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Hello.  In  this  lecture,  we continue  with our discussion on multiprocessor  scheduling

algorithms  for  real-time  periodic  independent  task  sets,  those  are  used  in  embedded

systems.  And we saw in the  last  example  that  algorithms which  allow proportionate

execution progress of tasks in the system succeed on multi processors in providing high

resource utilization.

(Refer Slide Time: 01:00)

We saw how greedy algorithms such as EDF which allow the tasks with the earliest

deadline at in scheduling point to execute, or LLF which allow the tasks with the least

laxity to execute at any scheduling point fail on multi processors, but tasks which allow

proportionate  progress of execution.  For example,  if in the last  example we saw that

every 10 times lots, task 3 is in task 3 must execute 2 parts of it is overall 8 units of

execution  requirement  in  order  to  this  such  a  proportionate  progress  allowed  it  to

complete it is deadline by time 40 and thus as we saw that probe algorithms allowing



proportionate progress proportional it execution progress of tasks to succeed on multi

processors.

The first algorithm that was designed on this idea of a proportionate execution progress

was the p fair algorithm designed by Sanjay Borough of a back in 1996. And it was the

first multiprocessor scheduling algorithm for real time periodic tasks which allowed full

resource utilization.

(Refer Slide Time: 02:13)

We will now have a deeper look into this algorithm. So, this algorithm worked works by

dividing each job of a task into unit length subtasks where a sub task is that quantum of

work that can be completed within a timeslot of execution provided by the operating

system. So, a timeslot of execution is the least amount of time that can be shared that that

is  given by the operating system. So, within a time slice only one task can execute.

Across time slice at the boundary of time slice, we can choose which task should be

executed next. So, sub task is that amount of work that can be completed within the

duration of one time slice, or sorry one-time slot, ok.

Now, now P fair this P fair algorithm progresses by scheduling the most urgent subtasks

at each time slot to ensure fairness. So, p fair algorithms how does it proceed it finds out

among all tasks at a given time which of the subtasks of the task has the most urgent has

the  most  urgency,  ok.  Based  on  that  it  defines  which  it  finds  out  which  sub  task

scheduled next at any given time slot boundary.



So, therefore, what we are saying we have jobs of tasks, and the jobs of tasks are divided

into sub tasks the sub tasks are sequentially numbered from 1, 2, 3, 4 likewise. And we

find out few sub tasks of each task at any given time of few sub tasks of each task has

already been executed. Now we have the next sub tasks of each task to execute. Among

those next sub tasks, the p fair algorithm finds that sub task or that set of sub tasks which

are the most urgent, and schedules them on the m available processors in the system, ok.

And p fair scheduling or disproportionate fair share scheduling proposed by Borough as

it is called P  fair it, this P fair algorithm says that each task must executes you must

complete e i units of service every p i time units. In fact, it says that each task should

progress based on it is based on the ratio e i by p i. So, in proportion to the ratio e i by p i

which is also called it is utilization u i 

So, the execution should progress in proportion to this value e i by p i. Therefore, ideally

the ideal rate at which the service should be provided to any task t i is given by e i by p i

into t. So, let us say that this e i equals to 5 and this p i equals to 10. And therefore, e i by

p i so, therefore, in this case u i equals to 1 by 2. So, the ideal rate at which execution

should progress is given by e i by pi into t. So, after 1 unit of time the ideal progress says

that the task t i should complete half of it is sub task.

By time unit 2, it should complete one part of it is sub task, one sub task. So, by time unit

3 it should complete one and a half sub task. By time unit 4 it should complete 2 sub

task.  By time unit  5  it  should  complete  2.5 sub task.  And by time  unit  6  it  should

complete 3 sub task, why? Because it is utilization is half. So, the rate at which it should

be provided service is at the rate of e i by p i into t.

However,  we said  at  the  beginning  that  within  each  time  slot  only  ones  1  task  can

execute. So, therefore, either I will give the processor for the entire duration of one-time

slot to a given task, or I will not allocate that processor to that task. So, a sub task will

either fully execute, 1 unit of the sub test will execute or the sub task will not execute at

a given time slot. Therefore, this ideally execution rate provided by this p fair this ideal

execution rate cannot be followed practically in practice. So, p fair told that you fall you

find  you cannot  follow this  execution  rate  ideally, but  what  can you do is,  you can

approximate this approximate this ideal service rate as closely as possible.



So, what it said is that, you execute at least you cannot execute these many subtasks at

every time slot fine. But you can ensure that you will at least execute e i by p i into t,

floor of e i by pi into t sub tasks which is an integer and our ceiling of e i by p i into t

which is also an integer. So, the amount of allocation the amount of work for t i that

should be completed at time t should be upper bounded by this much, this value and

should be lower bounded by this much, ok.

So, what happened is that, at the end of time one therefore, at the end of time one we can

at most complete 1 unit of execution or we can complete we may not give this we may

not give this processor at this time slot to the to time i in that case it will only have

received 0 units of execution. Why this is possible? Because at the end of 1, I can the

floor of e i by p i into t is 0 because it is half. So, e i by p i into t is half at the end of 1.

So, floor of e i by p i into t is 0. So, you are allowed to complete 0 units of execution to

ensure P fairness.

And you can add the most complete 1 unit of execution because ceiling of e i by p i into

1 is 1. So, you can complete at most one and you must complete at least 0; however, at

time 2 what happens at time 2 this floor this floor is half into 2 which is one. So, the

lower bound is 1 here and the upper bound is also 1. So, at the end of 2, you can exactly

you must exactly complete 2 units of execution. At the end of 3 what happens at the end

by the end of 3, you see that the see the floor of e i by p i into t is given by 1.5. So, sorry

e i by p i into t it is so, e i by p i is half into 3 is 1.5 so, a floor of 1.5 is 1.

So, you must complete 1 unit of execution, and you can at most complete 2 units of

execution, because ceiling of 1.5 is 2. By the end of 4 you must complete 2 units of

execution and likewise. This is what is ensured for the p fair algorithm. So, what am I

allowed to do? So, it suppose I the actual allocation which satisfies an actual schedule

which satisfies P fair must guarantee this for all tasks in the system. And sub this is a

perfectly this blue line is a perfectly valid p fair schedule. So, this has said that it allow it

allocated it allocated the processor to t i at time between 0 to 1 and completed 1 unit of

execution at by 1. It did not allocate the processor between 1 to 2.

So, the amount of work completed remained at 1 between 1 to 2 and then it did not

allocate the processor between 2 and 3. And so, at 3 the amount of work completed was

1. This is also perfectly valid because it satisfies the lower and upper bounds. Between 3



and 4 it again allocates the processor. So, by 4 it completes 2 units of execution, lower

and upper bound is satisfied absolutely valid likewise, it does not allocate the processor

between 4 and 5.

So, at 5 it has just completed 2 units of execution. It is still valid lower and upper bound

satisfied, between 5 and 6 the processor is allocated to t i. So, at 6 it completes 3 units of

execution, then it again allocates the processor at 7 to this processor. Let us say, and it

completes it completes 4 units of execution by 7.

And this is also perfectly valid, because both the lower and upper bounds are satisfied.

So, between 5 and 6 and between 6 and 7 the processor is allocated 2 consecutive times

to this to this task which has an utilization of half. And the lower and upper bounds are

satisfied and this blue line is a perfectly valid p fair schedule; however, let us say if this if

the processor is again allocated to this task at this time slot 8, it will complete it will

complete, how many? It will complete 3 4 5 units of execution by 8 which is invalid.

And this will make it and invalid p fair schedule, ok.

(Refer Slide Time: 12:35)

With this understanding we proceed to ER fair scheduling which is a derivative of the P

fair scheduling. In fact, it is a work conserving version of the P fair scheduling meaning

that it does not allow a processor to idle if we have ready tasks to execute, ok.



So, in the previous in the previous algorithm in the P fair algorithm, we saw that the

processor can remain idle if this upper bound is reached. Let us say you have no other

tasks in the system and you have completed 1 unit of execution by time 1. You cannot

allocate the processor to you cannot allocate the processor to t i, because it has already

completed 1 unit of execution by time 1. And between 1 and 2, you cannot allocate the

processor 2 t i to meet this because this upper bound will be violated.

Now, if there are no time load tasks to execute in the no other task to execute processor,

the processor just remains idle between this time at this time, ok. Now if you have ready

task if the sub tasks have arrived in the system and the tasks and the sub tasks are all

there in the system while a task is ready to execute not allowing the task to execute is not

good. Because the processor just remains idle doing nothing. 

Your  fair  removes  this  constraint.  So  a  work  conserving  global  multi-processor

scheduling methodology for hard real-time repetitive tasks in fact, for periodic tasks in

fact, for periodic task sets with fully dynamic priorities. Meaning that the subtasks the

priority of the; relative priority of the subtasks of a task change over time, ok.

Because the urgencies of the subtasks change so, the jobs have not only the jobs have has

dynamic changing priorities, but even the priorities within a job of a task can change

each sub tasks can have a distinct relative priority with respect to other tasks. And hence,

it is an algorithm with fully dynamic priorities. So, ER fair scheduling is obtained from P

fair by removing the upper bound on the amount of work that should be completed by

time t, ok.

So, this part still remains, but this one this upper bound is removed. So, it is just says that

it must complete this amount of execution. So, it must complete 2 amounts of it must

complete at least 0 units of execution by time 1. It must complete at least 2 units of

execution by time 2 it must complete at least 2 units of execution by time 3. It must

complete at least 3 units of sorry, it must complete at least 1 unit is 0 unit of execution by

time one it must complete at least 1 unit of execution by time 2. It must complete at least

1 unit  of execution by time 3.  It  must complete  2 units  of execution  by time 4 and

likewise.

However, the upper bound can be anything. It can complete say the processor can be

continuously allocated  to  task I  for this  4 consecutive time slots  say and the task is



perfectly eligible to complete 4 units of work by time 4, if the processor has no other

tasks to do other than allocating itself to this task, ok. So, ER fair allows this P fair does

not 

Now, how does P fair guarantee this that that how does P fair find out the urgency we

said that how P fair finds out the urgency among all other tasks is something that, we

have not looked at we say if, we found out how what P fair guarantees, but how does it

guarantee we have not seen so, this is what we will see now. So, given a given the task

weights P fair finds pseudo deadline d j i of the jth sub task for task I, I said that the sub

task of a task are numbered. So, if these are the sub task of a task 1, 2, 3, 4, 5, 6. And let

us say these 6 sub task conseque complies the job of the first one job of this task.

And these jobs repeat, ok. So, then so, this one is subtask 1, this one is sub task 2 1, this

one is sub task 3 off task i. So, the jth sub task of tasks i, the deadline for the jth sub task

of task i is denoted d j i so, d j i is the jth sub task of task i.

Now, this pseudo dead line says that you must do this. You must complete the first job

sorry, the first sub tasks by what time? P i by e i with respect to the previous algorithm

we had p i equal with respect to the previous example, we saw that for that task t i we

had p i equals to 10, p i was 10 and e i was e i was 5. So, p i by e i equals to 2 by 1, ok.

So, it says that the first job should complete by 2. So, j is the sub task number. So, d of 1

i equals to 2. Why? Because 1 into 2 into 10 by 5 or 1 into 2 by 1 which is 2. Now the

second job must complete by 2 into 2 by 1 which is 4. So, d 2 i equals to 4 likewise. So,

if we say if you have another task let us say we have e i equals 2 let us say 2 and we have

p i equals to, let us say 5. So, it is 2 by 5 so, the first job should complete. So, for this

task d 1 i equals to what one into 5 by 2. So, 5 by 2 1 into 5 by 2 ceiling, which is equals

to which is equals to 3, ok.

So, the first job should complete by 3. The second job should complete by what 10 by 2

which is 5. So, d 2 i equals to 10 5 into 2 by 2 which is 10. The third job should complete

by 3 into 5 15 by 2. So, the third job should complete by 3 into 5 15 by 2 which is 8. So,

likewise it progresses this is what ER fairness wants.



(Refer Slide Time: 19:53)

Now, how does the scheduling actually progress? The algorithm is as follows. So, this is

what we just studied. For each subtask of each task we provide a pseudo deadline like

this. Now some of the pseudo some of the sub task at any given time a few subtasks let

us say of each task has already been scheduled. And we have to determine which is the

next sub task to execute. So, how does it do this? So, schedule sub tasks with the earliest

pseudo deadlines first this is the overall idea.

How does it do? It arranges sub tasks in a min heap. And in this min heap the key is the

pseudo deadline of the next sub task of this task. So, it arranges the tasks in the min heap

and how what how does it arrange the key value for this min heap is the pseudo deadline

for  the for the next  sub task of  each subtask of the next  sub task of  each task.  So,

therefore, at the root of the min heap we have that task whose pseudo deadline is least or

earliest.

So, extract the task at the root and execute because it is the most urgent. Now if you have

m  processors,  you  extract  the  m  most  urgent  subtasks  or  you  are  you  call  you

sequentially extract m tasks from the root with the least pseudo deadline. And then you

execute it, after execution you recalculate thus the pseudo deadline of the next sub task

and insert that back into the heap, ok. So, this is how execution is going to progress. Ties

between multiple sub task having the same pseudo deadlines is broken using a set of

tiebreaking rules. So, you can have multiple say sub tasks of tasks whose utilizations are



different, but multiple sub tasks can have the same next pseudo deadline for this next sub

task.

So, the pseudo deadline is same for multiple say subtasks. Then what do you do? You

have a set of tiebreaking rules which we will not discuss as part of this course there are

there are actually 2 tiebreaking rules one is called the successor with the other is called

group deadlines which will not go into in this course. For this course we would say that

if such if such a clash happens of multiple subtasks having the same pseudo deadline

break it arbitrarily.

Now, what is the complexity of this algorithm? The complexity of this algorithm is big O

of n big O of log n per timeslot per processor. So, why do we have this? Suppose why do

we have this we have to build a heap which is a onetime procedure big O of in which we

neglect at the beginning. And then what happens? We take out the least we extract the

task with the least pseudo deadline which is O 1 fine, but then we have to reheat if I and

rearrange the heap which is a log n operation big O of log n operation.

And for m sub tasks if  we have an m processor system, then the total  overhead for

extracting the m sub tasks at each time slot and re heap we find them is of the order of

the big O of m l g n,. So, this is the complexity for this algorithm.

(Refer Slide Time: 23:42)



So, what are the strengths of this P fair algorithm? The first is that it is optimal. It allows

full resource utilization, the scheduling bound being summation e i by p i is must be less

than equals to m the number of processors. We saw for EDF that summation e i by p i or

u i has to be less than 1; therefore, EDF we said was an optimal algorithm which allowed

full  resource  utilization  in  uniprocessor  systems.  And  in  this  case  for  the  ER  fair

algorithm. In fact, for the p fair algorithm as well. It says that if you have a task set

whose total utilization is less than m you will be able to feasibly schedule that on this

multiprocessor system, ok.

So,  this  is  what  it  says.  So,  therefore,  summation  over  u  i  less  than  equal  to  m is

sufficient is the sufficient condition for schedulability on multiprocessor systems using

ER fair. It allows it allows guaranteed quality of service. In terms of saying that it allows

you to reserve x units of time or rather e i units of time for task a out of every y time

units. So, we said that such kind of execution progress guarantees or quality of service

guarantees can be provided when we use this. And this property can be useful in many

embedded systems which execute a lot of tasks together let us say streaming task along

with other best a fair downloads together. So, if a set of tasks have a such a quality of

service requirement like that for streaming tasks which must execute at a certain rate p

fair  algorithm  is  a  good  alternative.  Although,  or  the  derivative  ER  fair  is  a  good

alternative; however, there are other constraints which we will look why that which is

why P ER fair is not always practically used.

Another good property of ER fair is that it allows temporal isolation of a of a from as we

will see it provides temporal isolation to each task each client task, from the ill effects of

other misbehaving tasks attempting to execute for more than their prescribed processor

shares. So, it so, we have said that each task is guaranteed a processor share, it reserves

the x units of time for task e out of every y time units.

Because it always finds the earliest pseudo deadlines among all sub tasks and execute it

first. So, if a task takes more execution time than it is stipulated to take it is that task

which only suffers. Other tasks whose execution urgency becomes a higher will get the

processor, and it is only this task which will be delayed in its completion.

So, this is somewhat this is a very good temporal isolation and that is provided and it is

often important in embedded systems, safety critical embedded systems, running critical



tasks. And this  property to some extent we was also provided by the rate monotonic

algorithm how it  the execution  progress  of a  task can only be affected  by is  higher

priority task. It cannot be affected by lower priority tasks. 

Here we are saying it is a much stronger it is a much stronger condition which says that it

will never it does not matter high priority low priority, because the priorities are dynamic

and we have priorities associated with each subtask. We can say that the task will never

be affected by other misbehaving tasks which take more time to complete than it was

stipulated to take.

Suppose a task was allocated e i amount of time to complete, but it takes more than that

to  complete;  that  means,  behavior  will  not  affect  other  tasks.  This  is  what  ER  fair

guarantees. And this makes it applicable to a large range of domains in CPU networks

embedded systems etcetera. It allows graceful degradation in times of overload meaning

that, suppose this condition is not met. So, what happens is that this summation becomes

greater than m. Then everybody is affected by the same degree, why? If you see the way

ER fair algorithm is implemented at each time slot, it finds out the task with the highest

urgency. This relative urgency is going to remain same, even if summation e i by p i

becomes higher than m.

So, everybody we will be affected by the same degree. Everybody will get delayed by

the same amount. And by the same proportionate degree and this is why ER fair provides

graceful degradation for all tasks in times of overload. And it allows efficient handling of

dynamic task arrivals and departure. So, at any point in time, handling dynamic arrival

so, a new task arrives and an existing task departs this handling is a very simple for the

ER fair  algorithm.  We just  need to  check if  after  the arrival  of  the new task is  this

condition still satisfied.

So, if I accept the new task will summation e i by p i still remain less than m, if this is

satisfied the new task can be allowed into the system. If an existing task departs it just

departs  it  does not matter because ER fair the upper bound on execution there is no

bound.  So,  it  will  just  happen  that  other  tasks  will  execute  at  a  higher  rate  in  a

proportionate manner, and it will consume the CPU. It will it will take the CPU that is

the left idle by to some amount by the task that has departed. That space that additional

space will be proportionately shared by other tasks and this will naturally happen we do



not need to do anything a special for that and hence task arrival and departures are easily

handled in ER fair systems.

(Refer Slide Time: 30:03)

However, the ER fair is schedulers also have some significant weaknesses. So, the first is

a high shading complexity. It uses a min heap to determine the most urgent operation

deadlines of sub task at each time slot this is what we saw. And this incurs big O of m l g

n  at  each  time  slot  and  this  is  significantly  high,  if  the  number  of  processors  and

especially the number of tasks in the system becomes very high, ok.

And this is one big problem, and thus then the and the second big problem is unrestricted

migrations and preemptions. It is a direct consequence of fully global scheduling and we

are saying that at  the end of each time slot we decide which sub task is the best  to

schedule,  and we schedule  in  that  order.  And therefore,  it  so  there  will  be  a  lot  of

preemptions and there will be a lot of inter-processor task migrations. And due to this,

there will be ignorance of affinities of tasks towards the processor where it last executed.

And of processor caches towards the task it executed recently.

So, there could be large number of cache misses. And such cache misses could be costly.

In even in let us say in closely coupled systems, where you do not have shared cache at a

close enough level, such cache misses could be costly because that the transfer rate the,

you have to transfer the code and code and data of a task from one processor to the other

from the local cache of one processor to the local cache of another processor.



And this could be quite significant. And if it is the completely distributed system such

migrations could be very huge the overheads could be very huge, and this algorithm can

become  non  unusable.  So,  ER  fair  is  a  good  algorithm  for  say  closely  coupled

synchronous multicore, systems let us say with moderate number of tasks not very high.

So, for cases for systems in which these overheads can be controlled ER fair is a good

algorithm to use.

(Refer Slide Time: 32:28)

So, with this we highlight this migration problem of ER fair let us. So, we have 2 tasks

one is 8 by 4, the other is 10 one has an utilization, one has an utilization 4 by 8 which is

half again. And the other has an utilization 5 by 10 which is half again. So, you have 2

tasks T 1 this 1, and T 2 this 1, ok. These are the 2 tasks we have here and therefore, both

have a utilization of half. So, if we see that that both have the first subtask of both will

have a pseudo deadline of 2. And hence one is going to execute, ok.

So, they will get they will take alternate turns to execute. Each of them will take alternate

turns to execute, because after let us say sub task 1 has executed for task 1. The second

sub task has a pseudo deadline of 4. The first sub tasks of task 2 has still not executed.

So, it is pseudo deadline is 2.

So, therefore, this becomes more urgent than the second. So, for tasks to the first subtask

of task to becomes more urgent than the second sub task of task 1 at this position at this

time instant one at the boundary of 1. After task 1 the first subtask of task 1 has already



executed. Then at this time point one the first subtask of task 2 becomes more urgent the

pseudo deadline is lower than the second sub task of task 1. So, the first subtask of task 2

executes  here  then  again  this  alternative  arrangement  proceeds  one  by  one.  But  the

deadlines by which actually we need to finish tasks is 8 and 10 for these 2 jobs for the

first jobs of task 1 and task 2, right.

So, the deadlines are much later, but we are doing that, but we can do better than that.

(Refer Slide Time: 34:43)

As we saw that,  if  we have,  if  you had done deadline  partitioning,  if  you had done

deadline partitioning what you could have said is that, within time 8, within time 8 which

is the first deadline starting from 0. So, at from if you look from 0 the first deadline is at

8 the second deadline is at 10. The first deadline is for task 1 the second deadline is for

task 2. And we can say that by 8 it is sufficient to complete 4 units of work. So, 4 by 8

into 8 which is 4 units of work for task 1. And also 4 units of work for task 2 ok so, this

is 4, this is 5.

So, it is sufficient to complete 4 units of work for task 2, and 4 units of work for task 1.

So,  this  is  what  has  happened and you need not  have  incurred  mi  preemptions  and

migrations in between. You can consecutively execute 4 subtasks, and you can safely do

that  because we know that  the first  deadline  that  is  going to  come is  at  8.  And the

proportionate progress a deadline boundaries is sufficient to meet all deadlines as we saw

in the example previously.



So, it completes 4 units of execution and then task 2 completes 4 units of execution. And

then between 8 and 10 I have a slice size of 2. And within this 2 I know that if I have 4

and 8 and within this 2. I therefore, must complete 1 unit of execution for task 1. And

again 5 by 10 into 2 which is 5 so, 1 unit of execution for task 2 so, I must complete 1

unit of execution for task 1 and 1 unit of execution for task 2 between 8 and 10.

If I can ensure this I am I can ensure that at all deadline boundaries, at which I check at

which I actually check whether I meet or miss deadlines. I will be able to guarantee all

deadlines. Because all task progress fairly by there ER fair degree. I can say that the task

had ER fair at 8 the task at are ER fair at 10 all tasks.

So, if  they are ER fair  they will  also always meet  deadlines.  So,  we are saying that

because we are checking deadlines only at actual deadline boundaries, it is sufficient to

violate  the exact  ER fair  requirement  within consecutive  deadlines.  This is  what has

happened here. We have violated individual subtasks pseudo deadlines, but we can still

ensure the dead the progress that the sufficient progress has been made at actual deadline

points, ok. So, by this we can save migrations and preemption, but ensure full resource

utilization. And this is the essence of the DP fair or algorithm which we will discuss next.

(Refer Slide Time: 37:43)

So, DP fair has come within around the 2010. So, around 2010 it was first published

suppose in real time system symposium and then subsequent journal version of this work

has come in 2011. So, it also basically is based on the fluid schedule. So, this is the fluid



scheduling rate which we just saw. And we said that this one is a CPU rate of 1. So, this

angle  is  45  degree  is  meaning  that  if  you  allocate  so,  this  position  this  duration  is

essentially e, this workload e.

So, what happens is that, if you allocate the processor continuously. If you allocate the

processor continuously is from release, it will complete at time e if it has and execution

requirement of e. And you allocate the processor continuously only to this task. Then it

will complete the work at e. And therefore, this one we will have a slope of 45 degrees.

So, slope of one sorry this angle is 45 degree and this is a slope of 1.

So, it will exactly complete it is work at time e and this part it will remain idle here. Now

how long can it wait? It can wait it is saying this is the 0 laxity curve this is again 1 it

that which means that this 1, this is again e. So, this is that this is the point of 0 laxity;

that means, you have e amounts of work remaining, you did not allocate the processor by

this whole amount or by this whole time.

And then at this amounting you have exactly u e e amount of work remaining to be

completed  within  this  term with  within  this  time  of  e,  within  this  time  e  you must

complete the e amounts of work. And then after this time from this time to complete your

work by the deadline, you must continuously allocate the processor and complete your

work here, this is what it says.

Now, in between the actual schedule can proceed. So, here EDF any algorithm if you

look at it will progress something if the schedule is valid and does not violate deadline,

then what will happen? The actual execution can proceed in any curve like this; however,

it has to execute something in between. It can be anything else as well, it can be anything

else as well, but it has to complete it has to remain within this region this red region, this

red region it has to remain.

If  it  violates  this  region,  it  cannot  go  on  this  side  because  this  means  that  you are

executing at a rate more than 1 which is not possible, because we know that at most this

much amount of work can be done if the whole processor is allocated to the task for this

entire time. So, it cannot progress on this side, it cannot progress on this side because

deadlines will be missed.



So, it must complete at least this much of execution at this time, it must complete at this

much of execution by this time from the beginning. It must complete at least this much

of execution from this time, it must complete at least this much of execution by it is

deadlines to ensure that deadline will be met. Suppose it does not it is somewhere here

and it does not complete this much amount of execution at this point from the beginning.

It means that even if you allocate the full processor to this, it cannot complete it is full

execution  it  will  only  complete  about  this  much  amount.  So,  this  much  amount  of

execution this much amount of execution will still be left to be completed and hence it

will miss deadline; so, this is what this figure says.

(Refer Slide Time: 41:59)

Now, our deadline fairness essentially deadline partitioning fairness said that, you should

complete your fair amount of execution progress by deadlines, ok. At we said that for

that example in which we had these 2 tasks of 4 by 8, you 4 by 8, you one 4 by 8 and you

to 5 by 10; for these 2 tasks we found that by 8 we should complete 4 units of execution

both for task 1 and task 2 by because 4 units of execution was the feared execution

progress at deadline boundaries. So, this one says it this one says that this is the amount

of work that you can you must do by this deadline for a given task and within this.

What DP fairness says that within this it does not check fair execution progress. So, you

need not you need not absolutely follow this follow this ideal execution rate. You need

not exactly follow this ideal execution rate within this time. You are allowed to be within



this at some point in time. At any point in time you are allowed to be anywhere within

this, but the end of this time what DP fairness wants is by the end of this time you must

complete this much amount of work.

And again in the next deadline by the next deadline you should complete  this  much

amount of this much amount of work. This is what it says.

(Refer Slide Time: 43:36)

So, if the system has various deadlines as we saw 8 10 and then we will again have a

deadline at 16, 20, likewise if you go on having the system has numerous deadlines, the

DP fairness prescribes that for each task, for each task you should come you should have

completed your fair amount of execution at each deadline boundary. And that should be

guaranteed for each task. So, this is the amount of work that should be completed for

task 1. For the first job of task 1 and then for the second job of task 1 again. It should

progress in a it should come in a in a deadline partitioning fair manner DP fair manner at

each deadline boundary. This is what it says, ok.



(Refer Slide Time: 44:24)

So, what are the rules for DP fair scheduling? You partition time into slices based on

system deadlines. So, what are the system deadlines? These are the period boundaries of

all subtasks. So, you have multiple job boundaries or rather the job boundaries the job

deadline or period task period boundaries of all tasks over time. And then at any point in

time it finds the next earliest deadline boundary, it allocates shares for example, we said

that in the in the first time slice 0 to 8 it must complete 4 by 8 into 8 which is 4. So, this

4 is the share execution share of that task T 1 for in the time slice of 8 duration 8, ok.

So, it allocate each job a per slice over workload equal to it is utilization times the length

of the slice. So, this was is utilization, this was the length of the slice. And therefore, it

allocates each job of each task a personalized workload equal to its utilization times the

length of the slice and then scheduled jobs within each slice in a way that obeys the

following rules. So, we just saw the rules and we just track them down again, always run

a job with 0 laxity. So, you cannot delay a job with 0 laxity within that you can you can

you can be anywhere you did not you need not. For example, obey by the exact ER fair

say execution  progress  guideline.  You can violate,  and you never  run a  job with no

workload remaining in the slice.

So, then you are you are saying that if you do not execute more than your workload. So,

it  means  that,  this  version  of  the  DP  fair  algorithm  can  allow  a  bit  of  non-work

conservation. Meaning that, if your amount of work as completed in a particular time



slice, and you do not have any other tasks to execute you still do not execute more than

what you are prescribed to execute in the total time slice. So more than 4 times time

slides that time units of execution you do not execute within this time 8. So, this is what

DP fair suggest so, that no deadlines will be missed, but we can have mechanisms to

bypass this as well, ok. And do not voluntarily allow more idle time than m minus u i

into length of the slice.

So, for any task the u i is its utilization, now what does this particular expression tell me;

if you see m into length of the slice, m into length of the slice is the total number of time

units available within the time. Size m number of processors and on each processor you

can execute for the length of the time slice. So, let us say 8 is the length of the time slice,

and you have 4 processors, then 8 4’s are 32 total time units of execution is possible in

this time slice, of 8 time units. And what is u i; u i is the amount of work that that is that

is needed for a given task ok.

So, u i is the amount of work that is needed to be completed by a given task. Within let

us say this 8 time units I need to complete force. So, u i into length of the time slice is 4

for say task 1 here for this case ok. So, this one says that you cannot do you cannot

voluntarily allow more idle processor time than this. Because if you allow more than that

then you cannot complete the set of jobs that you in the set of total set to total workload

that you have within the time slice.

(Refer Slide Time: 48:48)



Now, we provide a strategy for execution within each time slice. How does execution

within each time slice progress. And that happens using the DP wrap algorithm. Now all

time slices are equivalent up to line scaling. So, normalized time slice by 1 what does

this say? It says that for all time slices you normalize any time slice into a time slice of

length 1, ok. And then you do stacking and slicing as follows, we see the procedure here.

(Refer Slide Time: 49:28)

Suppose, you have a set of 3 processors and you have 7 tasks. And these 7 tasks are have

utilization 0.3, 0.5, 0.5, 0.6, 0.5, 0.4, 0.2. So, these are the 7 tasks. And we just tap the

7th as one after another onto this line. And we divide this whole set, also this tasks are

stacked one after another onto this line, and we divide this line into at the at the junction

at the integer points 1, 2, 3, ok.

We said that the; what is the idea? The idea is that we said that the processors are each of

unit capacity. So, this is the total workload that can be handled by 1 processor. So, this

can be allocated to say processor 1 this can be allocated to processor 2, this  can be

allocated to processor 3, and we can execute them.



(Refer Slide Time: 50:40)

So, therefore, what we are doing? We are allocating this amount so, 0.3 plus 0.5 so, this 0

point 0.3 plus 0.5 0.8. So, we allocate 0.2 here, and we allocate 0.3 here. We allocate 0.3

plus 0.6 0.9. So, we I allocate 0.1 here and 0.4 of this total 0.5 here. And we complete by

3. So, if you see this total workload, if you sum up the utilization some u i equals to 3 in

this case. So, it is schedulable through because this algorithm DP fair is optimal, ok.

(Refer Slide Time: 51:23)

So, then we slice we had stacked we divided into processors and we sliced. So, this is the

workload for processor one this is the workload for processor 2 and this is the workload



for processor 3. And then for this is for any we said that this is for a unit length time

slice.

Now, if your time slice is 8, you just multiply the amount of work that can that must be

done for task 1. So, 0.3 into 8 is the amount of work for task 1, 0.5 into 8 is the amount

for work for task 2. 0.2 into 8 is the amount of work for task 3 on processor 1, 0.3 into 8

is the amount of work for task 3 on processor 2. 0.6 into 8 is the amount of work for task

4 on processor 2, likewise it proceeds.

(Refer Slide Time: 52:18)

So, these tasks which are partially execute on one processor and partially on another

processor must incur a migration. And these tasks cannot overlap over time, because this

is a single piece of code and it means that the first part of the work will be done on

processor 2 and it will complete by this amount of time. And at this time within the time

slice  then  task  3  you  will  be  migrated  from  processor  2  to  processor  1,  and  start

execution at this time after it completes on processor 2.

And  we  can  guarantee  that  it  will  never  overlap  if  the  total  work  we  can  have  an

allocation, like this like through this slicing through this tacking and slicing which and if

the processors are homogeneous we can guarantee that if the individual utilized of the

task is less than 1, then we can have an allocation where a task will never overlap on 2

processors.



So,  we can  have  like  if  the  task  will  complete  on  processor  2.  And then it  will  be

migrated to processor 1 and a complete execution. Similarly task 5 will first execute on

processor 3. And then after it completes on processor 2, it will be migrated to processor

2. It will execute on processor 3 and then after it completes on processor 3 it will be

migrated to processor 2, where it will complete it is remaining execution by the end of it

is time slice, ok. This is how DP wrap algorithm within DP fair progresses.

So, we discussed 2 important algorithms, the e r the 3 important algorithms, rather the P

fair algorithm the ER fair algorithm and the DP fair algorithm which uses DP wrapped

within it to conduct scheduling, we said that P fair is the first optimal multiprocessor

scheduling  algorithm,  but  P  fair  and  ER  fair  are  the  first  optimal  multiprocessor

scheduling algorithms. But they put severe constraints on the rate of execution of the

tasks which is not necessarily just to meet deadlines.

And in doing that the algorithms become costly in terms of scheduling overheads, and

also in terms of migration and preemption overheads DP wrap is a more recent algorithm

which allows much better much which fair much better in terms of its schedulings as

well as migration and preemption overheads.

In fact, DP fair can guarantee that within every time slice there will be at most m minus 1

task migrations where m is the number of processors. So, DP fair can guarantee that the

number of migrations within each task sorry within each time slice will be at most m

minus 1. For example, if we see in this case we see that we have 3 processors and the

number of migrations are 2; one from processor 2 to processor one for task 3 and the

other from processor 3 to processor 2 for task 1. It also guarantees that the number of

preemptions are also limited. So, number of preemptions is upper bounded by n minus 1.

So, where n is the number of tasks so, within each time slice. So, DP fair guarantees that

the number of preemptions. So will be at most n minus 1 and the number of migrations

will be at most m minus 1 within every time slice. And hence it is overheads are much

lower than p fair and ER fair, with this we come to the end of this lecture.


