed

my budget because if it exceed my budget then my product will be very costly.

So, for that now we are going to identify those modules where I the module is your

performance in (Refer Time: 58:56) that means, you should walk in a passed away. So,

for those basically we are going to select for hardware implementation. Because if you

directly implement something in a hardware. Then it will walk faster our response will

be very good. Now other component where it is not that effective that we can before time

sometimes to get the responses, but we are going to cut the cost or reduce the cost then

those component we will identify, and we said that for them we are going to have an

software implementation; that means, at that software will be used some resources

common resources to execute that particular software.

So, this is the way we can look into it; that means, you have to identify the hardware part

and you kept to identify the software part.

(Refer Slide Time: 59:51)

Now, what we are going to do? We are going to design its module the way already I have

mentioned. And get the abstract model of those particular modules; that means, we are

going to have a formal representation of those particular modules. And we said this may

be some sort of your finance finite state machines then, identified a specification or

properties to be satisfied by each module.

Now, we know what is the requirement of each module what attacks it needs to satisfy is

perform? Or what property it needs to satisfy, we are going to identify those particular

specification on properties for each and every modules. Then what we are going to do?

We are going to use our verification techniques to check for the correctness of those

particular properties. Once you get the confidence that yes whatever I have designed and

whatever requirements I have specified that my design is going to meet all those

particular requirements and properties. Then what will happen next we move for the

implementation.

So, generally what will happen for hardware component we may use some hardware

description language like your Verilog or VHDL? And we are going to get the

implementation of those particular hardware component then we can simulate it we can

look for the testing it then finally, we are going to implement it in our silicon. And the

software programming for software component we are going to remain use some

programming language to implement those things. On the other hand also sometimes

what will happens? For some small system people come up with the initial design and

they wrote the modules for hardware component they wrote down the modules in your

hardware description language like Verilog and your VHDL; software component they

use some programming language to implement may be c java python etcetera.

Then if it is a small system then what people used to do from those particular

implementation they try to extract of the models ok. Already I think, I have mentioned

that we are having mechanism to find out the behavior or find out the model. And on

those particular model people used to apply the verification to check for the properties,

this is basically for small system we can go this way also. But for because system

generally we first verify our design then we go for the implementation.

(Refer Slide Time: 62:18)

Now, we have seen how to look for the correctness of a system that we are going to

design ok. So, for that some of the tools I am just going to mention it if you are interested

you can look for it; one is your CUDD. This is a binary decision diagram package

developed at your university of Colorado at Boulder. So, CUDD is a BDD manipulation

package. So, you this is for academic purpose it is available ok, it is a server. So, you if

you are interested you can download it and you can see how we can use these things for

your construction of BDD or manipulation of BDD for some Boolean function. Another

one your nuSMV, SMV is this is your Symbolic Model Verifiers. This is nuSMV is the

extension of SMV, where we are having the more features. So, this is the first model

circuit based on BDD ok. So, this is also available.

So, if you are interested we can look for or you can download it install it and see how

system will be specified in this particular nuSMV. How the properties will be specified

then how they are going to check the while you are going to check the correctness then

what are the outputs that we are going to get, you can look for it. Another one which is

the bounded model checker this is some sort of bound is specified in a model checker;

that means, well I am going to look for a particular execution trace how long I am going

to explore the system ok. This is because we have to say this thing so this is going to

specify some bound.

So, it is also a model checker only another one which is having spin this is a LTL model

checker. So, basically we are talking discussing about CTL Computational Tree Logic,

Computation Tree Logic and we have seen that I have got him how to check those

particular formula. But LTL is another temporal logic which is your Linear Time

temporal Logic. So, we are having a model checker called spin which take care of LTL.

Now what is the difference between CTL and LTL? In case of CTL you just see it is a

step formula in case of LTL it is a part formula. This is the basic difference. So, the truth

values of CTL will be defined on a state of the system, but true values of LTL will

defined over a part in the system.

So, this is the difference. So, with the LTL also you can specify our property and we are

having a model checker for LTL properties which is known as spin. So, if you are

interested you can just look for those particular tools and see how we can use those

particular tools during your designing phase ok. With this I conclude my lecture here

today.

Thank you all.

