
Embedded Systems – Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 17
Real-Time Multiprocessor Scheduling

Hello. In the last lecture, we looked at real time uniprocessor scheduling strategies used

in embedded systems. In this lecture, we will look at Real-Time Multiprocessor

Scheduling approaches.

(Refer Slide Time: 00:43)

So, multiprocessor scheduling attempts to solve the problem of resource contention

among programs running on different processing elements. So, we used uniprocessor

scheduling to solve the problem of contention among tasks running on the same

processor.

Now, if you have multiple processors and there are tasks that must be executed on a set

of multiple more than one processor, then you have to use multiprocessor scheduling

strategies. So, therefore, it attempts to solve the problem of resource contention among

programs or tasks running on a set of more than one processing elements. And there are 2

primary approaches towards multiprocessor scheduling. The first is global scheduling

which treats processor as a pooled resource. So, we do not consider separate processors.

We consider all processors together as a single pooled unified resource and assign tasks

to processors on demand. So, the same task can be assigned to different processors as

and when required based on demand, with migrations being required when we have to

transfer a task from one processor to another but we will see the all the processors

together as a single resource against partition scheduling which is the other type; where

we permanently assign each task to a single processor and which are never allowed to

switch between processors. So, the tasks are not allowed to switch between processors,

ok.

So, once there is an allocation phase in partition scheduling; there is an allocation phase

where you allocate each task to this to a distinct processor, and you run that task on that

processor and never migrate it for the entire duration of it is lifetime. Between these 2

approaches you also have something called hybrid scheduling; which is a tradeoff

between fully global and partitioned approaches, this allows restricted migrations.

Meaning that for example, you can have each job of a task to execute on a single

processor, but different jobs can execute on different processors. For example, let us say

you have a task consisting of a sequence of jobs j 1, j 2, j 3, j 4 one can run in processor

1, j 2 can run in processor 2 j 3 can again run in processor 1, j 4 can run in processor 3,

likewise.

So, we have allowed restricted migration. So, you are here you are allowing job level

migrations, and therefore, it is not part fully global scheduling. And it is not fully

partition scheduling. It is not fully partition scheduling, because you are allowing

migrations, but it is not fully global scheduling, because you are restricting migration

within a job. So, the job could be arbitrarily long and for the entire lifetime of the job

over the entire execution time of the job it has to execute on a single processor. So,

therefore, it is not absolutely global scheduling not absolutely partition scheduling

something in between, hence it is called hybrid scheduling.

(Refer Slide Time: 04:04)

Now, we look at partition scheduling in a bit more detail. So, partition scheduling it

partitions tasks so that each task always runs on the same processor as we said. And so,

what we do is, we assign tasks to processors first using a strategy called using a strategy

called bin packing. So, here bin means processors so, each processor is a separate bin of

a certain capacity, and if you have homogeneous processors, you can always assume that

each processor is of unit capacity 1. And you assign tasks which are individually of size

equal to it is utilization.

So, we are saying that let us say you have a task of period 4 and to be executed for and

with an execution time of 2. It is period is 4 and it is execution time is 2. So, the

utilization of the task E by P is 2 by 4 which is half. So, we know that if the capacity of

the processor is 1, I am assigning a task of size half on to this processor. So, here this

processor will be called bin, and we have to pack tasks on to each of these bins and

hence it is called bin packing.

Now, we have separate run queues. So, this one is processor 1, this one is processor 2,

processor 3 and processor 4. Your 4 processors and you have 4 separate run queues. For

each of them 4 separate ran queues. And you have assigned the tasks to be allocated to

each run queue on each processor. So, these are the tasks which needs to be which are

assigned to processor 1.

Similarly, these are the set of tasks each one of them being a separate task being assigned

to processor 2, likewise. So, what is the advantage of partitioning? The one big

advantage of partitioning is that once you have allocated the task 2 separate processors,

then you can use well known simple uniprocessor scheduling algorithms like EDF, RMA

or LLF. LLF is mixed laxity first which we have not studied, but it is a derivative of EDF

where you allow where you allow priorities of the jobs within the jobs to change.

So, the jobs again will be divided into subtasks; where each sub task can be executed a

within the time slots assigned by the operating system. And different sub tasks within a

job can have different priorities. That is LLF we did not discuss it; however, it is also an

algorithm that is used in uniprocessor systems.

So, well known uniprocessor algorithms like RMA, EDF, LLF can be used within each

processor, once you divide the task into the individual processors. This is why

partitioning this partitioning approach is many a times used. And also the overheads are

overheads are also less because once you assign the task, you do not need to migrate

tasks from one processor to another. Migration is a high overhead process as we will see

in time in a in a few slides from now.

(Refer Slide Time: 07:29)

Now, partitioning as we told is the assignment of tasks to processors, but this bin packing

strategy, the optimal strategy for bin packing is an NP hard problem. So, it takes

exponential amount of time with respect to the number of tasks. And therefore, when the

number of tasks and processors in the system increase the partitioning process becomes

very complex and time consuming. So, therefore, people typically use heuristics to solve

the bin packing problem.

And there are a few very well-known heuristics. Like first fit, best fit, worst fit and first

fit decreasing. In the first fit what do you do is, suppose you are given a set of

processors, you put the tasks in the first processor, and you name the processors say P 1,

P 2, P 3 likewise. And you start assigning tasks. So, you have a set of tasks you start

assigning tasks from P 1, P 2, P 3 and you and what do you do is, you take the next task

and put it in the first processor which has enough capacity to hold it, hence first fit.

So, you start allocation from an assigned processor P 1 then P 2 then P 3, you maintain

this order for consideration of the task for allocation you main always maintain the same

order. And where do you put the tasks onto the first processor when searching in this

order, that has enough capacity to hold the next task.

Best fit on the other hand; what does it do? It takes the processors and finds out that

processor among the set of all processors which has the least capacity, but can hold this

job which has the least remaining capacity, but that capacity is sufficient to hold the next

job. So, it is the best fit it is called best fit, because it does not allocate to the first

processor that can hold it.

The first processor can have a large capacity remaining or may not have any capacity

remaining, but what does best fit do? It tries to find that processor which just has

sufficient capacity to hold the task. Any other processor which has more it this processor

this best fit processor that processor will have a higher priority for this job, than any

other processor which has higher remaining capacity, and no other processor with lower

remaining capacity can hold this job, right.

So, this is what is best fit; worst fit on the other hand what does it do? It places the next

task onto the processor which has the highest remaining capacity so, hence worst fit. All

these heuristics are used. First fit decreasing; in first fit decreasing what do we do? We

take the task and first sort them from the highest size to the lowest size. And then we

apply first fit, hence first fit decreasing. Now we will look at first fit decreasing in a bit

more detail with an example. Let us now understand the first fit decreasing algorithm

with an example.

(Refer Slide Time: 10:53)

Let us assume that we have a set of these 9 tasks. The first task having an utilization 2 by

3 second task having a neutralization 1 by 6, third task having an utilization one third and

so on, to be scheduled on a set of these 6 processors. These are all unit capacity 6-unit

capacity processors, and we now must partition the task set first before scheduling

because we are doing a partition scheduling, and we are using bin packing for the

partitioning process. So now, we have to partition these 9 tasks all to this 6 processors,

ok using first feed decreasing.

Now, first with decreasing says that we need to first sort the tasks based on their

utilizations.

(Refer Slide Time: 11:41)

So, after sorting, we get this sorter sequence of tasks from the largest task to the smallest

task. And after sorting we need to apply the first fit algorithm. Thus, we take the first task

and put on the first processor that can hold it. But before going to do that, we will just for

convenience change these tasks this fraction and utilizations into integers.

We will scale these tasks so that each of this becomes an integer which essentially means

that what we are going to do is that, we will multiply each of these utilizations by 6. And

then the capacity of the processors instead of one will now become 6 after we scaled

these tasks. So, after scaling what happens? The weights we have now scaled and

therefore, the task 1, the weight which was one has become 6, the weight which was 5 by

6 have become 5, the weight which was two-third has become 4 and likewise. So, we

have changed all the task weights to integer values. And therefore, the capacity of the

processor have now become 6, each processor is now 6.

(Refer Slide Time: 13:00)

So now we will apply first fit on this. So, therefore, the capacity of the first processor is 6

and the task size is also 6. So, the first processor has been completely filled. So now, we

have the second task we try it on the first processor, but we do not have enough capacity

on the first processor. So, we go on to the next processor. And therefore, the next

processor has enough space and we put the task the next task on to processor B.

We take the third task we try the first processor, we try the second processor, cannot hold

it while the second processor also cannot hold it, because the processor has a capacity of

6, and 5 plus 4 equals to 9. So, the second processor does not have enough capacity to

hold both the task and therefore, it will be allocated to the third processor. Similarly, the

third one we will try to go on try to put it on to the processors in the order one by one

and then finally, put it in it is final place, ok.

So, we see that the processor D can hold both these 3 together. Why because, the

capacity of this processor D is 6 all the processors have capacity 6 and the summation of

the weights of these 2 tasks is 3 plus 3 which is 6. And hence we can put both the tasks

onto the same processor. The next 3 cannot be put here and hence it will go to E. The

next two ok, this can hold it, why because C is sufficient to hold this 2, because

previously 4 was previously the task with wait for was in C, and it still has 2 of spare

capacity and that within that spare capacity we can put the next task whose size is 2.

And therefore, this for the next task we can again we will see that it cannot be put in any

of the processors and it has to go to E. Similarly, lastly for the last task it must be put on

to the second processor.

Now, we have packed all the tasks into 5 bins. So, this is first fit decreasing similarly, we

can have best fit decreasing in which again we will first sort the tasks. And then put the

next task on to the processor which has the least remaining capacity, but that capacity is

sufficient to hold the next task, ok.

So, the in best fit decreasing, we will first sort the task and put this put that in we will

consider the task in order of from the largest to the smallest size, and we will put the next

task into the processor that has just the sufficient capacity to hold the task. That will be

best fit decreasing. In worst fit decreasing we will always we will again sort the task and

take the high large from largest to smallest, and take the next task and put the next task

into the processor which has the highest remaining capacity. That is worst fit decreasing,

ok.

So, all these types of packing strategies are used depending on the situations. Now once

such a packing is done we have packed. So, we have packed into 5 processors, and the

one processor still is there which is spare and if further tasks come in we may need to put

it into that processor, but currently this processor will be idle or will be kept off. And

then now on each of these processors we will apply uniprocessor scheduling strategies

like EDF, RMA to schedule the tasks on to; on in each of these processors.

(Refer Slide Time: 16:43)

Now, we come to global scheduling. In global scheduling as we said we consider the

processors as a single resource pool. So, therefore, we have a single queue. So, this is the

single resource pool consisting of all the processors. And instead of separate run queues

we now have one single run queue. And then there has to be a dispatcher which will find

out to which processor each task will be will each task or job of the task, now the next

sub task of the task given will be put, ok. So, the important difference here is that the

tasks can migrate among processors.

(Refer Slide Time: 17:22)

Now, partition scheduling although is sometimes used, because we can use well known

uniprocessor scheduling algorithms and that migration overheads are also low. But

partition scheduling are often produce very poor resource utilizations. For example, we

will take this case where we have 2 processors CPU 1 and CPU 2. And we have 3 tasks,

each of who each of whose utilization is 2 by 3, ok.

So, you 2 units of work are to be done every 3 time units. So, it is period is 3, and it is a

execution requirement within this period 3 is 2. So, it is utilization u is equal to 2 by 3.

So, we have 3 tasks like this, we will when we are partitioning, we put the first task on to

CPU 1, we put the second task on to CPU 2, but we cannot take the, but we cannot put

the third task into any of these processors.

Because we only have this task has a weight of 2 by 3, and here you have 1 by 3

remaining. And here also you have 1 by 3 remaining. 2 by 3 has been used by task to 1

CPU 2, 2 by 3 has been used by task 1 on CPU 1. So, you have 1 by 3 spare capacity on

processor 1, 1 by 3 spare capacity of on processor 2. So, the total remaining processor

capacity though is 2 by 3. You cannot use this spare capacity to hold task 3 because none

of the individual processors have enough capacity to hold this task. So, how what can

you do?

(Refer Slide Time: 19:10)

You can just break this task into 2 sub tasks, into 2 chunks, into 2 separate chunks of size

1 by 3 each.

So, the first chunk is task 3 by so, the first chunk is 3 a which will be scheduled between

0 and 1 here. And the second chunk is 3 b which will be scheduled here. So, why have

we done this? So, that if you do not do this, we have to if we schedule task, we cannot

schedule task 3 b and task 3 a here right. We cannot schedule 3 a here. This is not

possible. Why? Because other otherwise these are 2 separate, means otherwise this is the

sequential process right. So, the first part has to end and only can the second part start the

2 parts cannot execute in parallel.

I have a single program code let us say. I have divided into 2 parts, but I cannot execute

this until I finish this. So, I these 2 executions cannot be overlapped, these 2 separate

executions cannot be overlapped. Hence task 3 and task 3 b cannot be executed at the

same time on 2 processors. And hence we have put task 3 a at the beginning, and task 3 b

at the end here.

However, this scheme allows us to schedule to appropriately schedule the third task

partition scheme could not do it, now in a global scheme by allowing a migration, we can

allocate this 3 tasks we divide the tasks into 2 parts, we execute the first part in CPU 2,

then you then we migrate the task from CPU 2 to CPU 1.

So, the code if required along with the intermediate data of the task is migrated from

CPU 2 to CPU 1, and then the next part of this task is executed on CPU 1, after it is

completion on CPU 2. So, by incurring a migration and by dividing the task themselves,

we have we will be able to successfully execute this task. And hence global schedulers

succeed on multi processors.

(Refer Slide Time: 21:23)

So, we if just see the pros and cons of global scheduling versus partition scheduling, we

see that global scheduling has no restriction on migrations, and it allows good resource

utilization as we saw. And in the last case, in the last slide we saw that it allows 100

percent utilization of the processors. It is bad in terms of high migration cost, and also

cache misses. Why because, once you execute a task when we once you allow

migrations, what happens is that the cache corresponding to what was executing before it

is flushed.

So, you when you bring in suppose you break a task and you bring in you break a task

and into 2 parts, and you take the first part execute on some processor, and you take and

then you migrate it to a second processor and you execute over there. So, what happens

is that in the second processor the cash is cold with respect to this task. The data

corresponding to this task does not reside in the second t a second processors cache. And

therefore, initially there will be a lot of cache misses. And in general when migrations are

allowed, such cold misses will occur again and again. And therefore, this will incur a

high cost, high migration cost.

Partition scheduling on the other hand are strict. In terms of not allowing migrations and

therefore, it is good because it has no migration cost and therefore, it is high in terms of

cache efficiency, cache misses are low but it is bad in terms of low resource utilization.

As we saw in the last case, to one-third of the processor on off each of the processor

could not be used. So, the processor utilization for that particular case was 66 percent.

Why? Because the total was 2 and we could only execute 2 tasks of way 2 by 3. The

third task of way 2 by 3 could not be executed. So, one-third of the total system capacity

was wasted. And hence the utilization was around 66.6 percent.

In general, if we restrict more runtime overhead is reduced. So, if we are more and more

partition, if we go towards partitioning, runtime overheads are reduced. And however,

the schedule ability or the resource utilization bound is also reduced. So, based on this

classification on migration, we can have different classes of scheduling algorithms.

(Refer Slide Time: 24:09)

Firstly, we have no migration, but the task cannot migrates and the jobs cannot migrate.

We can have restrict the; this is the case which shows that so, these are 2 distinct jobs

and the jobs have distinct subtasks. Each of these boxes are subtasks of the same job. So,

the job consists here of 3 subtasks. And all the subtasks of all the jobs of this task must

execute on the same processor P 1.

And therefore, it is a completely partitioned approach. In the restricted migration case,

we the tasks and migrate, but the jobs themselves cannot migrate. So, all subtasks of the

same job must remain on the same processor; however, 2 separate jobs can be executed

on 2 separate processors. And we can also have full migration where the tasks and

migrate the jobs can also migrate.

So, the first subtask of job of the first job executed executes in P 1, the second sub task

of job one executes in P 2, the third sub task of job 1 executes in P 1 again. The first

subtask of job 2 executes in P 2. The second sub task of job to executes in P 1. Third sub

task of job to executes again in P 1. So, this is a case for full migration.

(Refer Slide Time: 25:35)

So, when we are doing a global scheduling, it allows a lot of tasks migrations, which

leads to cache misses. And this cache misses can become harmful, especially when the

CPU's are connected via bus or network. That is it is a distributed system. And therefore,

taking the task from one processor to the other is costly. In a distributed system you do

not have a shared cache. So, so hence, the code of the task as well as the data cannot be

stored in the shared cache so that it can be easily made available to another processor.

And hence the entire code and data must be must be transferred over bus to another

processor.

So, therefore, these such task migrations are harmful when CPU's are connected via bus

or network. When each CPU has it is own memory, it still is much more harmful if the

CPU if the memory itself not even cache, but the memory itself is separated. So,

therefore, you have to transfer the whole. It is not even in memory. So, you have to

transfer the whole task from the memory of one processor to the memory of the other

processor. In the first case if the memory share you at least do not need to do a bus

transfer.

It is there at least there in the shared memory. But if the memory is also separate, then

you need to do a complete bath bus transfer of both the code as well as the data of the of

the task from one processor to another. So, and if the shared global memory, even if you

have a global memory, if the shared global memory is not sufficient to hold all states of

the task, then also such tasks migrations or cache misses become harmful in terms of the

overheads it has.

And it is not that harmful for CPU cores on the symbol single chip. For CPU cores on a

single chip, even if you have task migrations, it is not that harmful because CPU's are

connected via via may be connected via high speed interconnection on chip network.

Therefore, the task misses are not that time consuming. So, the transfers or in the transfer

of both code and data is not that time consuming. And hence the overheads are less. CPU

share a large global memories and caches. And hence the transfer has less cost.

Therefore, whenever we have lower migration costs. We can use a global approach we

can go towards the global approach when the migration costs are less; however, when the

migration costs are more as in a loosely coupled distributed setting. Then we must go

towards more partitioned approaches.

(Refer Slide Time: 28:22)

Greedy algorithms generally fail on multi processors. Why? At each scheduling point a

greedy algorithm will regularly select the m based jobs to run. For example, we will

select the m best jobs in the earliest deadline first order. So, we have a multiprocessor,

have we have a set of m processors we have a multiprocessor system consisting of m

processors. A greedy algorithm, even if it is a global algorithm what will it do; the greedy

scheduling algorithm will choose the m based tasks and allocate on to m processors.

For example, if we have an earliest deadline first, we will take the m best jobs in term of

their earliest deadlines. These stars will have the earliest deadlines and allocate on to m

processors in order, ok. But this strategy fails on multiprocessors and we will see why.

So, that is why although EDF is an optimal algorithm as we have seen on a single

processor it is not optimal on a multiprocessor system. So, greedy approaches generally

failed on multi processors.

(Refer Slide Time: 28:34)

Now, let us take an example to see why this happens. Let us say we have 3 tasks to be

scheduled on 2 processors. The 3 tasks have task one has an execution requirement of 9

to be scheduled within 10 within a period of 10. So, it has an utilization of 9 by 10. The

second tasks also has an utilization of 9 by 10. So, task 2 has a work of 9 or execution

requirement of 9 to be completed within a period of 10. And the third task has an

utilization of 8 by 40, ok or 1 by 5. So, the third task has a neutralization of 1 by 5, it has

an execution requirement of 8 to be completed within a period of 40.

If we add these utilizations, we see that 9 by 10 plus 9 by 10 plus 2 by 10 which is equals

to 2. So, the total utilization is 2. And therefore, it the total the total capacity of the

system is also 2, 2-unit capacity processors. So, in the ideal case we should be able to

schedule on these 2 processors. We should be able to schedule these 3 tasks feasibly on

to these 2 processors.

However, we will see that if we use greedy strategies like EDF it is not possible to do so.

(Refer Slide Time: 31:09)

So, what happens at time 0? At time 0 tasks t 1 and t 2 are the obvious greedy choices,

why? Task t 1 has a deadline of 10 tasks t 2 also has a deadline of 10, tasks t 3 has a

deadline of 40. So, these 2 have task 1 and task 2 are the ones with the earliest deadlines

and are scheduled at time 0. And if we see that you know their jobs complete at time 9.

Their jobs complete at time 9, at time 9 only the third task is left, and it is executed let us

say on CPU 2 for one-time unit. And therefore, say at 10 7 time units of work for task 3

is still left, 7 time units of work, 7 time units of work is left for 3, for left for t 3 at 10, ok.

And then at 10 the next jobs of t 1 and t 2 arrive again.

So, again t 1 and t 2 are the greedy choices. The best greedy choices and t 3 does not get

a chance. T 3 again gets a chance at 19, because at 19 both t 1 and t 2 will finish at 19,

and then between 19 to 20 in that time slot t 1 will execute for one slot again. And then

again it will again get another chance at 29 and another chance at 39, but then by 40. We

understand that t 3 will only complete 4 units of work. But it needs to complete 8 units of

work. If you see why this happened we see that one freeze every 10 time units, we have

to keep the CPU idle for one-time unit.

We cannot schedule anything here in this in this place, why? Because we have nothing to

execute T 3 has it is executing on the other processor, and it cannot execute at the same

time on 2 processors. We cannot have overlapped executions. And therefore, due to these

free slots these idle slots of the CPU, everyone every 10 time units one idle slot of the

CPU this makes, this makes this task 3 miss it is deadline at 40.

(Refer Slide Time: 33:42)

So, however, what happens there is something important that happens at 8 we which we

must be missing here. So, even at 8 what happens? The task t 1 and t 2 are the only

reasonable greedy choices, why? Because at 8 we see that it is if you see even at 8, task t

1 has a deadline of 10, tasks t 2 has a deadline of 10, while task t 3 has a deadline of 40.

And therefore, at 8 also we schedule both t 1 and t 2 and we do not we do not execute t 3

up to this unit, this 9.

(Refer Slide Time: 34:22)

Yet if task t 3 yet, if t task t 3 isn’t started by 8 so, why did we talk about this 8 why was

8? So, important if task t 3 is not started by 8 the resultant idle time here eventually

causes a deadline miss.

So, if task 3 was started at 8 what would happen? Suppose, we executed this blue task

which is t 2 up to 8, and then we executed task t 3 for these 2 time units here, then what

would happen? We could migrate this task from here to here; this task t 2 and one

remaining slot of execution of t 2 could be executed here, ok. So, this place t 2 could

have executed. But then for that we need to understand that at 8 we have something

important. At 8 we need to you we need to allocate t 3, otherwise ultimately at 14th will

miss deadlines that has to be understood. So, how do we make the system understand

this.

(Refer Slide Time: 35:31)

So, how can we see this critical event at 8 is the question.

(Refer Slide Time: 35:34)

So, what can we do? We can subdivide task 3 with a period of 10. Now at we if we

subdivide task 3 with a period of 10, we see that every period of 10, it needs to do it

needs to have do a work of 2 units. So, within that within 10, if it will do to you it must

do 2 units of work, within 20 it must do 2 units of work within 30 it must do 2 minutes of

work and within 30 to 40 also it must do 2 units of work, in order to complete all, it is 8

units of required execution.

Then what happens? We see that then we can if we do this, if we do this, with this if we

do this proportional division of the workload of task t 3 into 4 chunks of 2 units each for

every 10 time units of work. This proportioned this proportion division of work for T 3

makes it possible to view this important event at 8. We see that at 8 tasks 1 has 1 unit of

work remaining, task 1 has 1 unit of work remaining, task 2 also has 1 unit of work

remaining, but task 3 has 2 units of work remaining.

So, at suddenly at 8 T 3 becomes more important than T 1 and T 2, because it must it has

2 units of task remaining to be completed before 10. T 1 has 1 unit of come work

remaining to be completed before 10. T 2 also has 1 unit off this happens at 8. At 8 T 1

has 1 unit of work remaining to be completed within 10 T 2 also has 1 unit of work

remaining to be completed within 10. But T 3 has 2 units of work remaining to be

completed within 10. So, in this sense t 3 becomes more important than T 1 and T 2 and

T 2 at 8.

And hence T 2 for in this case T 2 is preempted and T 3 is allowed to execute on to CPU

2, right. And then you have one unit of work remaining which can be executed in CPU 1

after T 1 completes his execution at 9 by incurring this migration.

Hence proportioned algorithms which does what which proportionately divides the

workload with respect to deadlines of tasks succeed in multiprocessor systems. So, if we

can determine which if we can find what are the deadlines for different tasks in the

system, and by all these deadlines we proportionately execute the workloads of tasks we

will succeed on multi processors.

(Refer Slide Time: 38:41)

So, this is the takeaway here. And so, now t 3 has a 0 laxity event at 8. So, 0 laxity event

meaning, that it has 2 units of work to be completed within 10. So, amount of work

remaining is 2, amount of time remaining is also 2. So, laxity is 0. So now, task 3 has a 0

laxity event at 8. And because the laxity is 0, tasks t 3 becomes more important than task

t 1 and t 2, because still they still have a laxity of 1 at 8. And hence we you we allocate t

3. And therefore, all the 3 tasks can meet their deadlines using this approach.

