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Equivalence between CTL formulas

Hello  everybody  welcome  back  to  the  online  course  on  Embedded  Systems  Design

Verification and Test. So, in our last class we have introduce about the notion of temporal

logic and we have seen that in temporal logic apart from the logical operator we are

having some temporal operator. We have discussed about those temporal operators and

the meaning of those temporal operators ok.

(Refer Slide Time: 00:56)

Now, today we are going to discuss on particular class of temporal logic, which is known

as  CTL:  Computational  Tree  Logics.  There  are  several  verities  or  several  classes  of

temporal logic and CTL is one of them. So, we are going to discuss about the syntax and

semantics of CTL.



(Refer Slide Time: 01:20)

Now, in temporal  logic  what  we have seen that  we are having temporal  operator  by

which we can reason about the tile, like whether always something is going to happen

whether in future something good will happen like that and the truth values of temporal

operator or temporal formula is given over a model. We have seen that given a model M

and a temporal  formula phi,  we define an inductive definition of the notation of phi

holding at a position S i in M and it is denoted by in model M as state S i. It models phi

or phi holds in state S i of the model M, this is the notation of giving the meaning of a

temporal formula.

Secondly already I have mention that temporal formula is valid in a state of a model or

we can think that or we can say that temporal formula is valid or true in a part of a given

model. So, we are having the notion of state formula and path formula ok.



(Refer Slide Time: 02:42)

In case of path formula the truth values of the temporal formula is defined over a path, in

case of state formula the truth values of a temporal formula is define on a state of a given

model. So, we must have a model and truth values of the temporal formula is defined

either on state or over a path. In case of path formula truth values is defined over a path

or in case of state formula truth values is defined in a particular state.

(Refer Slide Time: 03:21)

So, after getting the idea about the temporal operators and temporal logic, we have going

to discuss about a particular class of temporal logic which is known as computational



tree logic CTL. On the other hand CTL is branching time logic, already we have mention

about the notation of time progress. Either we can consider time progress in a particular

execution trace which is basically known as your linear time logic. And, on the other

hand there are several possible execution trace of a from a given state in a model and if

we are going to reason about all possible execution traces then we have to deal with the

branching time logic.

So, CTL is a branching time logic which is known as computational tree logic and a

meaning of the CTL is defined over a model, already I have said that temporal logic has

to  be  defined over  a  model.  But,  for  definition  of  CTL we are  going to  consider  a

particular class of model and we will discuss about those particular model and a we will

these discuss how we are going to define the truth values of where formula in that model.

Secondly CTL is a state formula the truth values CTL is defined in a state of a given

particular model. So, just we have consider this particular model that it is a being free

state s 0 s 2 and s 1 and it says that if it is in s 0, then we can have 2 possible transition.

Either it can go to s 2 or depending on the situation it can go to s 1, one it is in s 2 then

form s 2 either we can have a transition to s 3 or we are having a transition back to s 0

and once we come to this particular state s 1 then system remains in this particular s 1.

So, this is  this  model is  nothing but a state  transition diagram, the system is having

several  state  and  it  shows  the  transition  between  different  states.  So,  here  in  this

particular model we are having 3 different state s 0 s 1 and s 2 and if you look in to it

then you will find a there are 5 different transition in this model. Now, this model can be

expanded by looking into those particular transitions. Now those (Refer Time: 06:04) if

we are in s 0 from s 0 we can go to s 1 or the you can have the transition to s 2. Now

when we are in transition s 1 then we can have a transition 2 s 1 itself ok.

Now, on the other hand when we are coming to s 2 we can go to the state s 0 or we can

go to the state S 1. Now in this particular case you just see that these state s 0 and the

initial state s 0 are having a same behavior, the label a b indicates that we may have some

proposition over here 2 proposition variable a and b the truth values of a and b is true at

that particular state s 0.

Now, when we look into the execution then that will be expanded to a particular tree. So,

this step again we are encountering s 0 because we are having a go back path, so in this



particular state also property same that it is having the propositional formula a and b are

true. But, only difference now we can consider over here the if this is starting point and

we said this is your time t 0, then after having one particular transition we can say that

we are going to state is time t 0 plus 1 or if the other possibilities is also there. So, time at

that particular instance is your t 0 plus 1, we just considering a onetime unit for one

transition.

So, in this particular way now (Refer Time: 07:52) now when system progresses then in

second transition I am going to get that the time of this particular state is t 0 plus 2 here

also t 0 plus 2 and this particular state is also a t 0 plus 2. Now, when we consider about

this  state  s  0  and  the  other  state  s  0  here  behavior  is  same  because,  some  of  the

propositional variables are true in these particular states, but only difference is the time

or you can say time step, it is showing the behavior of the system at time t equal to 0. But

this particular state showing the behavior of the system or the state of the system at time t

0  plus  2  after  2  time  (Refer  Time:  08:45),  I  am considering  the  time  step  for  one

particular transition is one.

So, we are just expanding the given system to a tree, this tree is known as computational

tree and the logic define of a this tree to define some properties that is why the name is

given as your computational tree logic. So, we are going to discuss about a syntax and

semantics of this particular logic CTL or computational tree logic.

(Refer Slide Time: 09:20)



Now, what  is  syntax?  Now, as  you know that  in  every  logic  or  in  every  computer

programming language we have to define the syntax and according to the syntax we have

to write valid sentences of that particular logic or of that language. So, when we look

into  the  CTL  formulas,  then  CTL  formula  comprises  of  one  component  atomic

proposition. So, we are having some atomic proposition p q r then if you consider one

particular atomic proposition, then what will happen the truth values of this particular

atomic proposition will be either true or false. 

So, we are having some atomic proposition the truth values of the atomic propositions

are either true or false depending its states. Along, with that we are having one particular

notion or particular identity which is known as your path quantifier. So, it is quantified

over a paths, so this path quantifiers is A and E, A stands for in all possible path and E

stands for their existed path.

So, we are going to reason about in all possible paths or there may exist a path, if we

follows that particular path a property will be true on that particular state, so these are a

path quantifier A and E. As we have already mention that all the propositional connective

can be used in our temporal logic, so access all the propositional operator can be used in

our CTL also. So, these are all basic operators I am saying AND OR and NOT similarly

others also a expressive or NAND NOR everything can be used in CTL and we are

having temporal operators and the basic temporal operators are basically NEXT which is

represented by X, FUTURE which is represented by F, GLOBAL which is represented

by G and having an UNTIL operator which is basically until.

Out of this  particular  4 operators  already we have discuss you will  find that  NEXT,

GLOBAL and FUTURE, these 3 are unary operators; it works only on one particular

variable. But UNTIL U is a binary operator we need 2 operators to express the formula

or sentence using this particular until operator. So, already we have discussed about the

many of this particular co operators. So, in CTL we are going to use this particular 4

CTL operator sorry temporal operator. So, our CTL formula consist if this particular 4

temporal  operators  also.  Now, the  formal  syntax  of  CTL can  be  given  in  the  BNF

notation at in all of you know about the BNF notation. So, this is the creeps going to

representing the syntax of a given language.



(Refer Slide Time: 12:39)

So, in CTL: Computation Tree Logic the BNF notation of the CTL is as follows, we are

using 2 symbols one is known as your bottom and second one is your top ok. So, this is

basically  radius bottom and second one is  top.  Basically  bottom we write  bottom to

indicate the truth value false and top we will write the symbol top to represent a truth

value true. So, truth value true and truth value false are also CTL formula, so top and

bottoms are CTL formula.

Secondly we are having a set of atomic proposition. So, every atomic proposition is a

CTL formula,  so  whatever  atomic  proposition  we are  using  in  our  system so  every

atomic proposition is treated as an CTL formula. Independently it is a formula it is a CTL

formula because, truth values of this formula will be either true or false. If it is true in a

particular state then we said that a truth values of that particular atomic proposition or the

CTL formula is true at that particular state. Similarly, if the truth value is false of that

atomic  proposition then  we said that  the corresponding CTL formula is  false  at  that

particular state.

Now, if phi is a CTL formula, so then not a phi is also a CTL formula basically we are

using this particular logical connective phi and phi is also CTL formula phi or phi is also

a CTL formula phi implies phi is also a CTL formula or you can list any other logical

connective. So, if I am having a logical so if I am having a CTL formula phi then phi

with  any  logical  connective,  phi  is  also  a  CTL  formula  this  may  be  conjunction,



disjunction  or  explosive  or  implication  whatever  it  may  be  it  will  become  a  CTL

formula.

Now, we are having 4 temporal operators, so with the help of this 4 temporal operator

also we can construct CTL formula. So, these are the CTL formula so X next is an CTL

operator temporal operator. So, with act we are constructing to CTL formula AX phi and

EX phi. So, AX phi basically says that in all possible path in the next state phi holds or

EX phi basically  we can say there exist  a path at  least  there should be one possible

execution path in which in the next state phi is true. So, we are getting 2 CTL formula

from the temporal operator X AX and EX.

Similarly, we are going to get 2 CTL formula with a temporal operator F AF phi and EF

phi  in all  possible  path or there exist  a path.  Similarly  in case of G operator global

operator we are also going to get 2 CTL formula AG phi and EG phi like that for until

operator. Also we are going to have 2 formula A phi until psi or I can say that the phi

until phi and E phi until phi, one says that in all possible execution trace phi remains true

until  phi becomes true ok. Similarly, E says there exist  a path, so these are the path

quantifier and the path quantifier is used along with the temporal operators to form a

CTL formula.

(Refer Slide Time: 16:46)

So, basically we all said a let V be a set of atomic proposition done this is a component

and every atomic preposition will treated as a CTL formula and this CTL formulas can



be defined recursively and every atomic proposition is a CTL formula. Firstly if it is a

CTL  formula  then  weight  logical  connective  we  can  form  CTL  formula  and  with

temporal operator we can form CTL formula. But if you look into it if you notice that

every CTL operator is preceded by a path quantifier.

So, that is why if I am saying that f1 until f 2 until is a temporal operator it says a f1

remains true until f 2 remains true. So, this is a temporal operator and the truth values of

this temporal operator basically define over a path it is a path formula. But if we give the

path quantifier either A or E then it becomes a state formula, the truth values of this

formula is defined for a state. So, basically I can say that if this is the state s 1 I can have

several possible execution trace.

Now, if we are going to have this things now if I say that AF until f1 until f 2 if this is

CTL formula, it  says that in all possible execution trace found is particular state 1 f1

remains true until we are reaching state where f 2 is true. So, this behavior should reflect

in all possible path then only we can say that A f1 until f is true.

Similarly, if we say E f1 until f 2 then what it says at least we must have one possible

execution trace where f1 remains true until f 2 becomes true ok. So, with this particular

path quantifier A and E we are constructing a state formula and the truth values of this

particulars temporal CTL formulas define in a state, so it is a CTL is a state formula.

(Refer Slide Time: 19:30)



Now, what is a meaning of those particular things? Already, I have mention AX f 1 that

means X is the next operator. So, AX and EX AX is the their in all possible execution

path in the next state f1 is true and EX f1 mean their just at least one path, where in the

next state f1 is true. If I look in to this particular scenario, so this is the state s 0 and if I

set a f1, f1 is label. What does it means it says that, in this particular state s 1 formula f1

is true and in the state s 3 formula f1, but in s 2 formula f1 is not true. So, this is the label

basically we give we indicate the truth values of the formula, if it is true generally we

indicate this particular formula to show that the truth value is true.

So, in this particular case you just see them at least we are having one particular part in

the next step f1 is true. So, in s 0 EX f1 is true or you say that in the state s 0 AX f1 holds

because, we are getting one next state that means one next state when f1 is true. But if I

look into this particular scenario then AX f1 in all part in the next step f1 is true we are

just looking for this particular possible behavior.

So, in that particular case AX f1 is not true so AX f1 is false at s 0. But EX f1 is true at s

0 because, in we are having 3 possible execution path from this particular state s 0, but if

we follow this particular path then what will happen in next state f1 is not true. So, like

that we have to see whether the truth values update is given temporal formula is true over

they are all not in a particular state.

So, similarly A f1 until f 2 and EF 1 until f 2, so f1 remains true until f 2 becomes true.

So, in a particular path I can say that if the scenario is something like that, so that in this

particular state is you know if I go by this particular path I will find that f1 remains true

until f 2 becomes true in a particular state. So, in this particular path this formula f1 until

f 2 is true, so if I come to this particular state s 0.

So, here I can say that E f1 until f 2 is true, like that from f 0 you may have several

possible execution trace. So, if in all execution trace the behavior is something like that

similar to this one, then I can say that in all path f1 remains true until f 2 becomes true

ok. But if anyone of this particular path these behavior is not showing or not satisfying

then A f1 until f 2 is false at that particular state s 0.
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So, similarly we are having the global, so in global it says that globally it is true; that

means, in all possible state f1 must be true then only we will say that AG f1 is true if it is

all possible path. So, if I am going to have some scenario or something like that, so if I

look into this particular scenario then we will find that if I go if I proceed through this

particular execution path and we will find that in all states f1 is true.

Similarly, if I proceed by this particular exhibition trace then again we will find that in

possible in all states f1 is true, but if I follow this particular execution trace in this 2 state

f1 is not true. That means, if I am going to look for the truth values of this formula AG f1

then AG f1 is not true at s 0 because, we are going to get one execution trace where f1 is

not true in 2 of the states.

But if I say that EG f1 here there exist a path globally f1 holds yes, we can say that either

we can consider this particular path or we can consider this particular path then in all the

state f1 is true. So, at least there exist a path where f globally f1 holds, so we can say that

EG f1 is true. Now, in the same model now you consider this particular state s 1, whether

AG f1 holds are true in s 1. So, in that particular case you just see that from s 1 I am

starting and it is having only one execution path in all the states f1 is true. So, we can say

that so here AG f1 is true. Now, if I extend this particular give one more transition from s

1 to this particular state. Here also we will find that it is having 2 different execution

possible trace, so in both the paths in all the state f1 is true.



So, we can say that AG f1 is true in state s 1, but already we have seen that AG f1 is not

true in s 0. So, already I have mentioned that truth value is defined in a state in case of

state formula. So, similarly we are having the operator future F so again we are having

AF and EF, so in all path in future or in all there exist a path in future.

So, it is like that if I am going to consider one particular state we may have a execution

trace and we are going to say (Refer Time: 26:56) somewhere in future f1 hold some not.

If this is the (Refer Time: 27:02) and we can say that in the state s 0 AF f1 is true. So,

these are the operators and these are meanings and in case of CTL we are defining the

truth values of a CTL formula in a state it is a state formula.

(Refer Slide Time: 27:20)

Now, what is the basic notion? If you see or if you observed you will find that every CTL

operator is preceded by a path quantifier; that means, if we are having any CTL operator

if it is preceded by a path quantifier, then we are going to get a state formula and CTL is

a state formula all CTL are state formula.

So, that is why your if you look into the definition you just see these are the operator

temporal operator that we are having, so all temporal operators are preceded by a path

quantified either A or E and with the help of this path quantifier we are getting the state

formula. So, truth values of CTL formulas is defined over a state and from observation

what we can see all CTL operators are preceded by a path quantifier either A or E. So, we



are getting a state formula and the truth values of CTL formulas are defined in a state of

a given model.

(Refer Slide Time: 28:35)

Now, some example you just see if I am writing some example over here, as a notation

you see that we are using those particular path quantifier A or E or the temporal operators

and the logical connective. Now, whether these are valid CTL formulas or not we have to

check for it and if it is syntactically correct, then we say these are the well form formula

of that particular logic.

Now, consider one particular example over here, so I am talking about AG p implies not

of EG not of q. So, whether it is a valid CTL formula or not constructively ok. Now in

this popular case now you see the BNF notation of construction of CTL formula and see

whether we are going to get CTL formulas or not. So, in that particular case you just see

that p is a atomic proposition, so every atomic proportion is a CTL formula. So, this

component  is  a  CTL formula,  q  is  also  a  CTL formula  because  it  is  also  a  atomic

proposition. If phi is a CTL formula the not of phi is also a CTL formula, so what I can

say not of q is a CTL formula.

Now, we can use if phi is a CTL formula then EG phi is also a CTL formula. So, EG phi

is also a CTL formula because globally there exist a path globally not of q holds I can be

note that if phi is a CTL formula not of phi is also a CTL formula, so negation of this is

also a CTL formula. Now, if I am having 2 CTL formula phi 1 and phi 2 then we can



connect this 2 CTL formula with any logical connective. So, this is also a CTL formula p

implies not of EG not of q. Now if phi is a CTL formula then with the help of temporal

operators along with the path quantifier we are going to get a CTL formula, so AG phi is

also a CTL formula. So, if we look into the component wise then we can say that these

are all the components has CTL formula and by connecting them with logical connective

or temporal operators we are going to get a valid CTL formula.

So, in this particular case now we are we have seen I can say that p and q these are sub

formulas of this given formula. Again since q is a formulas or not of q is also a sub

formula of this given formula. Similarly EG not of q is also a sub formula of the given

formula, similarly not of EG not of q is also a sub formula of this given formula and

finally we can say that p implies not of EG not of q is also a sub formula. So, in this

particular way so finally this sub formula is connected with AG in all path globally, so

the given formula is also a CTL formula.

So, like that if you analyze the other formulas that I have mention over here, you will

find  that  all  of  these  are  constructically  correct  CTL formula  they  are  correct  CTL

formula. So, here another example you just see that here p and q are atomic proposition

they are CTL formula so p and q is also CTL formula. So, if phi is a CTL formula then

EF phi is also a CTL formula, if phi is a CTL formula then negation of phi is also a CTL

formula, if phi is a CTL formula then AG phi is also a CTL formula. So, like that you can

look for all those particular equation that whatever I mention and you will find that all

are constructically correct CTL formulas.
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Now, look another set of formulas, so in this particular case just see that if I am going to

write this particular formula F r until q. So, what it means in future r remains true until q

becomes true whether it is a CTL formula or not. It is a do not confuse it is a temporal

formula no doubt about it because, we are using temporal operators over here what are

the temporal operators that we are using f and until future and until, so F r until q.

Now, in this particular case say r and q are atomic proposition so we can treat them as

your CTL formula, when I come to r until q then it is a temporal formula no doubt but it

is not a CTL formula because, this until operator is not preceded by any path quantifier

and after I am getting F r until q again it is a temporal formula. But it is not a CTL

formula because again f is not preceded by any temporal operator so it (Refer Time:

34:33) this things. So, in this particular case what I can say if I write E FE r until q, so

that means there exist a path r remains true until  q becomes true.  So, now this until

operator is preceded by this particular path quantifier is, so this is a CTL formula.

But I am having another formal temporal operator have which is not preceded by any

path qualifier, so it is also not a CTL formula. But if I write AF E r until q then you will

find  that  now these  becomes  a  valid  or  correct  CTL formula  because  this  temporal

operator until it is preceded by path qualifier E and this particular f temporal operator is

again also preceded by another path quantifier A. So, it becomes a CTL formula, but

access the given formula are F r until q is not a CTL formula. So, if I or if you look or



analyze these particular formulas you will find that these are not correct CTL formula,

but all of these are temporal formulas but not CTL formulas.

(Refer Slide Time: 35:55)

Now, we are going to look for the definition of semantic of temporal formulas, how to

define the semantics of a temporal formula? So, already we have said that their truth

values of a temporal formula defined on a model, so in case of CTL we are going to

consider a particular model. So, what is this model the minimum component that we

have in a model is having a 3 tuples S arrow and L the basic notations that we are using

over here.

So, the semantics of CTL is defined over a model which is define as 3 tuple, so M is

basically consist of S arrow and L now what is this particular component S is nothing but

the finite set of state. So, you are going to define the truth values of a CTL formula on a

finite state systems or number of states are finite.

We are having a transition relation arrow which is a subset of Cartesian product S cross

S; that means, if we having set of states. That means, we are having a transition from any

state to any state with for all S belongs to the set of state S, there exists s dash belongs to

S such that s and s dash belongs to this particular transition relation. That means, if this is

s and I am having another state s dash and if I am having a transition from s to s dash.

So, the member s to s dash this is nothing but a member of S cross S Cartesian product of

s on s.



So, this member is a member of this particular transition relation if we are having an

transition from state s to S and the basic emphasis it is given with this particular state

particular symbol for all state. So, basically for all state there is must be next states that

means from every state we are having an outgoing transition.  If we do not have the

outgoing  transition  then  this  is  not  a  valid  CTL structure  or  temporal  structure  for

defining CTL formula and along with that we are having a labeling function which is

known given as L S.

So, what is this it is L is a function from the set of states to the power set of V and what

is V now V is nothing but the set of atomic proposition because, we are going to work

with a set of atomic proposition the truth values will be either true and false, so we are

having a labeling function. If a particular atomic proposition is true in a particular state,

then we label this particular state with the help of that particular atomic proposition.

So, you just see the CTL structure is similar to finite state transition machine, we are

having a finite number of state and we having some transition from states to states of this

particular machine. But the transition is having a particular property it is complete, that

means form every state there must be an outgoing yes or outgoing transition to some next

state, along with that we are having this particular labeling function.

So, this is extra apart from our final state machine then formal definition of final state

machine we are having this particular labeling function. So, once you have distinct then

generally in historical region this is known as our Kripke structure; that means, the truth

values of a CTL formula is defined in a Kripke structure.
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So, what is a Kripke structure basically now I am saying that it is similar to the finite

state machine, but transition relation is having a special behavior it is complete in nature.

That means, every state should have an outgoing that is means every from every state we

should have a transition to some (Refer Time: 40:35) and along with that we are having a

labeling function if we are working in a particular system. 

Then if the atomic propositions are true in a particular state then that is state will be label

with the help of this particular labeling function. So, these are the 2 extra things that we

are having along with a finite state machine.  So, this model is known as our Kripke

structure and the meaning of a CTL formula is defined in a Kripke structure.



(Refer Slide Time: 41:10)

Now this is simple example you just see if you look into it, now what does it means it is

having 3 state s 0 s 1 and s 2 and basically it is having 3 atomic proposition, we are

having 3 atomic proposition a b c and when we are designing the system and when we

are abstract of the model, it seems that in the state s 0 the atomic propulsion a and b are

true. So, that is why this is the labeling function we have label is particular state with a

and b, so a and b are true in this particular state s 0.

Similarly, the atomic proposition b and c are true over state s 2, so it is labeled with b and

c. Similarly in state s 1 only atomic proposition c is true so this is labeled with c. So, this

is  the  labeling  function  with  the  help  of  labeling  function  we  have  labeled  those

particular states and secondly we have the transition say s 0. We are having a 2 outgoing

as a 2 transition from s 2 we are having 2 transition, from s 1 we have one transition to

itself. That means, every states is having an ongoing transition, so this is a valid Kripke

structure and we can define the meaning of CTL formula in this particular model.
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Now, just consider this 2 randomly I have drawn 2 figures whether these are Kripke

structure or not or here I am not talking about a labeling function if I label them with

some atomic proposition, then it is fine I can say that d f. So, a b b c d f so labeling

function is there that it is label with the atomic proposition that we are going to work

with.

Now, whether these are valid Kripke structure or not, so one is there labeling function is

there now we have to see the transition function whether it is complete or not. So, in the

first diagram if you just notice when we come to this particular state s 6, we will find that

there is no outgoing s ok, there is no outgoing transition from this particular state s 6.

That means, transition relation is not complete so it cannot be considered as a Kripke

structure.

But here is also I am putting one extra s over here, so what it says I am from s 0 I am

having transition to s 5. Now if you observe you will find that from every state we are

having at least one outgoing transition. So, this is a valid Kripke structure and we can

define the meaning of CTL formula on this particular model.
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Now, as a simple example you just see this is a finite state machine we are having 4 state

s 0 s 1 s 2 and s 3. So, this is the set of state first component as because it defines it a

model as your s transition relation and labeling function, this is the model M for Kripke

structure. So, state s is nothing but s 0 s 1 s 2 and s 3, what is the transition relation you

just see as there is a transition from s 0 to s 1.

So, a 0 to s 1 is a component from s 1 we having to transition one is going to s 3 and one

is going to s 2, so s 2 s 1 to s 2 and s 1 to s 3. When we are in s 2 then we are having a

transition from s 2 to s 3 and when we arrive that s 3 then we having a transition back to

s 2. So, s 3 to s 3 and there is a self loop self transition so s 3 to s 3. So, in this particular

transition  relation  we  are  having  these  particular  sixth  components  that  means  it  is

having 6 different transitions, so 1 2 3 4 5 6 so this transition relation is having these 3

transition.

Now, what  is  the  labeling  function  by  looking into  the  labels,  you can  say that  the

labeling function is defined like that labeling function at the state s 0 is nothing but p q r.

So, if I am using a set of atomic proposition as say p q r ok. So, in that particular case

you find that the labeling function next state s 0 is your p q r, similar label of s 1 is your

p and q labeling function at s 2 is your r and labeling function at S 3 is your q and r. That

means, it says that state s 3 is label with the atomic proposition q and r and its indicated



that the atomic proposition q and r are true in this particular state S 3 ok, this is the

notion about the truth values of atomic proposition.
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Now, how we are going to define a semantic so let M be a model, so M is having a

component set of state the transition relation and the labeling function be a model of a

CTL formula given any s in S. We define whether a CTL formula phi holds in state s, we

denote this by M s models phi, on the other way we can say that phi the CTL formula phi

holds in the state s of the given model M. Now, we are going to formally define the

semantics of each and every CTL formulas.
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So, we are going to define it on a model M and the structural induction on phi because,

phi is a CTL formula which consists of several sub formulas. If all the sub formulas truth

values of all the sub formulas is defined in a state, then only we can define the truth

values of the given CTL formula in that particular state.

So, what are the notion it says that in state s in model M it models the top, top is nothing

but true already I have mention and bottom is nothing but false. That means, it says that

true is always true in all the state and false is always false in the in all state this is the

basic notion about the truth values. So, basically it says that in all state the true is true or

top is true truth values of true is true and truth values of false is not true. So, it say says

that it does not model phi ok, this is about the truth values true and false which are

basically constant in our logic family.

Now, again it says that whether in any state of the given model the atomic proposition is

true or false, it says that if p belongs to the labeling function of that particular state s then

an s models p or we can say that p is true in the state s of the model M. On the other hand

if  it  is  not  a  member  of  this  particular  labeling  function,  then  truth  values  of  this

particular atomic proposition is false at that particular state ok.

So, atomic proposition is considered to be true in a state provided it is a member of the

labeling function of that particular state. Similarly it says the M s models phi not of phi



that means, not of phi is true in the state s provided phi is not true at that particular state

s.

So, M s phi does not model phi so in the particular case we say that M s models not of

phi this is very simple I think you understand. So, if this is a state and if it is labeling

function is model sp and here you say it is q, so it is p is not labeled at that particular

state. So, here I can say that in this particular model M instead this particular say s 1 it

models not of p, because p is not true at  that particular  transition.  So, it  says that it

models not of phi provided it does not model this phi.
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So, these are the small example I am giving, so these are the labeling function L and s 0 l

s 1 and Ls 2 and Ls 3. So, this is M s 0 models p but Ms 1 does the model p because it is

not labeled to it p.
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So, similarly now we can use any logical connective it  is very simple say if it  is M

connective, it says that in a model in the state s of the model M phi 1 and phi 2 holds or

not, whether phi 1 and phi 2 is true or not provided M s model phi 1 and M s model phi 2

ok. So, if both phi 1 and phi 2 are true in this particular state then we can say that this

models phi 1 and phi 2.

Similarly, we know the or connectives either phi 1 is true or phi 2 is true, that is why it

say that the other iff M s models phi 1 or M s models phi 2 and we can say that M s

models phi 1 or phi 2. So, these are the some connectives with an M s model phi 1

implies phi 2. So, we know the equivalence p implies q is equivalent to not p or q, so it

says that if M s does not model q 1 and M s models q 2. So, not of p or q so if not phi 1 is

not true in s and phi 2 is true in s then we can say that M s models phi 1 implies phi 2.

So, this is small example I can same notation that I am using, so M s models p 1 or p q p

and q because both p and q is true over here. So, in s 1 p and q is true, but here only q is

true, but still M s model p and q is true. But M s 2 does not model p and q am I right

because in next only q is true but p is not true. So, p and q is false so M s 2 does not

model p and q.
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Now,  the  logical  connectives  is  simple  now  we  have  to  look  for  the  temporal

connectives. So, one is your whether in M s model AXq, so it says that Ms model Xq or I

can say that AX phi is true in a state s of the model f. Provided in all s 1 such that there is

a transition from s to s 1 we have M s 1 model phi, that means we are going to consider

all the possible transition from this particular state s M. Whatever next that we are going

to get in all the next state phi is true Ms 1 model phi, then we can say that M S model phi

AX phi.

So, in this particular case you just see whether M s 0 models AXq, so in all path in the

next state whether q holds or not. So, from S 0 I am having 3 next state, so s 1 q is true s

2 q is true and S 3 also q is true. So, yes it models if I check whether and s 0 model AX q

yes it is true because in all the next state q is true.

So, similarly  EXq whether  Ms model  EXq, so here also we are going to look for a

transition from s to s 1 and if we are going to one such transition where Ms 1 models phi

then we can say that EX phi is true in that particular given state. So, AX says that you

look for all the next states and check whether q or phi is true in that particular states or

not are for EX phi you look what is one such next state where phi is true and s 1 models

phi. So, for one state s 1 such that we having a transition from s to s 1 we have M s 1

models phi then we can say that M s model CX phi.
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M s models AG phi it holds if all path, we are going to consider all paths such that s 1 to

s 2 to s 3 like that we having s, but all paths where s equal to s1. So, path starting from s

1 and this s 1 happens to the s, then along this particular path all s i along the path M si

models phi ok. So, first you consider all  possible paths now in all  possible path you

consider all the states s i and if in all s i that M si models phi then we say that A s models

AG phi ok. In all possible path in all state if phi is true then Ms model AG phi or we can

say that AG phi is true in the state s of the (Refer Time: 55:48) model M ok.

So, there is a transition models it says that whether in whether it is true Ms 0 model AG

q. So, you just see that we are talking about the s 0, in s 0 q is true I am having one

transition like that. So, in all the in this particular path in all the states q is true, I am

having another transition like that. So, in this transition also q q and all those particular q

is true and this is the another transition we are having.

So, here also in all states q is true, that means from s 0 if we consider all such path and in

all si along the path if it models phi then we say that AG phi is true, so in all state in

possible path q is true. So, in s 0 AG q is true that means M s 0 models AG q So, this is

similarly EG q so it is with the similar notion we can say that if there is a path.
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Now in the AG phi I am talking about for all paths but here we are taking a there is a

path  and  remaining  condition  is  same  that  in  all  si  along  the  path.  Now  you  are

considering a particular path and in all states of that particular path if phi holds, then we

say that Ms model EG phi AF phi again in all path in future. So, again you say that if all

paths we consider all such type of paths where s is equal to s 0 the starting state of the

path and for at least one si.

So, we can consider this particular path and you consider all possible path and along this

all possible path at least we are going to get one state si, such that Msi model phi then

you can say that in all path AF phi is true. So, consider all possible path of this sort and

along all path at least loop for at least one si ok, such that M si models phi that means phi

holds in the state si then we say that M si model AF phi a meaning is like that AF phi is

true in the state s of the model M.
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So, similarly we can look for EF phi, so in case of EF phi it says that it is similar to EF

phi, but it says that if there is one path now we are not going to look for all path we are

going to consider one path. If there exists a path such that at least we are going to get one

si along that particular path, such that M si model phi then you can say that M S model

EF phi. So, this is the exact semantics of EF phi.
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So,  next  operator  is  your  until  operator  already  I  have  mention  that  it  is  an  binary

operator. So, phi 1 a phi 1 until phi 2 again where in all path phi 1 remains true until phi



2 becomes true. So, that is why I says that you consider all possible such type of path s 1

to s 2 to s 3 like that. Where s is equal to s 2 we are going to consider this particular s,

that means starting state is your s 1 in all such path phi 1 until phi 2 satisfied.

Now we are going to consider all the possible paths and impossible paths phi 1 until phi

2 satisfied. What does it means that means, we are going to get some si along the path.

So, we have we are going to consider all possible path and along the path we are going to

get some si, where phi 2 is true in this particular si and for each j less than i.

So, this is your i minus one i minus 2 like that, so all those particular j sj it models phi 1,

that means phi 1 must be true in all those previous state. So, we have to get some si along

the path such that M si models phi 2 and for each j less than i we have M S j model phi 1

then we can say that M S models a phi 1 until phi 2.
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So, similarly we can define E phi 1 until phi 2 the notion is same. So similar way we can

define the formal semantics of this particular operator, only difference is here we are

saying that if for at least one path. Now in case of a we are looking for all paths, but E

we are looking for at least one path. Where phi 1 until phi 2 is satisfied in this particular

path and what does it means we are going to get some state si, where phi 2 is true at this

particular si and all its previous state j is less than i M sj model phi 1.



Now, here it is a simple example whether E p until q is true in this particular state s 0.

Now if I look into it then if you consider this particular path then what will happen, I am

getting one state s 4 which models q and in this particular path what are the predecessor

we are going to get s 1 which model p and s 0 which models p. 

For all each j we have M sj model phi 1, so you have seen that it models p its model p

and only it models q then we are going to say that s 0 models E p until q. But whether s 0

model A p until q if I look into it then we will find that it is not true, because at least in

this particular path I am saying that p is not remains true and over q is also true may be

some in future it may be q may be true. But p is not true in all the predecessor state, so A

p until q is not true in this particular model at the state s 0.
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Now, these are the formal semantics of the CTL, so today what we have seen we have

defined the formal syntax of CTL and formal semantics of the CTL and how to define the

truth value of the CTL formula. How to construct correct CTL formula, how to get the

semantics and CTL formulas or state formula and one basic notion just I have mention

over here that every temporal operator must be preceded by a path quantifier.

Now, one simple questions now we are going to discuss it says that, consider the set X it

is having 3 atomic proposition p q r ok. Now what is the power set of X I think you know

the notion of power set.  So, what are the power set of X if you see that that means,



generally if phi is to (Refer Time: 63:46) is a path subset or set of this particular power

set. 

I can say that p is one subset of this given set q is also a subset of this given set r is also a

subset of this given set or I can say that p q is a subset p r is a subset and q r is a subset

also as per notation p q r is also a subset of X. Do you find any other subset of this

particular 3 element, if you inspect it you are not going to get any other subset, so this is

the power set of this particular keep hand set.

Now, how many elements are there I think there are 8 elements because, we know the

number of the power set is equal to 2 to the power n, if n is the number of elements of a

given set. Now, here what is this basic notion actually you just see if I look into the

power set, basically it gives me all possible states of a given system. Why I am saying

now we are talking about the atomic proposition and these atomic propositions are going

to use to look for the state space system, what are the states we are having an in Kripka

structure. You just see that we are having the labeling function and it is states are labeled

with the atomic proposition which are true in this particular state. So, whatever subset we

have written, we said that these are the truth values of this atomic proposition is true in

this particular subset.

Now, in this particular case I can say that this is the state s 0, where none of the atomic

proposition p q r is true. I can say this is the state s 1 where the atomic proposition p is

true, this is the state s 2 where the atomic proposition q is true. This is the state s 3 this is

the atomic proposition r is true and s 4 is the state where the atomic proposition p and q

is true s 5 is the state where the atomic proposition p and r are true and s 6 is the state

where the atomic proposition q and r are true and s 7 is the atomic proposition where all

the 3 atomic proposition p q and r are true.

So, if  you look into the combination  of the truth values  we are going to  have these

particular 8 different possibilities and these 8 possibilities can be now treated as the state

of the system. If I am going to work with a system where it is having 3 variables, those 3

variables can be treated as my atomic proposition of the system and truth values of this

atomic proposition will  be either  true or false and when we mapped it  to the digital

system, then we can say that this is either on or off or we are going to represent it with 0



and 1 in our digital logic system ok. Embedded system is also implemented with the help

of digital logic system.

So, if we are having 3, if  we are working with 3 atomic variables or such tree state

variable then number of possible states are 8 only we cannot get more than 8. So, if we

are working with n different variables or n different system variable, then we are going to

get 2 to the power M states. So, we are going to have finite number of state whatever be

that n maybe, if we are working with hundred system variable that system variable may

be either on or off state, you are going to get 2 to the power 100 different states which is

again finite in nature.

So, that is why in our temporal logic we are talking about the atomic proposition, when

we work with our system digital  system this atomic propositions are nothing but our

system variables. Those system variable states may be either on or off on means true off

means false. So, this is the mapping basically and now depending on the number of state

variable we are going to have the state space and all the state space is finite. But when

we are going to design a  system all  states  may not  be reachable  some of the states

configuration we may not achieve.

So, if I am having n state variable, then we are going to get 2 to the power n states ok.

So, as for example I am having 3 state variable p q r or I can say atomic proposition, so

these are the possible state behavior and we can have a transition from s 0 to s 1 or s 0 to

s 2 depending on our system. Now, in some system all those particular states may not be

a valid configuration. So, in that particular case we are going to say reachable states,

where reachable state is always a subset of all those particular state which is either less

than equal to 2 to the power n ok. 

So, these are the valid configuration of the system, if some configurations are not valid

then that will not come into the picture and we will say that this is not valid of our

system ok. So, this is the scenario so total possible states is your 2 to the power n, but in

our  in  reality  reachable  states  will  be  less  than  this  2  to  the  power  n  because  all

configuration may not be possible because, it may have some conflict we will see with

some example.
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Now, here  said  that  another  question  related  to  our  temporal  logic  show  a  Kripke

structure, such that in a particular state EX p or q holds, but EX q and r does not hold.

So, it says that basically I can give a some notation example over here. So, if I am going

to say that whether in this particular state q or r is true or false.

So, in that particular case so at least I am having one state or in all state q or r any one of

these things is true or I can say that ok. But whether ex q and r is true here q is true, but r

is not true here r is true but q is not true, but here nothing is true. So, EX q and r is not

true in s 0, but EX q and r is true. So, this is AF q or r and EF q or r, so one is in all path

q and r and there exist a path q and r can you give a model.
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So, this is some very simple construct I can say. In this particular case say if I go this

particular, but in future I am getting at least q is true. So, q or r is true in this particular

path so r is true. So, q or r is true in this particular path q is true, so q is r is true. So, in

this particular state s 0 in all path in future q or r is true.

But whether there exist a path in future q and r holds. So, in this particular model if you

find that in future q not going to get any state where q and r is true here q is true but r is

not true, so q and r is false here also q and r is false here also q and r is false. So, we are

not going to get any path where q and r is true in future ok. So, these are the way you can

see that truth values.
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Now, some properties now we are CTL is used to express our properties, so if properties

says like that it is possible to get a state where started holds but ready does not hold. So,

basically now it is a system we are going to work say if we are switch on the system then

we can said we have started a system, but we are having some other condition now

whether system is ready or not ok. Sometimes you can look in to the printer you say that

it is switch on, that means already you have started a printer. But it is not ready due to

some other reasons maybe something has gone wrong do the system.

So, is it  possible to get a state where started holds but ready does not hold. So, in a

system we can reason such type of properties. So, when we are going to reason about

such type of properties we have to express these properties with a formal notation. So,

here we are talking about the CTL, so we will  see how CTL is used to express this

particular property.

So, it is something like that started holds but ready does not hold. So, started and not of

ready so is it possible to get a state. That means, in the system whether we are going to

get such type of situation, so there exist a path in future. So, you are saying that whether

we are going to get any computational path or any, so that in future started and not ready

this is going to happen ok. So, this is the CTL representation of this particular property is

it possible to get a state, where started holds but ready does not hold.
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Another one (Refer Time: 74:36) for any state if a request for some resource occurs then

it  will  eventually  be acknowledged.  So,  in  system it  happens with request  for  some

resources if it is available then it will be granted eventually ok. So, for any state if a

request for some resource occurs then it will eventually be acknowledged, now how we

are going to represent this particular property formally in CTL.

So,  if  in  a  particular  state  if  request  is  hold  it  is  request  for  some  resources,  then

wherever you go in all path in future we are going to get acknowledged. So, say in this

particular  state  we  are  requested  or  some  resources  ok,  so  requested  is  a  atomic

proposition one we request then this truth values of request. So, from this particular s 0

we may have different possible transition depending on the system behavior, so it says

that wherever you can go in future so that means in all path in future somewhere we

should get the acknowledgement ok. Because, we have requested for our some resources

now system is  having  several  behavior  transition  behavior,  so  wherever  we proceed

finally, we should get the acknowledged.

So, requested implies in all path in future acknowledged and it says for any state. So,

when we design a system such type of requirement may be true or may be required in all

possible states. So, that is why it says that all path globally this must be satisfied ok. So,

this is the one system behavior one system property, now when we design the system

then we have to check such type of properties or behavior. So, formally we have to



capture it and we know the meaning now we will see how we are going to check those

particular properties.

So, you just see that if we are having some system behavior that can be captured with the

help of CTL formulas and those CTLs formulas will be used to give the specification and

we are going to check whether those particular specifications is true in our model. Model

is nothing but my design of the system ok. So, this is the way we can think how CTL will

be used while  designing the embedded system, with this  I  am coming to the end of

today’s lecture.

Thank you all.


