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Hello  everybody.  Welcome  back  to  the  online  course  on  Embedded  System  Design

Verification and Test. So, till now we have seen about the verification and we have discussed

about the CTL model checking. Today we are going to introduce one new tool called Binary

Decision Diagram which will help us to represent our system in a compact way and that some

tools or technique binary decision diagram will be used for verification purpose also. So, we

are going to discuss about the binary decision diagram today.

(Refer Slide Time: 01:07)

.

Now, we have discussed about a model checking algorithm and after discussing or after going

through the model checking algorithm, what we observed that the complexity of the model

checking algorithm is  polynomial  in  the  size  of  the  state  machine  and the  length  of  the

formula, ok. So, size of the state machine; again the state machine depends on the number of

control variables or number of working variables that we have in the system. So, the inherent

problems with the model checking algorithm is the state space expression problem. So, to

control the state space expression problem, BDD or Binary Decision Diagram is going to



help us up to certain extent.

(Refer Slide Time: 02:03)

Now, what is the state space? You just see that if we are having 3 variables a b c say control

variable of whatever it may be, then we know that we are having total 2 to the power 3. Total

8 different combination of a b c they varies from 0 0 0 0 0 1 to 1 1 1 so, total 8 possible

combinations. So, this possible combinations are generally treated as the state of the system.

That means, state of the system is all together 8 that means I can say that this is my state s 0

where the values of the signal variable a b c equal to 0. That means, a equal to 0, b equal to 0

and c equal to 0.

Similarly, so from s 0 we are having a transition tool say s 5, ok. In case of s 5, I can say that

the values of the control variable is a equal to 1, b equal to 0 and c equal to 1. So, that values

of the control variable basically talk about the present state of the system and if you look into

this scenario, then we are going to have total 2 to the power 3 which is equal to 8 different

states.

Now, for  that  if  I  am having  n  control  signal,  then  total  number  of  states  space  or  the

complete state space will be your 2 to the power n, ok. So, if n is 10, we are going to get

1024. If varies 11, we are going to get 2048 like that ok

So, you just see if we are going to increase the control variable, number of control variable

the number of states are also going to increase, but in some system all states may not be



reachable. What does it mean? That means, all congregations are not vary for that particular

system and we basically are concerned about the reachable state space.

Now, in that particular case say in my design due to some constraint I am increasing the

control variable from n to n plus 1. In that particular case, the total number of states will be

your 2 to the power n plus 1. So, that means the state space expression is exponential in

nature, ok.

So, if and if you look into that model checking algorithm, it is nothing, but the graph traversal

algorithm, and the system is represented with the help of (Refer Time: 04:41) structure which

is a graph and we are going to apply our model checking algorithm on that particular model.

So, it is nothing but the graph traversal algorithm. So, if we having more number of nodes,

then algorithm is going to take more steps though it is polynomial in time ok, but still for

more states we are having more problems because we have to have more memory space in

our machine also to encore all the states.

Now to get our or to content this particular problem now we are going to look another tools,

another approach to represent our system; which is known as your BDD Binary Decision

Diagram.

(Refer Slide Time: 05:29)

So, in a nutshell how we are going to talk about the BDD or how what is the basic principle

of  the  BDD? So,  BDD is  basically  based  on recursive  Shannon expression.  So,  we can



express all the Boolean expression or we can expand it with the help of Shannon expansion.

So, Shannon expansion is given here like that if f is a function of some variables, then it can

be expanded with the help of the participating variable. So, x is the participating variable for

this function f, then f can be expressed, f is equal to x f of x plus x bar f of x bar. So, f of x

basically says that it is the functional value when we are going to put x equal to 1 and f of x

bar basically say it is the functional value 1, we are going to put x equal to 0.

So, if x equal to 1, then 1 into the values of the function with respect to x equal to 1 when x

equal to 0, then x bar become 1 1 dot functional values of the function with respect to the

variable values x equal to 0. That means we are taking care of all the possible combination

when x is equal to 0 and equal to 1. So, this is the basis of our Shannon expansion and to

construction of the BDDs, we are going to take help of this particular Shannon expansion.

Now, what is BDD? It says that it is a compact data structure for Boolean logic. That means if

we are having any Boolean expression, it can be represented with the help of BDD. Again the

state  space  that  we are  having can  be  encoded with  the  help  of  an  Boolean expression,

Boolean  logic  expression  and that  Boolean logic  expression  can  be  converted  or  can  be

represented as BDD. So, it is compact data structure for Boolean logic.

What is the advantage of this particular BDD representation? It says that we are having a

canonical representation of an expression of a Boolean expression. If the representation is

your reduced ordered BDD, Reduced Ordered Binary Decision Diagram ROBDD, at  that

time we are going to get the canonical representation and what does it means. That means, we

are going to get an unique representation or unique BDD or given Boolean expression. 

We are going to look into it, we are going to discuss about it, but you have to very careful

about that it talks about the reduced ordered BDDs. So, if it is a simple BDD, then we may

not get canonical representation. So, what does it means? We may have several structure for

the same Boolean function, but if it is ROBDD, we are going to get unique representation.



(Refer Slide Time: 08:33)

Now, that Shannon expansion just I am going to say how the Shannon expansion is going to

give us the proper functional value. Already I have explained that we have taken care of both,

all the possible cases x is equal to 0 and x is equal to 1. Now, in the particular case you just

see that I am taking small example f is equal to a c plus b c. So, this a Boolean expression

having 3 variables a b c.

Now, f a bar until I am going to get a bar, if I take the value of a equal to 0, that means if I put

a is equal to 0, then this f a bar will become b plus b c because 0 into c will become 0 and 0

plus something is equal to that value and similarly if I put f a, it is nothing, but the function

value at putting the value of a equal to 1. So, in that particular case since a equal to 1, we are

going to get c plus b c. So, this is the x functional value when we say x equal to a.

Now, what is the given function it is saying that f is equal to a into f a plus a bar into f a bar.

That means, we are going to get a into f a. That means, a into b c plus b c and a bar into f a

bar is a bar into b c, ok. So now if I expand it then what I am going to get a c plus a b c plus a

bar b c so, this is this is equivalent to a c plus. If I take a bar comman, then I am going to get

b c plus, sorry I did a mistake. So, if I take b c comman, then I am going to get a plus a bar

and plus a bar is equal to always 1.

So, I am going to get a c plus b c. So, this is the given function. So, this given function can be

expanded with the help of this particular Shannon expansion. We have expanded it with the

help of the variable a. Similarly we can we can look for the expansion of this particular



function with respect to say variable b or c and eventually the Shannon expansion is going to

retain the given function. So, this is the basis of our BDD construction. So, we are using

Shannon expansion to construct our BDD.

(Refer Slide Time: 11:07)

Now, first before going to BDD we are going to talk about BDT, Binary Decision Tree and

from  that  we  will  say  how  we  are  going  to  get  the  BDD.  So,  what  is  the  BDT?  The

representation is like; binary decision tree are trees whose non-terminal nodes are labelled

with Boolean variables x y z and whose terminal nodes are labelled with either 0 or 1 this is

one thing. So, it is having non-terminal nodes I can say some of the non-terminal nodes like

that. 

So, if I am having a function of a b c, then this non-terminals node will be either marked with

those  particular  variable  a  b  and c  and  along with  that  it  is  having  terminal  nodes.  So,

terminal nodes is denoted by this particular box and if have the values either 0 or 1, it says

that if it is 0, that means the functional values is 0 with respect to this particular evaluation

and if it is functional values is 1, then we are going to say this is the terminal node 1.

So, now each non-terminal nodes are having two edges; one is dashed line and second one is

your solid line and dashed line represent 0 and solid line represent 1. What does it mean say a

is a non-terminal node. So, we can say that we are having a dashed line to this particular non-

terminal nodes b. So, in that particular case since this dashed line indicate that this is my

value 0 or I can say that evaluation of this particular variable at that particular point is 0.



Similarly it  is if we having the outgoing edge which is my solid line,  so it says that the

evolution of this particular variable is 1 if I am going to traverse this particular part, ok.

So, what we have in BDT Binary Decision Tree, we are having nodes, two types of nodes;

terminal nodes and non-terminal nodes. We are having edges, solid edges and dashed solid is

going to indicate that the evolution is 1 and dashed is going to indicate that the evolution is 0.

Again  terminal  nodes  is  going  to  give  me  or  terminal  nodes  are  going  to  give  us  the

functional value for 1 or it may be 0. So, these are the component of BDT.

(Refer Slide Time: 13:39)

Now, look for a simple example say I am taking the same function f is equal to a b plus b c.

So, we know that if we are having many Boolean function that can be represented with the

help of truth tables. So, this is the functional or the functional values of the given Boolean

function. So, it is said that if a is equal to 0, b is equal to 0, c is equal to 0, then ac will

become 0 and bc will become 0 and eventually my functional value is 0.

If a b c are 1, then ac a dot c will give me 1, b dot c will give me 1. So, 1 plus 1 will give me

1. So, this is the truth table representation of Boolean function. Now, while I am going to

draw the binary decision tree for every variable, we have to see the decision whether values

of that variable is 0 or 1. So, that is why that from variable a, I am having either variable a

can take value 0 or 1.

So,  after  getting  the  values  of  a,  now we  have  to  look  for  the  values  for  b.  Again  the



evaluation for b may be either 0 or either 1 after taking c, after taking the decision on b, we

are going to take a decision on c, again c may be either 0 or either 1. Now, if I traverse say a

equal to 0, b equal to 0 and c equal to 0, in that particular case I know that function and

variable is 0. So, this is the terminal node. So, when a equal to 0, b equal to 0, c is equal to 0,

my functional value is 0, it is coming to this particular terminal node 0.

Similarly, if I say that a equal to 0, b equal to 0 and c equal to 1, then again my result is 0. If I

say that a equal to 0, b equal to 1 and c equal to 1, then my functional value is 1, a equal to 0,

b equal to 1, c equal to 1, my functional value is 1. So, it is terminal node at this particular.

Now, this is the representation of BDT, but if I just look into that BDT we do not we are not

getting any advantage of benefit because this truth table is also exponential in nature. Now,

for 3 variables we are having 8 entries. Now, if I increase one more variables say if we are

going to work with 4 variables, then we will be having 16 different entries. So, it is increasing

exponentially

So, similarly if I look into this particular BDT, here also I will find that if I am working with

3 variables, then I will 3 levels of non-terminal nodes because we have to see whether these

are 0s or 1. Now, if I have one more variables, then what happen I am going to get one more

level of non-terminals node and after that I am going to get the terminal nodes. So, for 4

variables, the number of terminal nodes will be your 16 and it will have 4 level. So, again the

BDT is exponential in nature. Just for construction purpose we are showing, but excess with

BDT we are not getting any advantage, this still having the nature of exponential expansion.



(Refer Slide Time: 17:05)

Now, from BDT now we can talk about the binary decision diagram which is similar to BDT

except that BDT is a tree, but BDD is a graph or it is a dag directed acyclic graph and other

notions are similar. We have terminal nodes; we have non-terminal nodes, ok. Terminal nodes

are marked with the functional value 0 or 1, non-terminal nodes will be marked with the

variables and every non-terminal nodes have having two out going as dashed out going as

indicates that the value of that particular variable is 0 and the solid line indicates that the

value of that variable is 1. So, instead of tree, we are having a graph. It is a DAG Directed

Acyclic Graph.

So, we can now see how we can construct a BDD.



(Refer Slide Time: 18:07)

Now, when we talk about the BDD, then we are having 3 primitive BDD. We are having two

constant values; 0 and 1. So, these are basically the unknown node. So, B 0 is the BDD for

constant  0 is  finally, represent that  with B 0 and it  is  a  terminal  node with the value 0.

Similarly,  B1  is  the  BDD  representation  of  constant  value  1  and  it  represent  with  this

particular  terminal  node  1  and  similarly  for  any  variable  x,  we  have  this  particular

representation Bx. It says that BDD representation of that variable x.

So, we know that since it is a Boolean variable, it can have it can take two values either x

equal to 0. So, it is going to indicate with the help of this particular dashed line and the value

of x is 0. So, it is finally in the in this terminal node and similarly, x can take one. So, it is

represented  that  with  this  particular  solid  line  and  this  is  terminal  1.  So,  these  are  the

primitive BDD actually we have in our system.



(Refer Slide Time: 19:19)

Now, just see we are going to look for the construction of the BDD. So, if we are going to

have that same function f is equal to ac plus bc, then f a dash is equal to bc and we say this is

the function 0 and when f a is equal to 1 or a is equal to 1, then f of a equal to 1 is equal to c

plus bc which I am saying that this is the function h, this is the function g.

Now, what it says that now a can have values 0. When a is having value 0, that means we are

coming to another terminal node with the evaluation of 0 and in this particular non-terminal

node, it is going to represent the functional value of g and what is g; g is nothing, but bc.

Similarly when the values of a is equal to 1, then we are coming to this particular terminal

nodes,  and  what  equation  of  Boolean  expression  we  are  representing  in  this  particular

terminal node is the function h which c plus b h.

Now, you just  see that  loop nodes is  going to represent  the given function f.  Now, after

knowing the evaluation of that particular variable which is indicated in this particular starting

node and here we are talking about a. So, a can have either 0 or 1 when we are having a equal

to 0,  then we know that  the functional  value is  bc,  we are indicating  it  with g.  So,  this

particular node is going to talk about the evaluation of the function g. Similarly this one is

going to talk about the evaluation of the function h.

Now, after coming to this particular point, now we are having function of two variable b and

c. Now, we have to see the evaluation of the function with respect to b and c. Now, when for

function g, we are talking about that we are looking at the evaluation with respect to b, so



these terminology is b and when it is your b equal to 0, that functional value is 0. So, we are

getting this particular dashed test and coming to this particular terminal node 0.

When d equal to 1, then the functional value is c so, we are coming to this particular node and

what is the function over here we are going to have the variable c. Similarly if I am going to

now look for the function a, if function h if b is equal to 0, the functional value is c. So, it is

coming to this particular terminal node c when c plus bc when b equal to 1, again we are

going to get c so, with 1 also it is coming to c.

Now, the remaining function that we need to evaluate is having the constants of variable c

only. Now, we know that if c is equal to 0, the functional value is 0. If c is equal to 1, then the

functional value is 1. So, now finally we are going to get this particular construction or BDD

c equal to 0, it stands to 0, c equal to 1 that one.

So, when we use the Shannon expansion, then the BDD representation of this function is this

one. So, it is having 4 terminal nodes and sorry 4 non-terminal nodes and 2 terminal nodes.

(Refer Slide Time: 23:03)

Now, we  see  same  function  we  are  having  so,  for  BDD  representation  we  have  these

representation where we are having 8 terminal nodes and 7 non-terminal nodes. When you

use the Shannon expansion, we say that we are getting 2 terminal nodes and 4 non-terminal

node. So, just here I am trying to give an idea that if we use BDD, then for most of the

Boolean  function  we  are  going  to  get  an  compact  representation,  ok.  We will  see  the



discussion.

Now, we have one, we are having these things. Now, it may have a scope to further reduce

this particular BDD or BDT. Now, we will see what the reduction rules are. 

(Refer Slide Time: 23:59)

So, first reduction rule it says that eliminate the duplicate terminals. So, because the terminals

are  having  either  values  0s  and  1,  we  are  having  multiple  terminal  nodes  and  multiple

terminal nodes with value 0 and with values 1. So, they can be merged. We can represent all

0s by one terminal nodes and 1, all one by one terminal nodes

So, that is why we said if this is the BDT, then what will happen I can have such type of

construct where all zeros are merged together and all ones are merged together. So, we are

getting this and accordingly we are redirecting all those particular edges which is going to

confirm to the original redirection original evaluation or original elevation. So, this is the rule

1. If we having multiple terminal nodes, we can merge them together, ok.



(Refer Slide Time: 24:25)

So, BDD reduction rule 2 which says that eliminate the redundant nodes. So, what is the

redundant node? So, for this particular node we just see, so this is a; that node a what will

happen if I take the evaluation of a is equal to 0, it is coming to this particular terminal node,

non-terminal node way. When I take the evaluation of a is equal to 1, again it is coming to the

same non-terminal node b.

Now, at non-terminal node a, we are giving the evaluation of function f and f b. We are giving

the evaluation of function g. So, you just see whether it is a equal to 0 or a equal to 1. In both

the cases, we are going to evaluate the function g in the next level. So, that means decision on

a slightly redundant means it is now independent of this particular variable a in this particular

evaluation.

So, now since for what a equal to 0 and a equal to 1, we are having the same function g. So,

we may eliminate this particular redundant node. So, checking the values of edge redundant

at that particular point, it says that elimination of the redundant nodes, this is the second node

and rule 3 talks about the merge duplicate nodes.



(Refer Slide Time: 26:31)

Now, we have to see what are the duplicate nodes and how we are going to merge them. So,

node must be unique. So, in this particular case just consider this particular scenario in this

particular non-terminal node, we are evaluating the function f 1 and in this particular non-

terminal node, we are evaluating the function f 2, ok.

Now, when a equal to 0, we have to evaluate the function g f in node b and when f is equal to

1, then we have to evaluate the function h with node c. Similarly if a is equal to 0, we have to

evaluate the function g and a is equal to 1. We have to function h. Now, just see the nature of

these two non-binary nodes of almost similar, or I can say it is same because for a equal to 0,

we are going to have the same function g for a equal to 1, we are having the same function h.

So, in that particular case what will happen, we can merge these two nodes to one node and

after merging it what will happen that out going edge are having the similar behaviour, but all

the incoming nodes, these two, these two nodes will be the incoming nodes to this particular

merge node a, ok. So, we can merge duplicate nodes or duplicate non-terminal nodes. So, this

is the BDD reduction rule number 3. So, these three rules can be used to reduce our BDD.

So, first rule can be first rule will be used only once because we are having all the terminal

nodes at leaf level. All 0s will be merged to one 0 nodes and all ones will be merged to one 1

node. So, it will be applied only once, but rule 2 and rule 3. So, removal of redundant nodes

and removal of duplicate nodes can be applied several time because first you remove one

redundant nodes, then what will happen we are getting some nodes which can be merged



together. After merging some of the nodes, you will find that again we are getting some other

nodes as a redundant node. Now, we can remove that redundant node also. So, they can be

applied several times until and unless we could not apply any other rules for this reduction,

ok.

(Refer Slide Time: 29:11)

So, in that particular case what will happen if I cannot further apply the rule 2 and 3 to the

BDD that we have achieved,  then that BDD is known as the reduced BDD of the given

function. Now, for this particular function f ac plus b c we know that this is the BDT and this

BDD can be first merge, these all zeros to one node and all ones for another node.



(Refer Slide Time: 29:47)

Now, after having these things, now you observe what can be done now here, here you will

see their observation these 3 nodes, ok. They are having the similar behaviour, but other c

nodes is having different behaviour because for both 0 and 1 it is zero, but for this tree node

for 0 evaluation is 0, for 1 evaluation is 1, ok. So, this is slightly different.

So, now what we can do? We can merge those particular node and we are coming to this

particular point, ok. Now, after this what we are getting you just see now we have merged

duplicate node. Now, we are going to get some redundant nodes. What are the redundant

nodes? These two are redundant nodes because you just see for both p equal to 0 and p equal

to 1, it is coming to that node c here also for c equal to 0 and 1, the functional value is 0. 

So, we can remove those particular redundant node. Now, finally we are going to get this

BDD.  This  is  the  representation  BDD representation  of  the  given  function  and  it  is  the

reduced one.  So,  we say this  is  the reduced binary decision diagram because we cannot

further reduce this particular BDD.

So, we are taking a particular function and from BDT, we are coming to RBDD, Reduced

Binary Decision Diagram.



(Refer Slide Time: 31:25)

Now, the same function I think we have constructed with the help of Shannon expansion. So,

in that particular case when I apply this particular Shannon expansion, we get this particular

structure, ok. Now, here you will find that this node b is redundant node for because for both

b is equal to 0 and 1, I have to look for the evaluation of variable c, so that b can be removed.

So, what will happen after removal of this particular redundant node, I am going to get each

particular structure.

Now, you just see whether you are using BDT or Shannon expansion, we are going to get the

same reduced BDD whether  always  the  reduced BDD is  having the  same structure.  My

answer is no because it depends on some other criteria also. We will see that criteria also what

is that particular other criteria, but anyway whatever we have achieved, it is reduced BDD

because we cannot further reduce. That means we cannot further apply the rule removal of

redundant nodes and merge of duplicate, ok. So, this is the reduced BDD and for both the

approaches, we have achieved same structure, same BDD or same reduced BDD and why we

have got the same BDD and it will be clear to you in that particular discussion, ok.



(Refer Slide Time: 32:59)

So, what is the reduced BDD? Already I have said that BDD is said to be reduced if none of

the reduction rule R1 to R2 can be applied to this no more reduction are possible. So, here we

cannot apply anymore rule. So, this is the reduced BDD of the given function.

(Refer Slide Time: 33:26)

Now, when you discuss about the BDDs and when you have given the definition of the BDDs

here, we are not mentioning anything about the ordering of the variables. That mean in which

order variables may appear and occurrence of the variable, how many times that variable can

occur in the BDD say x s of variable, then how many times x can occur or in how many



levels x can occur, we are not mentioning anything about that issues while defining the BDD.

(Refer Slide Time: 34:05)

So, with respect to the given definition of BDDs, we have to accept this one also an BDD of

some given function, ok.

Now, in this particular case you just see here I am having key variable x y z. So, first I am

having the evaluation of x, then when x equal to 0, I am having an evaluation of y. When x

equal to 1, I am having the evaluation of z, with respect to z 1, z is equal to 0 and z is equal to

1. Again x is appearing over here, ok. So, as per the definition of so, with respect to the given

definition of BDD, this is a so with respect to the given definition of BDD or representation

of BDD.

Now, if we do not restrict the occurrence of a variable in a path, then we are going to face

some problem. So, due to that problem now we have to have the notion of those particular

path. We are having now two kind of evaluation path. One is known as your consistent path

and other one is your inconsistent path.

So,  when  we  are  going  to  consider  a  evaluation  path,  always  we  have  to  consider  the

consistent evaluation path only. We have to ignore the inconsistent evaluation path. Now,

what path will be the inconsistent one? If you look into this particular example, you just see

in this particular evaluation it says that x equal to 0. When y equal to 0, we are coming to this

particular point, ok.



Now, when we are taking decision on y, again we are relooking into the evaluation with

respect to x. So, it says that if x is equal to 0 over here or x equal to 1 over here, so in that

particular case when we are coming to this particular non-terminal nodes you just see that

already we have taken a decision on x. This is x equal to 0 here. Again I am taking a decision

or looking for evaluation of x. It is x equal to 0 and x equal to 1 so, if I follow this particular

path, then I can say it is a consistent path because in this evaluation the values of x is written

x 0, but if we consider the other path, then this path is treated as an inconsistent path because

in a particulate evaluation that variable values will be either 0 or 1. It cannot have both the

values. 

So, in this particular case what we are going to see some point of time we are saying that x is

equal to 0, at some point of time saying x is equal to 1, ok. So, in that particular case, this will

be the inconsistent path. So, when I am going to look for the functional values of the function

that is represented by this particular BDD, then we have to ignore this particular inconsistent

path. There may be several inconsistent path. So, you should not consider those particular

inconsistent  path for evaluation  of this  particular  function or evaluation  of this  particular

function  used  only  consistent  path,  ok.  So,  these  are  the  issues  of  consistent  path  and

inconsistent path in BDD.

(Refer Slide Time: 37:13)

So, to avoid this particular inconsistent path in BDDs, now we are coming to the notion of

ordered BDD, ok. This is called ordered BDD. What is an ordered BDD? In an ordered BDD,



we are going to follow a particular order of the given variables, ok. We are having a set of

variables say x 1 to x n, then we are going to create an ordered list  of variables without

duplicating or without duplication. That means, all variables are unique and we are going to

construct the BDD and let the BDD all of this variable occurs somewhere in the list, ok. So,

in BDDs this variable will occur somewhere in the construction.

Now, we say that B has an ordering b 1 b 2 b n up to x n. Sorry B has an ordering x 1 x 2 x n

if all variable labels of B occurs in that list and for every occurrence of x i followed by x j

along any path in B, where i is less than j. Now, what it says if I am having this non-terminal

nodes, whatever path you are saying that if this is the ordering is your this one, x 1 to x n if it

is your x 1, this is your x 3, this is your x 5, sorry x 4, then x 5 like that. So, we can have

something like that. So, in that particular case we are coming over here.

Now, what is the label of this particular node, it must follow this particular ordering. So, in

the ordering it says that already we have using x 1 x 3 x 4 x. Till now we have not used x 2,

but the label of this terminal node cannot be x 2. It may be after x 5, it may either x 6 or may

be x 7 x 8 like that. If the variable x 2 is present in this particular function, then x 2 have to

come somewhere over here which appear before x 3 and x 4 or may be x that I greater than 2.

So, this particular ordering we are going to maintain while constructing the BDD, then we

said this is the ordered BDD and what is the order it is x 1 x 2 to x n.
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Now, impact of the chosen variable ordering now we are talking about the variable ordering.



Now, when we are  going to  use  this  particular  variable  ordering  what  ordering  you are

choosing depends on that we are going to get different structure. So, structure is not unique if

it is our order are different. So, in this particular case just consider a simple example that we

are considering this particular Boolean expansion, also Boolean expression.

So, in that particular case either I can have the ordering like that x 1 x 2 x 3 x 4 x 5 like that

or maybe we can consider this particular Boolean ordering variable ordering x 1 x 3 x 5, then

x 2 x 4 x 6. That means, all odds are here are coming at a beginning and then, all the even but

here we are using this particular expression.

So, in that particular case it says that if I use this particular ordering, then total number of

nodes will be your 2 to the power n plus 2, but if we use this particular variable ordering that

total number of nodes become 2 to the power n plus 1. So, there is a tremendous impact of

the variable ordering, but to find out the proper variable ordering to get the optimal BDD

representation of even function is a hard problem. We do not have the proper algorithm, but

we use some heuristic to contain the size of the BDD, ok. So, depending on the variable

ordering, the construction is different and number of nodes will be different.

So,  in  this  particular  case  one  is  saying  that  it  is  polynomial,  but  second  one  becomes

exponential.
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So, this is the construction as I am saying you can check it. So, if this is the given function of



6 variables and the variable order that I am using x 1 x 2 x 3 x 4 like that x 1 x 2 x 3 x 4, then

this is the BDD representation of this particular function.
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But same function if I use the ordering x 1 x 3 x 5 x 2 x 4 x 6, then we are getting another

representation which is having more number of nodes which is exponential in nature of the

number  of  variables.  So,  variable  reason  variable  ordering  is  also  have  importance  by

constructing BDD, ok.
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Now, we have seen reduced BDD, we have seen ordered BDD. Now, if we are having an

ordered BDD and if  it  is a reduced one,  then we say this is your Reduced Order Binary

Decision  Diagram  and  we  write  ROBDDs,  ok.  So,  in  case  of  ROBDDs,  variables  are

following a particular variable ordering and secondly, it is a reduced one. We cannot further

reduce it and in that case we are going to say this is your ROBDD.
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So, now what is the property of ROBDD? The reduced BDD or ROBDD representation of a

given function is unique. That means, if you represent a given function with an ROBDD,

Reduced  Order  Binary  Decision  Diagram,  then  orders  you  are  going  to  get  an  unique

representation. So, that is why we say that ROBDD is a canonical representation of a given

function  because  in  case  of  canonical  representation,  we  are  going  to  get  an  unique

expression.  So,  here  also  the  BDD  representation  is  unique  or  reduced  ordered  binary

decision diagram.

Now, second it says that what it says that let B 1 and B 2 be reduced ordered BDD with

compatible  variable  ordering.  So, what is  that  compatible  variable  ordering? That means,

whatever variable ordering we are using for B 1, same variable ordering we are using for B 2,

then in that particular case we are having an identical structure and it is 2 BDDs. We are

saying it is the representation of the same function and both the BDDs are having compatible

variable ordering. That means, both are having the same variable ordering, then the structure

is same.



The order in which we apply the reduction does not matter. So, I am saying that I can apply

the reduction rule first removal of redundant nodes, then the merge of similar nodes ok, but

we can apply in the reverse way also, but finally we are going to get the same BDDs. So, that

is why since its representation is unique, we are going to say it is a canonical form if we are

going to use ROBDDs.
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We can consider now two different functions f 1 f 2 and say B 1 is having B 1 is the BDD

representation of f 1 and B 2 is the BDD representation of the Boolean function f 2. If the

ordering of B 1 and B 2 are said to be compatible if there are no variable x and y such that x

come before y in the ordering of B 1 and y comes before x in the ordering of B 2, ok. So, that

means they should not have different variable ordering. In that particular case, we are going

to say that this is having the compatible, ok. That means, these two BDD representation of

these two functional compatible if both of the BDDs are going to follow the same variable

ordering.

Now, we are having several operations actually.
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Now, how we are going to do with the help of your BDD say I am having a function f say a b

plus c and I am having another function say g, where it is your say b plus ac, then what will

happen always I can perform the operation say f plus g or I can perform f dot g like that. So,

these are the Boolean operators that we have. Now, we are going to get some representation,

some function over here and here we know that this function a b plus c can be represented

that with the help of BDD. I say that this is the BDD representation for function f is your B f,

I say it is better to write.

Similarly, the BDD representation of the function g is a B g, ok. Now, can we perform this

operation directly on the BDDs? One way is to you perform the operation, get the Boolean

expression then represent that Boolean expression with the help of BDD, ok. This is one

approach, but all if already we have the BDD construction, can you use those BDD to get this

particular function f plus g. That means, we can say this is may be B f plus B g can get a

similar effect. Yes, we have a method for that where we can perform the Boolean operation

on BDDs and this algorithm is known as apply. Apply is the common method and this apply

is having 3 parameters, apply op B f B g.

So, B f is the BDD representation of function f, B g is the BDD representation of function g,

but in that particular case both BDD should have compatible variable ordering. If the variable

ordering is different, then we cannot use this particular apply method. So, in that particular

case we can use this apply op B f B g. Now, if I want to perform this particular f plus g, then



what I can say apply, I can use this particular algorithm apply plus B f and B g, ok. So, this

whatever BDDs we are going to get, this BDD is going to give me the, give us the BDD

representation of this particular operation f plus g, but we have to remember that it has both

the BDDs must have a compatible variable ordering.  It may be reduced or it may not be

reduced, but they have to be ordered and secondly, both BDDs must have the compatible

variable orders, ok.
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Now, after application what will happen is, we are going to get a resultant BDD. So, this

resultant BDD will also have the same variable ordering whatever variable ordering we have

for B f and B g, but the resultant BDD may not be an ROBDD, ok. So, we are talking about

the  ordered BDD or  I  can talk  about  ROBDD say B f  is  the ROBDD representation  of

function f and B g is the ROBDD representation of x after performing this operation say

apply plus B f B g resultant BDD will be your ordered BDD. 

That means, the resultant BDD is also going to have the same variable ordering that we have

for B f and B g, but it may not be the reduced one. So, after that what we can do, we can

apply  this  particular  reduction  method  which  to  get  the  ROBDD,  ok.  So,  this  reduced

algorithm can be implemented because we have the rules tree reduction rule.  So,  we are

having an implementation of that particular reduced algorithm also, ok.
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Now, how you apply algorithm works, ok? So, the apply algorithm works under Shannon

expansion, ok. So, if I am using two function f and g, now this is the Shannon expansion of f

and this is the Shannon expansion of g. Now, when we are going to perform any operation,

then  you just  see  that  you can  have  these  components  separately  and  these  components

separately and it says that evaluation of function f and g with respect to x equal to 0 and here

we say that  evaluation  of  function  f  with  respect  to  x  equal  to  1.  So,  finally  these  two

components are coming over here and other two components are coming to the other side, ok.

So, in BDD you just see that x equal to is 0 is having some evaluation, x equal to 1 is also

having some evaluation. So, this is say B f and say this is your B g. So, this the construct and

say if both are that variable x, then you just see that for x equal to 0, we are going to have this

particular path for x equal to 1 we have this particular path, ok.

So, now we can use apply algorithm on to given BDDs and that apply algorithm works with

respect to Shannon expansion. So, whatever resultant BDD, we are going to get it will give us

the correct evaluation of the operation ah. Already I have mentioned about these things.
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Now, how algorithm works? So, if r f and r g are terminal nodes with labels lf  and l g,

respectively compute the value lf of l g and the resultant OBDD is B 0 if the value is 0 or if it

is B 1, otherwise. Now, what does it means?
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So, I am having some construct finally say this is the x; x equal to 0, it is 1. Similarly this is B

f B g. So, this is also, so I am going to say x and say this is 0.

Now, what it says when both r f and r g are terminal nodes. So, this is r f and r g if both are



terminal  nodes,  then  you apply  the  operation  1  of  0  on the  terminals,  and you create  a

terminal nodes depending on this particular operation say if it is a plus operation, then 1 plus

0 will give me 1. So, the terminal node will be 1. So, if it is a terminal node, either we are

going to get the BDD B 0 or BDD B 1 depending on the result of the operation.
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Similarly, now for the remaining cases,  if  both our terminals  it  is  fine,  but what  are  the

remaining cases that we are having? So, if both nodes are your x i node ok, so that means

both are having same node x i and we are going to perform operation over here. So, in that

particular case the resultant BDDs whatever we are going to get, we will create an x i node

and this x i may have either 0 and 1 0 and 1. So, in that particular case, it says that we are

going to create an x i node and with the dashed line with apply op lo of r f and lo of r g. So,

this is the node r f and r g then and a solid line with apply op hi r f hi of r g. So, in this

particular case with dashed line, we are going to get this particular node with solid line 1.

So, what is the functional value over here? It says that apply operation lo of r s and lo of r g.

That means, this is basically low value and this is the lo value you just see what we are

having over here and accordingly we are going to construct a node and this is high, high

accordingly we are going to do these things.

So, what is low and high? Basically this is the true function low end and high end given a

non-terminal nodes n in BDD, we define low of n to be the node pointed to the dashed line

from n. Similarly, high end is the node pointed to the solid line from n. So, we are going to



have those particular low and high and accordingly, we are going to perform the operation

with respect to these two nodes here, ok. Below this particular path, we will see this thing.
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Now, similarly now another case what will happen we are having something that here we are

having an xi node which is called say r f and I am having an x j node in your r j say this is

your BDD B g and say BDD Bf, where i j is greater than i because both of them are going to

follow the same variable ordering.  So, what does it means? When we are coming to this

particular point from starting, we are giving some xi node and form starting we are getting

some x j node.

So, when we are coming to this particular point, what does it happens that this may not have

since a is greater than i before that. That means we do not have any x i node, ok. So, that

means in this particular evaluation path, it may be independent of x i node. So, that is why the

x i and x j is coming together. So, if j is greater than y, then what will happen since it is

independent of x j xi because we are getting x j along with xi. So, the resultant function will

depend on x f.

So, we are going to create an x i node and how we are going to create an x i node for that

dashed line. So, here I am having dashed line and solid line. We apply op lo r f and r g and for

solid line op hi of r f and r g. That means, since here we remain in this particular jth node

only because we have to see how it is going to be f when I am going to get this particular x i

x j node in this particular BDD, ok. So, that means since it is independent of x i, so we keep



or remain with x j in this particular BDD, but we will make a progress in this x j in the simply

manner I can say like that. So, that is why lo of r f and r g, hi of r f and r g. So, this is the

scenario that we are having.
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This is the reverse of the previous one when I am saying that r g is the xi node and r f is a

terminal node or x j node. It may be terminal node or it may be an x j node also because

terminal node will come for below down in the leaf nodes of that, ok.

So, whatever scenario we are having, this scenario is the reverse of the previous one. That

means, one is given, then Bf is independent of x i. So, here I am going to get f x j node in Bf

and x i node in your B c. So, this is the reverse of this thing. So, that is why here we are

saying that will call it xi node where it is lo op r g and r f hi of r g and r f. That means, r g is

progressing, but r f remains at that particular point. So, this situation, this condition is the

reverse of the previous one.

So, if you see we might have taken care of all possible cases. One is if their terminal nodes,

fine. Secondly, they are having the same xi node and third one is they are different one is xi

node and other one may be x j node or terminal node, ok. These are the possibilities that we

are having when we are going to construct the BDDs while applying this particular apply

method.



(Refer Slide Time: 60:39)

Now, this is the simple example. You can work, you may work with it. Just I am giving the

idea say here we are having two BDDs say this is BDD 1 and BDD 2 and it is having variable

x 1 x 2 x 3 x 4 and say variable ordering also x 1 x 2 x 3 x 4 because x 1 is coming first, then

x 3 x 4 here x 1 x 2 x 3, then x 4. So, in this particular path we are following these things.

Now, both are having the compatible variable ordering both the functions are based on this

variable x 1 x 2 x 3 x 4. So, now we can apply, our apply algorithm over here if I am going to

perform this particular phase operation. Now, how we are going to proceed? It is a recursive

call and we know the start from the root node. Now, both the nodes are your x node that mean

while I am going to construct the BDD, we are going to create x1 node, ok.

So, when I am going to create an x 1 node, you just see that this is the scenario that we are

going to have. That means, I am going to create x 1 node, and here in the low side what I am

going to get it is coming to x 2 and if x is equal to 0, it is coming to x 4. That means, here I

have to create a node. Now, I have to work with this particular node. It is nothing, but R 2 S 4

and when it is your solid line, then what will happen both are coming to these things. So,

what are the work I need to do over here R 3 S 2. Now this is the scenario that we are having.

That means, now already I have taken decision.

Now, we have to what write over here. Now, what node I am going to create over here you

just see this is x 2 and second one is your terminal node. So, x 2 is coming before that. So, I

have to create x 2 node over here because it is independent of x 2 3 4 in this particular path.



So, we are going to create x 2 node here and accordingly we will see what we can do actually

and similarly, now when I am coming to these things R 3 and S 2. So, both are x3 node, then

we are going to create x 3 node and apply the method for this particular path, ok.

Now, because from x 3, we are coming to this particular path so, here I am going to have the

evaluation because already we have taken a decision of x equal to 1. So, this is the way we

are going to construct. So, here x 2 node and here x 3 node.
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So, finally we are going to have these things R 2 R 4 R 2 R 3 S 2, then R 4 S 4 like that we

are going to have this is the structure and these are the nodes x 1 x 2 x 3 x 4 like that.

Now, if you see these things, what about R 7? All those things you see one example R 6 S 4 R

6 S 4, these are the terminal nodes. Now, I am going to apply plus. So, that means 0 plus 0, it

will be 0. So, these are the terminal nodes. Basically now I can apply the operations. So, if I

apply the operation, these are the result that I am going to get. So, now you see this is the

resultant BDD of after application of this particular apply algorithm, but this BDD may not

be a reduced one.
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Now, after that we can apply the reduced algorithm to get the reduced BDD and finally, the

reduced BDD is going to have this particular form. So, again it is going to have the same

variable ordering x 1 x 2 x 3 x 4, ok. So, here we can apply or we can perform any operation

on BDDs and finally we are going to get an reduced BDDs or reduced order BDDs of those

particular operation.

Now, this is the apply is the main algorithm and to get the reduced BDD, we are having all

algorithm reduced algorithm. Here I am not going to discuss about it,  but already I have

mentioned about the rules how to reduce it. Now, we can look for the implementation of the

reduced algorithm. So, now apply is the main algorithm where you can perform the Boolean

operation on the BDDs.
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Now, we are having some more x connected algorithm also which are going to help is one is

known as your restrict algorithm which is basically the restrict operation which says that the

Boolean formula obtained by repressing all occurrence of x by 0 is denoted by f x 0. That

means, I am going to evaluate the function f just putting x equal to 0. Similarly, I can evaluate

the  function  by  putting  x  equal  to  1.  So,  in  that  particular  case  we  say  that  this  is  the

restriction of f. That means, you are restricting the function or evaluation of the function is by

restricting the values of x to be 0s only. We are please bothered about the functional value 1 x

become 1, then we say this is the restriction f x equal to 0. Similarly, we can have another

restriction where we are going to put the values of x equal to 1.

So, now if I am having a Boolean function, I can replace the variable x by 0 and we are going

to get the resultant function. So, no if we are already having BDD representation of the given

function,  now  how  we  are  going  to  get  the  BDD  after  applying  this  particular  restrict

operation. So, this is very simple.
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So, what it says I can say that restrict 0 x B f. That means, it says that the variable x is

restricted to 0. That means, we have least bothered about nor here we are going to say that x

is equal to 0. We are not considering or we are not looking what will happen when x equal to

1.

So, in that particular case what we can say that for each node corresponding to x because for

every variable x, we are having a node. We may have several nodes. So, we will remove and

from BDD and redirect the incoming edges to low of n, ok.

So, if this x is here, then x may have. So, this is the n x may have an either 0 or either 1 and

several as may come to this particular point, then what will happen to restrict it since now we

are going to restrict n is equal to n. So, we are going to remove this particular part. It is

redirect to low of n. So, after removing these things that means all those edges will go. So,

whatever that in coming edges are there, that will be redirected to these particular point. So,

these are the incoming edges. So, these incoming edges will be redirected to the low of n.

Similarly for restrict 1 x B f also it is similar way except that redirection will go to the solid

lines, ok.

So, we can do some simple manipulation in the BDDs to get restricts operation and there is

another operation.
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Generally we used to perform generally we sometimes relax the constraint on some variable,

ok. So, it is called relaxation. Basically if say that if we are some function f on some variable

xyz like that sometimes we want to see that we want to relax the constraint on say variable x,

we are not concerned about the values of varieties x equal to 0 or x equal to 1. So, this is the

relaxation. We are relaxing this thing. So, we relax the constraint on some variable x of a

Boolean function f then f could be made true by putting x to 0 or x to 1, ok.

So, basically what will happen either x equal to 0 or x equal to 1, we are not considering this

thing. So, we are going to look both the evaluation and we are going to have this thing.
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So, in that particular case, this is the expression basically we are going to have and we say

there exit some x where we are going to relax the constraint. So, in that particular case the

expression will turn up to be like that because in Shannon expansion how we are going to get

x bar f x is replaced by 0 plus x f is like that x is replaced by 1.

Now, that constraint is q is mentioning either x equal to 0 or x equal to 1 because x 0 will

become this is 1 into something and x equal to 1. This now we want to relax the constraint on

this particular variable x. So, the function Shannon expansion only we are getting it. So, this

is that if  we are going to relax on the constraint of x, then the evolution of the Boolean

expression will become these things f of x replaced by 0 plus f of x replaced by 1.

Now, say if we are having the BDD construction of this function f, how we are going to apply

this particular relaxation and this relaxation can be applied repeatedly also.
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So, now in that particular case you just see that I know that here I am saying the evaluation of

x equal to 0 and restrict  evaluation of x equal to 1.  So, x may be either  0 or 1,  we are

restricting it. So, we are getting OBDDs.

Now, we are going to apply this particular plus over here. So, this is basically what we are

getting. Our result will be or resultant BDD is going to give us this particular expression. So,

we can use this particular apply algorithm to get the relaxation on some variable x and for

there exist some x have that means, we are going to relax the constraint on this particular

variable x, then whatever resultant BDD we are going to get that can be constructed with the

help of this particular apply operation. So, these are some basic operation that we will be

needing while going to perform some operation on BDDs or in particular order BDDs or

ROBDDs; reduced order BDDs.
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This exist algorithm where the relaxation can be applied repeatedly up variable after variable,

so finally we can apply these things first we can relax on x and some other variable like that.

So,  finally  we  are  going  to  get  one  expression  which  will  give  you  the  relaxation  or

functional value of the given function on the relaxation of those particular variables.

Now, I think these are a basic fundamental see common to work with BDD and to understand

about  the  principle  of  BDDs.  So,  what  we  have  discussed  basically  we  have  seen  the

construction of BDDs, then we have talked about the reduced BDD, then we have talked

about the ROBDDs Reduced Ordered Binary Decision Diagram and ROBDDs are going to

have a canonical  representation of a  given function with respect  to  that ordering or with

respect to the ordering that we are considering.
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Now, just some questions just see what I am saying. First question do we get any advantage

of using BDD binary decision tree? We have explained something we have discussed about

these things. You just see whether we are going to get any advantages out of it may not be

because it is an expansion in nature. Secondly, to get ROBDD we need not to start from the

BDD, we can start from the Shannon expansion itself.

While constructing the BDD, it is required to start from BDT. Already I have mentioned may

not be required the definition of BDD does not restrict the occurrence of a variable in any

number of times in a path, so that it may lead to consist inconsistency. With example I think

we have discussed about  these issues.  Now, we can look into it  is  reduced BDD of any

function is unique. If reduced BDD of any function is unique excess no because to get an

uniqueness, we have to mention about the ordering of the variable also. If you change the

ordering, we may get different structure already. We have mentioned one example.
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Again  you  can  see  another  example  that  same  example  that  we  are  having  motivating

example that we are discussing over here. So, in that particular case, we have seen that if I am

going to take function f is equal to a c plus b c and if we are using the variable ordering a b c,

then we are having this particular structure ROBDDs for the given function f this the ordering

is a b and c.
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Now, if I change the ordering, then what will happen ok, you can go through it. Now, what is

the ordering? First we are saying that we are going to first having an evaluation on b on



evaluation of b, I am going to get this function g and h, then on g and h, it will be evaluated

that on c after having the evolution of c, then I am going to have the evaluation of a. That

means,  in  this  particular  construction  we are  going to  the  variable  or  we are  having the

variable ordering b c a, ok.

So, now after that what will happen what I can get this, this now you just see that finally we

are coming down to these things after using this particular Shannon expansion is there, can

you have any scope of reduction over here? No, we do not have any redundant nodes at that

particular point. We do not have any duplicate nodes also because duplicate nodes may be

possible with respect to this is only because for variable a, we having only one node for

variable b, we having only one node.

So, with this particular variable ordering, we have got this structure. So, you just see that

structure is different when we have a different variable ordering. So, ROBDDs are not having

a unique representation,  but with respect to a variable ordering,  we are going to have an

unique representation. So, if you use this particular variable ordering, always you are going to

get this particular structure only whatever way you are going constructing. So, ROBBD is

having an unique representation, ok.

With this I will end up my lecture today. In next class, we are going to see some use of those

BDDs or in particular ROBDDs with respect to model checking algorithm and finally, we

will  see the implementation  of model  checking algorithm where you are using the BDD

representation to represent our system.

Thank you all.


