
Embedded System - Design Verification and Test
Dr. Santosh Biswas

Ptof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture -02

Modelling Embedded Systems

Hello, welcome to lecture 2 of Embedded Systems Design. In this lecture we will be

talking in details about Modelling of Embedded Systems. So, in the first lecture we

talked about all the steps right from modelling to design to analysis and it is iterative

structure to ultimately arrive at the complete design and finally, implementation we said

last day. So, today we will deal with the modelling of embedded systems in more detail.

So, before starting to design an embedded system, we have a rough sketch or idea of

what we want to develop. That idea has to be in a structured form specified so that we

can do analytics on that understand if the specifications we just wrote down, we just

specified you know we in the whatever way we want to specify them are correct and

verifiable. So, this is why formal techniques to modelling embedded systems are

required. The major source for this lecture today will be embedded systems design a

unified hardware software approach Frank White’s book.

(Refer Slide Time: 01:59)

So, describing embedded systems processing behaviour can be extremely difficult. Why?

Because nowadays we have started to build very complex embedded systems with very

complex functionalities in them, with complex interactions within these functionalities,

why? Because with the increasing IC capacity, the capability of in designing functions

very complex functions have increased.

And so, we have embedded systems with comparatively simple functionalities like the

embedded computing systems in washing machines, small games etcetera, to which

contains maybe say 100s of lines of code, to very complex embedded systems like say

TV set-top boxes, cell phones to controllers in automobiles aircrafts etc, these may

contain 100’s of 1000 of lines of code.

And when we have this crappy idea of what we want to develop in our head, it is not

formally specified the desired behavior is often not fully understood; that if I implement

this behavior in a certain way what will be the repercussions on other components of the

system? We do not understand that fully, may not understand that fully. So, if we have

this specification in this way, are we going to always get a response within? Can we add

through any implementation get a response within say a requirement of 10 milliseconds?

We do not know. So, therefore, formal and complete specification of the system is

necessary.

Many implementation bugs due to description of mistakes and omissions; now because if

we do not specify formally and completely an embedded system, there are chances that

there will be a lot of bugs in the description, omissions and mistakes in the later when we

want to further take this specification into design and implementation. So, that effort so,

if we have such omissions and mistakes, we have to come back and again change the

specification and redesign and do this many times.

Now, this effort in design and implementation again and again due to errors and

omissions can be saved if the specification of the behavior is much is in a very structured

format. Now, when we have this initial idea of what we want to do the embedded

application in mind, we first generally write in English or some natural language as we

take that as the starting point; however, through English precise description of what we

want is impossible.

For example, suppose we want to write a motor vehicle code, we want to have an

embedded system for a motor vehicle code, as to what are the rules that the vehicle

should follow when moving on the streets, what are the rules that the pedestrians should

follow on roads where vehicles are moving, those set of rules can go up to thousands of

lines thousands of pages of English statements. And still you may not be able to formally

and crisply state the exact requirements and specifications.

(Refer Slide Time: 05:41)

For example, again let us say that you want to just if we check a part of the vehicle code

of the California vehicle code for crosswalks, we will see that you have to write

statements like this. The driver of a vehicle shall yield the right-of-way to a pedestrian

crossing the roadway within any mark cross way or within any unmarked cross way at an

intersection except as otherwise provided in this chapter.

So, these are the ways in which people have tried to write crisp English language

specifications; which is almost always is futile, you cannot write statements which is

sound as specifications which are sound and complete. The provisions of this section

shall not relieve a pedestrian. So, the first one says that the driver of a vehicle will allow

a pedestrian to cross the roadway, either in a marked crosswalk or an unmarked

crosswalk at an intersection, except otherwise provided. So, there will be exceptions to

these rules, if those exceptions which are which will be stated later say I do not hold,

then the pedestrian should be allowed to cross the road at the junction.

The provisions of this section shall not relieve a pedestrian from the duty of using due

care for his or her safety; however, in doing so means although the vehicle will allow,

this does not relieve the pedestrians duty. So, he cannot just close his eyes and cross an

intersection. No pedestrian shall suddenly leave a curb or other place of safety and walk

or run into the path of a vehicle which is so close as to constitute an immediate hazard.

No pedestrian shall unnecessarily stop or delay traffic while in a marked or unmarked

crosswalk. Again the provisions of subdivision b shall not relieve a driver of a vehicle,

from the duty of exercising due care for the safety of any pedestrian within any marked

crosswalk or within any unmarked crosswalk at an intersection.

So, well what we just want to say is that, here through these sentences, when we are

writing rules for how pedestrians should cross or how vehicles should cross in an English

language we are trying to be very crisp. So, that exception to these rules do not occur, but

we find we can find that these are never with through these sentences we can see that

these are never complete and sound, we can always find exceptions to in whichever way

we are trying to specify what we want to do in English. English cannot be used for these

purposes this is what we want to say here. All that just for crossing the street the vehicle

code is bigger and it will have much more things to do; so, English is not precise.

(Refer Slide Time: 08:50)

And therefore, specifically trying to specify English is futile. So, we need formal models

and languages. So, how can we crisply or precisely capture behavior? We can think of

languages like C, C plus plus, but computation model is the key. C and C plus plus are

languages and using those languages we can write a behaviour. And that is a model

which is called the sequential program behaviour.

So, if we write a C program, we are essentially write we have a formal model, we have

instructions. So using C and C plus plus, we are using the sequential program model

which has statements or instructions, rules for composing those statements how those

statements can be composed to express a complete behavior and semantics for executing

them. So, semantics meaning that when can certain sentences although they are

grammatically correct can be used in a particular context. So, it allows statements and

then it also allows us to iteratively and conditionally execute those statements, this is

essentially the sequential program model.

Again another common computation model is the state machine model, it is generally

used for control dominated systems, it has monitors for control inputs. So, it has many

control inputs, it has states and it generates control outputs. This is the overall model of a

state machine. There are many other computation models for example, the concurrent

program model and then there are others such as the data flow model etcetera, which we

will not go into.

(Refer Slide Time: 10:50)

So, in this chapter we will be primarily focusing on this example of an elevator

controller, using this we will understand the different concepts that we will present in

modelling Therefore, we first present the example here. So, the partial English

description of an elevator controller will be like this.

Move the elevator so, what we are trying to do? The physical system is the elevator, and

within this physical system there will be an embedded control system which will control

the elevator, the movement of this elevator will be controlled by an embedded control

system. And our job here is to design this embedded control system for the elevator.

Now, therefore, first we have to specify in our mind; so, in our mind we have to first

organize, what will be the behaviour for this embedded controller for the elevator.

So, it will be something like this. Move the elevator either up or down to reach the

requested floor. Once at the requested floor, open the door for at least 10 seconds and

keep it open until the requested floor changes. Ensure the door, so move the elevator up

or down until there will be a request, there will be a global request from somewhere

some requests will be there for reaching a certain floor.

And there the elevator will move floor by floor and at each point at each time it will have

knowledge of where, what is the current flowed it is in, and it will move to the requested

floor. Once it reaches the requested floor, it will open the door for at least 10 seconds and

keep it open, until there is the until we do not have a new request to go to another floor,

ok. Up to that the door will remain open. Ensure that the door is never open when the

elevator is moving. Do not change directions unless there are no higher requests when

moving up or lower requests when moving down.

So, we have a global request, right at any given point in time. When the current floor is

not same as a requested floor, we are either moving down or moving up to the requested

floor. Now the next what it says that while you are moving down? Moving up say to a

certain requested floor above, we will not change direction unless there are no higher

requests; so, you can take higher requests.

Suppose what happens is that you reach a floor, you reach a floor going up, and you have

a new request which has which is higher than the current flow then you can go higher up.

But you will otherwise you will go down. So, do not change directions unless there are

no higher requests when moving up or no lower requests when moving down.

Now, with this English specification, we try to make it a more streamlined. Firstly, we

see that it is best to design we decide within ourselves that it is best to design the elevator

controller with 2 distinct modules. One, is a request resolver; which resolves various

flow requests into a single requested floor. So, what happens? You have different floors

and you have switches beside the lift door for going up or down, right? And you also

have different switchboards within the lift to go to a certain requested floor.

Now so, therefore, request is coming from outside through your up and down requests

outside the lift at various floors and you also have the request button inside the lift. All

these requests together has to be resolved through an algorithm so that you finally have

one requested floor. So, the request resolver resolves failures flow requests into a single

requested floor. And you have the unit control which moves the elevator to this requested

floor.

Now so, therefore, the request resolver here, if you see this one the request resolver, what

are the inputs? There are various control inputs which are the buttons inside the elevator.

So, b 1, b 2 up to b N, these are the N buttons for N floors say, within the elevator, ok.

You also have buttons outside the lift just beside the lift door at each floor. What are

these buttons? At the ground floor you do not have a down button. So, you have a up

one, then you have sorry, you do not have a down one at the first floor.

You have an up 2 and a down 1 in floor 1. So, in the ground floor you only have an up 1,

because you cannot go down. And the first floor you can you can either go up to 2 or you

can go down to 1. You have an up and a down. And at the highest floor, at the top floor

you only have a down switch you do not have an up switch. So, these are the switches up

and down buttons on each floor outside the lift door and these are the switches that you

have inside the lift.

The modelling issues that we will be discussed in this lecture will be primarily based on

the design of an embedded controller which we discuss here. So, what we want? We have

a physical system an elevator; which is controlled by an embedded control system the

elevator controller. Our job is to design an elevator controller. So, before the elevator

controller is designed we just have what we want to do in our head, a scratchy idea. We

first jot that down into in an English using an English language description.

A partial English language description for elevator controller can be as follows. Move

the elevator either up or down to reach the requested floor. Once at the requested floor

open the door for at least 10 seconds, and keep it open until the requested floor changes.

Ensure the door is never open while moving. Do not change directions unless there are

no higher requests when moving up or no lower requests when moving down.

Now, with this description in head we start our modelling. In our modelling we first

understand and decide that this lift controller should have 2 distinct modules. One is the

request resolver, which results various flow requests into a single requested floor and two

and unit controller which actually moves to the requested floor which actually moves the

elevator to the requested floor.

(Refer Slide Time: 18:24)

Now, this description this particular specification English language specification, can

now be should be transformed through a model to a more concrete specification. And as

we said we have various modelling strategies, one such is the sequential program model,

suppose we want to implement or specify the behaviour of this elevator controller

through a programming language such as C.

If we do so we have to first specify, what are the input outputs and data variables

associated with this controller? Here we see that we have a data we have a data input

floor. So, this data input floor will be provided to the embedded controller from the

physical system. So, whenever the lift is moving or not moving, at any point in time the

elevator controller, the embedded controller for the elevator will have the knowledge of

what is the current floor the elevator is in.

It will also have bits b 1 to b N. So, these are binary inputs bits b 1 to b N corresponding

to the buttons inside the lift. So, b 1 to b N are the buttons inside the lift corresponding to

each floor. So, if we want to go to say the third floor we will press b 3, the switch b 3.

These are the switches these are corresponding to the switches inside the lift. At each

floor outside the door of the lift, we also have up and down buttons, right.

So, at floor 3, we will if you want to go up from floor 3, we will press the up button and

wait for my lift to come. So, these are the up and down buttons on each floor outside the

lift door. So, at the ground floor you have an up 1 button, you do not have a down button

because you are already at the ground floor. At the first floor you will have an up 2 and a

down 1 button, at floor 3 you will have an up 3 and a down 2 button and so on at the top

floor you will only have a down button, you will not have an up button.

So, these are inputs again binary inputs corresponding to these switches outside the door

of the lift at each floor. Now, the elevated controller will output, what will it output? It

will output it will generate control outputs; up, down or open. So, up will mean that the

lift has to go up, the elevator has to go up, down will mean that the elevator has to go

down, open will mean that the door of the elevator has to open.

It will also use the global variable req to which will hold at a given time the requested

floor, meaning that the lift has to move to a certain requested floor, this global variable

req will hold at any time to which floor does the lift has to move. This req will be output

by the function request resolver which we do not completely specify here, but what it

will do is that it will resolve from various requests made at the different floors by

different people and within the lift.

So, we are not bothered about what particular algorithm, it will use. It will need to

certainly use certain algorithm, and we do have to specify that we are not specifying it

here. But ultimately at the end of this algorithm finally, we will resolve into a single

requested floor where the lift has to move, ok. This will be done by the request resolver.

The other is the unit control function. So, we will write a function or sequential program

for the request resolver, we will also write a function for the unit control. This unit

control part. So, what will the unit control do? Initially, for the unit control, the output up

and down are 0 and the door is open, why? Because initially the it will be at the IDLE

position, at the IDLE position the requested floor will be equal to the current floor, and

up and down with it will neither go up it will neither go down therefore, it will be

stationary the lift will be stationary.

So, up and down or 0, and the door of the lift is open. So, this is what was required.

Move the elevator either up or down to reach the requested floor, once set the requested

floor open the door for at least 10 second then keep the door open until the requested

floor changes. So, till the time the requested floor is equal to the current floor, it will just

stay in that floor and keep the door open.

Now, after that it will move into an infinite loop. While the requested floor still remains

as the still remains still remain same as the current floor, it will just wait in a loop. Then

open equals to 0, so, when this is not true, when request when the requested floor has

changed from the current floor and the lift has to move, the elevator has to move to a

certain floor open is set to 0; that means, the door of the elevator has to close.

Now it has to decide whether to move up or down. If the requested floor is greater than

the current floor it has to move up, then up equals to 1, else down equals to 1. So, if req

is greater than it is not equal to req, it is not equal to floor that is known. If now req is

greater than floor it is going to move up, if req is less than floor it is going to move

down.

Now, after that while the lift has not reached a requested floor, unit control will wait. So,

it will wait in a loop, this while loop until request is not equals to floor, until the lift has

not elevated has not reached to the requested floor. Once it has reached the requested

floor, again up equals to down equals to 0. Because the lift has to go in the lift will again

be stationary. And the door will open; so, open is 1 and then it will wait for at least 10

seconds delay of 10 seconds and then it will remain idle for at least 10 seconds it will the

open is then not set to 0. So, open is going to still remain open. But at least 10 seconds it

is going to wait there. It will it is not going to move to a newly requested floor at least

before 10 seconds. It is not going to do that for 10 seconds, after that it can again move.

Now, what will main do? The main function of the lift controller, the elevator controller

will concurrently call in parallel both unit control and request resolver. So, request

resolver will work independently and concurrently and it will go on resolving requests

and generate a console it finally, consolidated single request. Based on this request the

unit controller will move to the requested floor, and by generating control outputs, unit

controller will generate instructions to go to the requested floor rather through control

outputs up down open etcetera. In this process, the unit controller will always keep this

floor input floor data input it will keep in it is knowledge the value of the floor data

input.

(Refer Slide Time: 26:40)

So, trying to capture this behaviour as a sequential program is a bit awkward. So, instead,

because why is this so? Because, this is primarily a control dominated problem. This

embedded controller here for this case is a control dominated software that we want to

build software or in hardware whatever it is. It is a control dominated specification that

we want to specify. So, instead we might consider an FSM model, describing the system

as possible states, their transitions and actions that should occur at each state. This is

more easy because this is how the things are actually happened for our elevator

controller. It has states idle when the lea when the elevator is not moving, it can go up, it

can be in a state going up it can be in a state going down, it can be in a state door open.

Possible transitions from one state to another based on input. It has so if the requested

floor is if the requested floor is greater than the current floor then you go up. So, you are

you are in an idle state, and then say the requested floor is greater than the current floor,

then you go to the state going up using the transition request floor greater than using the

transition labelled request greater than floor. Actions that occur in each state so,

corresponding to each state you also have actions. For example, in the going upstate, the

up act the up control output has to be one the down control output has to be 0, the o

control output which is the door open has to be 0, and the timer is also 0. Why we require

the timer? We just we are just coming to.

(Refer Slide Time: 28:33)

So, using this we can specify an FSM like this. So, in this FSM, let us see that the FSM

starts at the initial state of the FSM is this one idle, it has the name idle. In this state, it

stays until the requested float is equal to the current floor. So, in the self-loop it moves, it

goes on in this the self-loop it goes on staying in this idle state, until the requested floor

is different from the current floor. And in this state you have up and down variables; u

and d corresponding corresponds to up and down outputs, they are 0 and the open door

open output is 1 and the timer is 0 again.

And then if the requested floor is greater than the current floor, you move to the going up

state, and then you stay in the going upstate until requested floor is greater than the

current floor and in this state, your up variable is 1, down variable is 0, open variable

open door variable is 0. So, the while going up or going down the door of the elevator

should remain closed.

Similarly, when request is less than floor, you go down to the going down state, you go

to the going down state, and in this state you remain until the requested floor is less than

the current floor. And in the, and this one the output the output that it will produce in this

state is down equals to 1 all other control outputs are 0. Now in going up or going down

who are after when at this state when the requested floors finally, becomes equal to the

current floor you go to the door open state.

So, when go when you are in going up, and then the requested floor is no more greater

than the current floor; that means, the requested floor has become equal to the current

floor you go to the door open state. Similarly, in going down if the requested floor is no

more less than the current floor then you go to the door open state. In the door open state,

you are up and down both are 0 so, the lift is not moving. Your door is open so, it is 1,

and what you do is you set the timer t. So, the timer was 0 in all these 3 states going up

idle and going down.

Now you set the timer and you move into the self-loop until timer is less than 10. So, the

door should remain open for at least 10 seconds before it takes fresh requests, ok. So, it

will remain in this state, and then when the timer becomes equals to 10 which means that

the timer is not less than 10 anymore it goes back to the idle state. And in this idle state,

it will still the door will still remain open until till the time the requested floor and the

current floor are same. Again when the requested floor becomes different based on what

the request resolver has told you, then you then the FSM again moves to either going up

or going down.

(Refer Slide Time: 31:57)

Now this was an informal definition of how the FSM model works. So, how you specify

a behavior using the FSM model? Now to formally define this model we do as follows.

An FSM is a 6 tuple, where S is a set of states every FSM will have a set of states s 0 s 1

dot, dot, dot, a set of inputs i 0, i 1 dot, dot, dot, a set of outputs o 0, o 1, a next state

function which goes from which is a function of what the prod the cut the which goes

from the set of states and set of inputs to a set of states.

And it has a set of output, so, it has an output function from each state it generates an

output. So, at each state based on certain inputs it goes to a next state. At each state based

on certain inputs it goes to a next state. That is why it is S cross I to S. H is an output

function which goes from a state to output, and s 0 is the initial state.

And now, the FSM we just built is a mood type FSM, why? Because it associates the

outputs with states. A more FSM is an FSM where the outputs are so only associated

with states. As against mini FSM's where the outputs are associated with transitions. So,

in a mini type FSM, the outputs are associated with transitions. So, if you are at current

state S and you have some inputs depending on that you will produce some output. So,

you have an S, you have a transition condition based on inputs based on that you go to a

certain next state and produce certain output, in a Mealy machine. In a Moore machine,

you move to a new state and at that state you produce certain outputs.

Now, to simplify definitions of FSM several shorthand notations can be used, a few of

them are as follows. Shorthand notations to simplify descriptions, you can implicitly

assign 0 to all unassigned outputs in a state. So, if you have not assigned, here we have

explicitly assigned a 0 to all out all outputs at a given state. Now if you do not want to do

that because it is tedious to do only certain output will be 1 and all other output will be 0,

you can implicitly assign 0 to all unassigned outputs in a state.

You can also implicitly and every transition condition with the clock edge. Meaning that

many of these FSM's will act will actually end up being defined as hardware circuitry.

And in a hardware circuitry typically things are synchronized with the clock pulse of a

timer. So, you can say that implicitly you can add every transition, every transition with

the clock edge of a timer. And we do not you do not need to explicitly say that and timer.

(Refer Slide Time: 35:28)

As an example of how more and many machines are defined, we again go back to the

garage counter example that we had disk we had discussed in the last lecture here, you

had garage parking lot where the embedded the job of the embedded system is to keep an

account at any time of the number of cars in the garage. Now you can design this as a

mealy FSM or a Moore FSM.

Now, the first one here is a mealy FSM. Now here the at any time the job of the

embedded controller is to produce as output the number of cars. So, if you are at stage 0,

and you your up is 1; that means, a new car has entered and down is not 0, then what

happens? Then you output a 1, because up is 1 you have one car in the garage. At state

one again you have an up one and a down and down 0 then you produce an output 2; that

means, you have 2 cars in the garage.

Now at state 2 you moved and you move to state 2. So, a state tells me what is the

current number of 4 cars in the garage, at state 2 say again what happens is that one car

goes out. So, down is 1, and up is 0, if it so happens, then you produce an output of 1.

Because you go back to state one and the number of cars actually is one in the garage at

this time. So, this is how you can define a mealy FSM for the garage counter.

A corresponding Moore FSM will be as follows. At state 0 you output 0. At state 0 you

know that the number of cars is 0, and you output 0. Then you have if you have an up

and not down, you straightaway go to 1, and you know that you are at 1; that means, an

of cars in the garage is 1 so, you output 1. So, here you see that the output is associated

with states and not transitions, and hence this is a Moore type FSM, here in this case the

output is associated with a state and a condition. So, here the output is associated and the

inputs if the state is 0, and the up is 1, and down is 0 then the output is 1. So, here the

output is associated with a state and input and the inputs here the output is associated

only with the current state. So, the first one is mealy and the second one is a Moore type

FSM.

Now, the FSM description that we just provided here was not actually a simple FSM, but

was a extended FSM or a finite state machine with data path FSMD.

(Refer Slide Time: 38:41)

So, let us define what an FSMD is, it is not a simple FSM that we just discussed because

we will just discuss now. So, FSMD extends FSM, it allows complex data types and

variables for storing data. FSM's use only Boolean data types and operations no

variables. So, in our definition of FSM that we used earlier, we did not have any

variables. In the definition of the FSM, so, in the definition of the FSM we did not have

variables and all our inputs and outputs were binary, we did not have complex data types.

So, these are the 2 extensions that have been added to the simple FSM to for better

modelling of embedded systems.

So, FSMD is a 7 tuple, it has a set of states, it has a set of inputs it has a set of outputs, it

has variables. Now which is nu, it has the next state function which is a function of the

state, the inputs and the variables and then it goes to new state. It has an action function

which is which goes from a state to a set of outputs and variables. So, the action function

now not only produces output control actions, it also updates variables.

Now, in our case we see that we have variables, in this FSMD we have variables. We

have complex comparisons on transitions such as comparisons. Here these are not binary,

Boolean you see that request and floor they can have data types which are integers they

are not primary. So, therefore, you have allowed complex mo data types. And you have

allowed variables.

So, I, O, V, may represent complex data types integers floating points etcetera. F and H

now include arithmetic operations. So, in our previous case these were just Boolean

expressions F and H where this s cross I cross V could only be Boolean expressions.

Now you can have arithmetic operations for example, subtraction from subtraction some

integer variable from another integer variable and update that variable etcetera. So, these

are now included as part of the FSMD, ok.

H is an action function now and just an output fact output function, why because along

with the production of outputs it can also update variables. So, we do not say that this to

h to be an output function if in FSMD we say that as an action function.

The complete state now consists of the current state s i and the values of the variables.

So, the state in if in an FSMD or an extended FSM consists of the state and the values of

the variables. So, the elevator controller state machine that we had drawn is actually an

FSMD and not a simple FSM.

(Refer Slide Time: 42:22)

Now we will look at we understood what is the formal definition of an FSMD and an

FSM, we have already this we have already drawn an FSM for the embedded controller.

But we now want to see we want to now see systematically how for any embedded such

embedded system and FSM can be drawn. So, what are the steps that are required to

draw an FSM for a given specification? From an English language specification, how do

we come about drawing a structure systematic FSM?

So, first is to list all possible states. And so, what are the my states in my in the current

FSM? My states are idle, going up, going down and door open. So, from the English

language specification, first we have to think what could be the states of my FSM. There

could be different ways of designing the same designing the same functionality. There

could be different ways of not designing, there could be different ways of specifying the

same functionality.

So, we can say that the meaning of the states to be different, but this one is a possible

way in which to do. So, we have 4 states here and idle going up going down and door

open. We declare all variables. So what are my variables? My variables here were the

floor and the others were inputs and outputs. For each state, we list all possible

transitions with conditions to other states. So, for example, for the idle state, we have 2

transitions, sorry we have 3 transitions, one is when request equals to floor request

greater than floor and request less than floor; these are the 3 transitions. So, for the idle

state we have listed down possible we have listed down possible transitions with

conditions to the other states or to the same state rather when we have a self-loop. This

for the going down transition similarly we have these 2 transitions and for the going up

transition for the going up state we have these 2 transitions again and then for the door

open we have further 2 transition. So, we have listed down or we have drawn all the

transitions separately for all the states with conditions.

Then for each state or transition we have to list the associated actions. So, what are the

actions with each state? The actions are specified for our FSMD through the u, d, o, t

very involved in the u, d, o, t outputs, right. So, u is the up control action, d is the down

control action, o being the door open control action and t it being the timer control

action. Now after that for each state ensured exclusive and complete exciting conditions

exciting transition conditions. What do we mean by these to ensure exclusive and

complete? So, what happens if you do not have exclusive transition conditions?

Then 2 conditions can be true at the same time. So, exclusive transition conditions

meaning that with respect to a set of control units, there can be 2 there cannot be 2

transitions from the same state which hold true. For example, req great in req can be

either greater than floor, req can be either equal to floor or req can be less than floor. So,

you have 3 transitions none of which can be true simultaneously. So, if req get greater

than floor, req cannot be equal to floor if req greater than floor they cannot be less than

floor. So, this transition will be exclusively excited.

So, no 2 existing conditions can be true at the same time. Otherwise what will we have?

We will have a non-deterministic state machine; that means, you have 2 possible ways to

move from a state for the same inputs. We have you have 2 possible ways to move from

a state to another state. And it has to be complete, and one condition must be true at any

given state. Otherwise, the state machine becomes incomplete.

So, it is not that design cannot be cannot be non-deterministic or design cannot be

incomplete, but then for a starter we should avoid having non-deterministic state

machines, although later on with further practice we will see that non-deterministic state

machines allows us certain optimizations corresponding to the to the to the design that

we will get from this specification, may make allow a certain in this one. But it also open

up doors for errors which for a first time or it may be difficult to handle.

Similarly, the need for a complete transition function and not a partial one; that means,

that at least one of the transitions must be taken at any point in time. So, if I do not have

req greater than floor door req less than floor, at least req equals to floor which means

that I will have a self-loop moving into the idle state again and again. So, one condition

must be true at any given time that is why it is complete reducing explicit transitions

should be avoided when first learning.

(Refer Slide Time: 48:35)

Now, we said that the milling machine that we considered for the garage counter, the

Mealy and the Moore machine that we consider for the garage counter was a was an

FSM. Now we said that FSMD allows certain succinctness in the in the in the in the

specification of the models. For example, for our garage counter example we can have

that that whole big state machine that we had.

In that state machine if you go if we go back in that state machine, we see that we have

let us say that the garage has space for M cars, then in this one we will have a big state

machine consisting of M states both for the Mealy machine and for the Moore machine

which is a big representation. How can we simplify this representation make it more

succeed? By using an FSMD a variable.

So now, we have a variable which can count from 0 to M, we have an integer variable

which one counts for 0 to M. We have up and down pure inputs which are Boolean

inputs for our garage counter. We have an output count we have an output count which is

again an integer, right. So, we have integer outputs, we have Boolean inputs and we have

variables so, this one is an FSMD. So, we have a state the initial, initial state is this one

at this state C equals to 0. So, the variable is 0 C represents the number of cars.

Now, how do we output? So, at this state if up is 1 and down is 0, and you have and you

have C and C is less than M, then you output C plus 1. So, the at each point in time at

this state C will have a certain value. Initially C 0 there are no cars in the garage. But at a

certain point in time when cars have entered and cars have gone out at a certain point in

time, this C value will load let us say C equals to 10 at a given time you have 10 cars in

the garage.

Now at that point in time, you have up equals to 1 down equals to 0, and let us say the

capacity of the garage is 20 cars so, C is less than M. So, if these conditions if this total

condition the all they said well this and the up and not down and C less than M is true,

then you output C plus 1; that means, the number of cars will be C plus 1 because up is

one new car has come. And you update also the variable C equals to C plus 1, ok.

Similarly, if you are at C equals to 10. So now, C plus 1 is going to be 11 and the updated

value of count will be C equals to 11, ok? Similarly, now let us say C equals to 11 down

is 1, up is 0, and C greater than 0, ok. Then the output will be C minus 1; that means, one

new car has gone out therefore, therefore, the output should be one less C should be

equal to 10; that means, the currently the garage has 10 cars after one car has gone out,

right.

Now what happens when C equals to M? And so, when C equals to n, even if one cars

tries to enter and up is 1, there is no capacity, the garage is full. So, it is not going to

output C equals to C plus 1 and update the variable because the garage can hold at most

M. Similarly, if the garage is empty and C is equal to 0, down equals to 1 has no meaning

therefore, it is not going to out output C minus 1 and update the variable C to C minus 1;

it is not going to do it. So, that hole M state machine FSM if FSM machine, now just can

be expressed as a one state FSMD or an extended FSM. So, this is how FSMD extends

the power of simple FSM's.

So, we saw 2 ways of designing of specifying embedded systems, 2 ways of modelling

embedded systems. So, one way is the state machine model, and the other is the

sequential program model. How does these 2 models compare? Actually 2 different

thought processes go into the design of these 2 models. The in the state machine model,

the state machine model encourages the designer to think in terms of possible states that

the embedded system can be in and transitions among these states so that you can you

can find out how these states how the state changes happen.

(Refer Slide Time: 54:07)

And transitions among these states on all possible input conditions this is how the state

machine model allows us to think. On the other hand, the sequential program model is

designed to transform data through a series of instructions. So, we have instructions in

the sequential. So, this think of a C program, you have a series of instructions. So, what

does it do? It transforms the data by the statements, and it allows us to iterate over these

statements using loops, and it also allows conditional execution of statements through ifs

for loops cases while loops etcetera. So, a combination of iterations and conditional

execution is possible through the if for loops while loops case switch cases etc. And the

statements themselves go on transforming the data. So, the sequential program model is

designed to transform data through a series of instructions that may be it iterated and

conditionally executed.

So, state machine description excels in many cases. When you have control dominated

systems, state machine is a very easy succinct way of it is simple way of expressing. And

it becomes much less cumbersome than a sequential model. So, state machine often are a

more natural means of computing in those cases, not due to graphical representation. So,

it so, a state machine would still have the benefits of simple repress of simplifying the

way you can specify the behaviour of an embedded system even if it is used in a textual

form.

So, we did need not have circulars states, it has some in circles as states and arcs as

transitions we do not need to draw it like that. We can draw it in the form of a state table,

where we have an entry for each table with inputs outputs a specified, right? We can

represent it in the form of a state table, and it will still have the same expressive power

right.

On the other hand, the sequential programming program can be represented through a

graphical representation for a for a flowchart. So, it does not matter whether you are

representing in textually through a textual language or a graphical language, but the for

certain types of embedded systems, state machines are a very natural way of expressing

such systems expressing the behaviour of such systems. And therefore, in those system

state machines will be more beneficial than sequential program model.

(Refer Slide Time: 57:01)

So, FSM's so constructing, but, but it is it is the sequential program model has

traditionally being been used. So, there are many tools for sequential program based

specifications, and further compilation from that. So, you have high-level synthesis tools

which allow you to specify in VHDL for a hardware description, let us say, and then

there are automated tools that will take the behaviour to the complete design of the

circuit infer to the hardware circuit up to the fabrication level. So, once you specify the

VHDL code, it there are a set of tools which will take you to the hardware circuit finally,

ok.

Similarly there are other tools which start from the sequential program models. But then

so despite the benefits of the state machine model, most popular development tools use

the sequential programming model which works with C, C plus, Java, Ada, VHDL,

Verilog etcetera. Development tools are complex and expensive, therefore, not easy to

adapt and replace. So, if we now suddenly say that we will use this diagrammatic FSM

and we will draw diagrams and from there you build it is again a separate process, and

we have to do away with all the tools we have designed thus far.

So, what we do instead is that we have we use 2 approaches. We have a front-end tool in

which we draw it, and we draw an FSM based model using a diagrammatic approach.

And then there will be an automated mechanism we use a subset of the sequential

program model itself of a sequential programming language to represent a a state

machine textually in the form of a program. So, 2 approaches to capturing state machine

model with sequential programming language.

Use a front-end tool approach, additional tool installed to support state machine model,

graphical and or textual state machine languages. So, we will use a graphical and or state

machine languages and that may support graphical simulation. So, what why graphical

simulation? Because at that level itself we can add up to some level we can understand

whether the whether what we have specified is correct or not. And there will be an

automated automatically generate sequential programming language code, that is input to

the main development tool, ok.

So, we have this front-end tool; which takes it to the sequential program model

automatically, which compiles the front-end tool is a diagrammatic tool, you have a

compiler for this diagrammatic front-end tool, which will automatically generate the

sequential program model corresponding and that sequential program can then be fed to

the main tool which will take it to the further levels of design.

Now, what is the drawback of this approach? It must support an additional tool. Number

1, licensing cause upgrades training etcetera that will be required. Another may be

another bottleneck could be that is the interfacing with the main tool. So, the sequential

program models can be in different languages. Suppose the main tool supports a

language which is not output by the front-end tool, so, that interfacing between the

output of the front-end and the input to the main tool has still to be provided, ok. So,

these are the 2 drawbacks. So, what do we use instead? Instead of using a front-end tool

we use a language subset approach.

(Refer Slide Time: 60:55)

And how does that approach go about? So, in the language subset approach, we use it

follows rules or templates for capturing state machine constructs in equivalent sequential

language constructs, ok. So, we have equivalent sequential language constructs to

capture different state machine constructs, can be used with software example C and

hardware languages like VHDL.

So, for our unit control for example for our unit control FSMD, you can, we can you can

capture this whole unit control FSMD using a sequential program like the following that

we have specified here. So, in this we first enumerate all the states through hash defined

constructs. So, idle the state idle is hash defined enumerated as 0, going up is 1 going

down is 2 and door open is 3.

Then you declare, state variable initialized to the initial state. So, you have then you. So,

what then you have a subroutine for the unit controller you go into that subroutine, and

you have a state variable. So, the current state is captured is held at any time through this

variable state. And this state variable this variable is initialized to idle. So, declared state

variable initialized to the initial state idle for our case.

There is a single switch statement which branches to the current states case. Now at each

point in time, we use a switch case to branch to the current states case. So, suppose the

current state of the FSM is going up, then it is 1. So, switch going up or switch 1 will

take you to the going upstate. So, there is a single switch statement which branches to the

current states case. Now, for if it is going up you go up. In each case what do you have?

You have actions.

So, first in after you go to going up, what are the actions? Up has to be 1, down is 0,

open door should be closed and the timer should be 0. So, these are the actions at this

state. And you also have what? There is a set of if then else statement, if statements; each

case checks transition conditions to determine next state. So, what are these ifs doing?

These ifs tell you what are the conditions for going to the next state? For example, if you

are at going up then it says that if req is great is still req if req is still greater than the

current floor then you remain in going up. If req is not greater than current floor you go

to door open state, ok.

Now, you instead of this if statement you can make it an explicitly an if-then-else, you

can make it an if-else statement, so that even if by mistake, you have you do not have

exclusive conditions. So, we said that so, I at any state only one transition should be true.

There cannot be a set of inputs which give you a condition where more than one

transition becomes true, you cannot have that case.

So, suppose by mistake, your conditions are such that your design is such that your

inputs as such that it allows 2 transitions to be true. Now if you in this specify this you

capture this through and if else and not if then only the first of these 2 transitions will be

true and not the subsequent ones, ok. So, you can use an if explicit if-else instead of a if.

So, this if condition then next state this structure gives you the way how to go to a next

state based on condition.

(Refer Slide Time: 65:24)

So, what is the general template for designing any state machine using the programming

language structure? Again, you have to define or enumerate all the different states in the

state machine, then you have to define a state variable your state, which has to be first

initialized to the initial state, then you have to go to an infinite loop which in which you

will have a single switch case statement. In this switch statement you will go to the case

for the current state based on the value of state. At each case statement what do you

have? You have the actions that you have to output at that state and you have the

transitions for conditions. So, insert transitions for leaving that state, and you break so

this is the general template.

(Refer Slide Time: 66:29)

Now to further succinctly and nicely represent even co even more complex embedded

systems further extensions to FSMD were specified. One such very important extension

is a hierarchical concurrent state machine model or the HCFSM. So, HCFSM is an

extension to state machine model to support to support hierarchy and concurrency.

Now in this states can be decomposed into another state machines or you can say that a

state machine can be a whole state machine can be can be abstracted as a single state, so,

this allows. So, this is the hierarchy in the hierarchical state machine. States can be

decomposed into another state machine. So, have a single state and that get decomposed

into a complete new state machine. With hierarchy and identical with hierarchy has

identical functionality as without hierarchy, but one less transition z in this case. So, let

us see here we have a state machine without hierarchy.

This state machine has 3 states; A 1, A 2 and B. The initial state is A 1 and you move to

state B whenever you have this input it z. So, on input z, whenever you have this input z,

you go to state B and at state B whenever you get this input w you go to A 1 state, ok.

Now this one is a general state machine that we have studied so far without hierarchy.

How do we represent this same state machine with hierarchy? Now we have clubbed the

states A 1 and A 2 into a composite state A, ok. The where now so, you have now at the

outer level you have 2 states A and B, A is the initial state. Within A, A 1 is the so, within

A, this A is basically this state machine composed of 2 states A 1 A 2 of which A 1 is the

initial state, ok. Now from this state A, whenever you have this state z, you move to state

B and whenever you have this state whenever.

So, whenever you have this input z you move to state B, and that state B whenever you

have this input w you move back to state A and to the initial state of A which is A 1. So,

in this one from corresponding to this design with hierarchy it has a same functionality as

without hierarchy, but it has one less transition for z. So, here you had 2 transitions from

A 1 and A 2 to B, now it has a single transition from the entire state A. So, this one is

known as an OR decomposition. Because either A or B will be executed at a given time

not both concurrently.

So, A and B we could either we could further we could possibly be another state machine

internally. Inside B, because B can either also be a composite state, and when you have

an all decomposition as in here you say this to be an OR decomposition, because either A

or B the system will be in either state A or state B and not both together concurrently.

However, HCFSM's can also have concurrent states. And this is called an and-

decomposition. For example, in this case here you have a state B which has 2 sub states

C and D each of them happens to be a composite state. C is a composite state which

contains a state machine composed of C 1 a composed of state C 1 and C 2 and these

transitions here. And also you have this composite state D which is again a state machine

composed of states D 1 and d 2 and these 2 transitions, ok.

And this is a composite this represents concurrency because C AND D execute

concurrently together. So, both C AND D, execute concurrently with in state B. And

because both of them is executing concurrently we say these to be an AND-

decomposition. So, C AND D execute together, A OR B executes together in the in this

example A OR B, this is C AND D.

So, a language which actually represents such an HCFSM is the state charts. It is a

graphical language to capture HCFSM. It has this all the functionalities that we just

described, and it also along with this it also allows the function a function called timeout

which so, what how does it help? Instead of using an explicit external timer, it will

remain in a state for a certain amount of time till the timeout happens, and then move out

of that state to the state where this timeout label indicates to so it will move to that state

after the timeout happens.

And it also remembers history so it remembers the last sub states or decomposed state A

was in before transitioning to state. For example, this is with respect to this example that

we were discussing. Now you can move to state B either from A 1 or from A 2 because

on transition z you have moved to state B. Now by remembering history, you remember

the last sub state, sub state from which state? In state A, in this state A, that it that you

were in before moving to B, before moving to state B, suppose you move to state B from

A 2 through using this transition.

Now, because you remembered the last sub state from which you move to B after you go

back to A, you can move directly to A 2 and not to A 1. So, the original HCFSM did not

remember history. So, whenever you move from B to A it will actually go to the initial

state of a which is A 1. But state charts allow provide you the option of remembering

history. So, you can go back to either A 1 or A 2. So, return to saved sub state of a when

returning from B instead of the initial state. This is allowed by the state charts.

(Refer Slide Time: 74:10)

To show an example which uses such hierarchy, we extend the specification of our

elevator controller by one step. So, let us say that we have a fire mode. And it is in this

fire mode, when fire is true, when fire is true, we move the elevator to the first floor and

open the door, this is what we have to do.

So, how do you capture it? Capture this without concurrency, you have explicit fire

transitions, you have explicit fire transitions see fire transitions you have explicit fire

transitions from all the states of our original unit control FSM to a new state called fire

going down.

So, when you have a fire, you go to fire going down, in whichever floor you are you go

to the first floor and you open the door after you go there. So, when up till you are going

down to the first floor, your open is 0 your down is 1, ok ypour up is 0. So, you cannot

go up when you have a fire, you have to go down to the first floor, your lift door or the

elevator door will remain shut so, open is 0, but down is 1.

Now, from there when floor equals to 1 is reached. So, till floor is greater than 1 you

move in this way you move in this self-loop and remain in fire going down. So, when

you have you have come down to the first floor, then you open the door so, you are up is

0 you are down in 0. So, you remain stationary in the first floor, and you open the door

and so, open is 1, ok. Until you have fire so after you do not have a fire then what

happens? Then when the fire is extinguished you go back to the IDLE state of the

original state machine.

So, when you have fire, you will have explicit fire transitions from each of the states of

the original state machine to the fire going down, in which case in the fire going down it

will provide a lift or the elevator will progressively go down to the first floor, with the

door remaining closed it will go down to the first floor, then it will remain stationary,

open the door and remain in that state until fire is on, when the fire is extinguished it can

take fresh requests so it will go back to the IDLE state of the original state machine.

So, without hierarchy, this whole thing so many transitions going on it is a bit make it is

a bit messy. Now when we have hierarchy, we can model this whole FSM with 2

hierarchical states. So, you have we now have 2 composite states, one is the normal

mode and the other is the fire mode. So, the normal mode is our original machine, and

we move to the fire mode from the normal mode, whenever there is a fire we move from

the normal mode to the fire mode. And whenever the fire is extinguished we go back to

the initial state of the normal mode from the fire mode, ok. So, with hierarchy things

become much more simpler to represent.

Now, how do we represent concurrently? This whole elevator controller with this unit

control this so this is the unit control and request resolver, these 2 execute concurrently,

because these are 2 modules which executes concurrently. Unit control and request

resolver execute concurrently together. Within unit control you have again have this

normal mode and fire mode. So, this normal mode and fire mode these is an OR

decomposition of unit control. And you can see off the elevated controller the unit

control and req request resolver is an AND decomposition of the elevator controller

because unit control and request resolver executes concurrently within, unit control

normal mode and fire mode are or decomposed.

(Refer Slide Time: 78:30)

Now after HCFSM comes the program state machine model, it is an extension of the

HCFSM, now within a state we can have sequential programs we can write programs

instead of a state diagram. We need not have a state diagram inside a state now, the state

can now constitute a program. This is how the program state machine extends HCFSM.

Programs actions can be FSM or a sequential program. So, it can still be an FSM like

HCFSM or it can be a program. The designer can choose whatever he wants.

It has a stricter hierarchy than the state charts in the in the sense that transition is now

only allowed within sibling states. So, you if you have between sibling states; that

means, you suppose you have a a particular. So, so unit control is a composite state

within which sibling states are normal state normal mode and fire mode, these are 2

sibling states. So now, transitions can happen within only these sibling states. So,

transition cannot happen between non sibling states. You cannot go in within inside a

state within normal mode. Say, suppose this normal mode was implemented as an FSM,

and it had multiple states. You cannot go from a state from fire mode to a state inside the

normal mode, you can only move between sibling states.

A program state may complete; that means, you go to the execute the end statement of

the program reaches end of the sequential program or FSM transition can be a special

complete sub state, where you mean that you want to immediately exit based on a

condition. So, therefore, PSM has 2 types of transitions one is transition immediately. TI

taken regardless of the source program state, or transition on completion where the

program completes which would mean for us it goes to so suppose in fire mode the

program completing will mean, that you go to the first floor, and only then if the fire is

extinguished, then you move from after the program completes you can move to the to

the next state.

So, transition can only be on completion so taken only if condition is true and source

program is complete. So, fire is extinguished and you reach to the first floor, only then

you can go to the normal mode otherwise not, if you take user TOC extension.

So, normal mode and fire mode here if you can see are described as sequential programs

not as state machine. So, in the fire mode also you have up equals to 0 down equals to 1

open equals to 0, these variables initialized, while floor less while for floor get greater

than 1, you wait and the elevator progressively moves down. So, when this condition

becomes false that is floor one is reached, you make up equals to 0 down equals to 0; that

means, you stay in the first floor and you open the door. So, this is a sequential program

representation of the fire mode, ok.

The black square originating within fire mode indicates that not fire is a TOC transition.

It says that not fire is a TOC transition, meaning that this transition will be will be

excited only when the program completes; that means, you reach the first floor, you

reach the you reach floor one and only then only then can this transition be excited.

Transition from fire mode to normal mode only after fire mode is computed. So, this is

what it means.

State chart is an extension of VHDL to capture the so state charts of the language which

extends VHDL to capture the PSM model. Similarly, spec C is a newer language which

extends C to capture the PSM model. So, with this we have learned the essential ways of

modelling using state machines and the sequential program model. We have seen how

concurrent behaviour can be represented using hierarchical concurrent FSM and the

program state machine and how things can be nicely all the entire embedded system

behaviour can be represented in a structured and systematic manner. With this we come

to the end of this lecture.

