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Welcome to module 2 of lecture 7. In the last module we saw that for operations within a

simple data flow graph within a basic block and for temporary registers within a simple

operation constraint  graph within a basic  block,  their  corresponding resource sharing

models can be form using interval graphs. And we can find the minimum number of

registers  required  to  implement  a  set  of  temporary  variables  within  the  operation

constraints graph or the minimum number of functional units required for each type to

implement  the  behavioral  operations  within  an  operation  constraints  graph  can  be

obtained in polynomial time using graph coloring of the conflict graph corresponding to

the operations or the registers in the operation constraint graph within a simple basic

block. 

We use the left edge algorithm to obtain such an optimal coloring of the interval graph in

n log n time. We saw that here n is the number of operations or the number of temporary

registers that we have in the graph. And we need to sort the elements at the start of the

algorithm in terms of the left edges of that intervals and this amounts to the n log n

complexity of the left edge algorithm. In this module we will see a bigger scenario.
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We will see the resource sharing problems that exist, when we consider not only a single

operation  constraints  graph,  but  we  consider  a  different  operation  constraints  graph

across modules. Now, we need to understand that within a single operation constraint

graph there are no controls statements there are no mutually exclusive operations there

are no branches there are no loops, but; however, when we consider resource sharing,

when  we  attempt  to  consider  resource  sharing  across  modules  across  operation

constraints  graph  in  different  modules,  we  need  to  also  consider  the  control  flow

structure the loops the branches in those modules.

So,  in  this  we will  look at  this  broader  problem.  And we will  we will  take  simple

examples  to  understand what  is  the  actual  problem that  we have  in  hand.  The first

scenario is the most simple scenario. Let a module a consists of 2 operations are plus

followed by a star. So, this is module a it is here I have a plus and here I have a star a star

a plus followed by a star. And I have a module b which consists of 2 operations a star

followed by a plus.

And we said that plus uses 1-unit delay and star consumes 2-unit delay, right. Now, let us

consider a module m 1 here which calls module a followed by module b. So, it first calls

module a and then calls module b. We see that here this is very simple a and b are not

concurrent and hence all operations are also not concurrent. And we can apply the simple



interval graph method to solve it and the left edge algorithm will give me the maximum

resource sharing for module 1.
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Now, let  us  complicate  the  situation  just  a  bit.  I  have  a  module  a  it  consists  of  2

operations plus followed by a star very similar to the previous one, and also module b

very similar star followed by a plus. Now here the only difference is that the module b is

called before module a finishes. So, I have an operation constraint graph that defines

module a, I have an operation constraints graph that defines module b. And I in the first

example both this operation constraints graph were separated in time.

The complete lifetimes of the operation constraints graph were separated in time they

were non concurrent. Here the operation constraints graph are overlapped. Module 2 here

is a module 2 that calls both module a and module b. Module 2 has a call to a at time t

equals to 1 and a call to b at time t equals to 3. Now, here we see that the stars are not

compatible.  The star operation that is a multiplication operation takes 2 time units to

execute and hence this multiplication operation and this multiplication operations are

overlapped in time and hence I cannot use a single instance of a multiplier resource to

execute both these operations. They become incompatible.

However, the plus operations are compatible. They are separated in time and; obviously,

they  are  both  additions  and  can  be  implemented  by  the  adder.  So,  hence  the  same

instance of an adder can be used to execute both these behavioral operations.
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Now let us take the next small complication higher complications. Now we have a loop.

And we to simplify a loop we just say that there is a module which calls another module

2 times, ok. Module a consists of 2 operations a plus followed by a star similar to the

previous 2 examples. Now module 3 has 2 calls to a at time t a equals to 1 and ta equals

to 5. Now there is a module 3 which calls a at time which calls a at time t equals to 1 and

then again calls a at time t a equals to 5. Now, m 3 has 3 other multiplication operation.

So, the 2 noncontiguous intervals of star we have 2 noncontiguous intervals of star in a,

so, here this star operation in a non-compatible with the star operation 2 here. Again this

star operation is not is not compatible with 4 here. And here this 2 is not compatible with

3 this 4 is again non compatible with 3. So, what happens that, this module a becomes

non compatible with 2. Why? Module a is non compatible with 2 because module a does

not complete before 2 begins.

So,  2  is  a  distinct  multiplication  operation  a  is  another  module.  So,  a  and  2  are

conflicting. And hence I have an edge in the conflict graph between a. And 2 similarly I

have an edge between 2 and 3 because 2 and 3 overlap. I have an edge between 3 and 4

right I have an edge between 3 and 4 because 3 and 4 overlap I have an edge between a

and 4 because 4 and a overlap in time.

But what we see here is that there are 2 distinct intervals now for this module a. And it is

no  longer  a  single  continuous  interval.  And hence  the  conflict  graph is  no more  an



interval graph. It is not even a chordal graph. We have a cycle of length 4 and we do not

had any chord which connects nonconsecutive edges nonconsecutive vertices. And hence

this is not a chordal graph. So, this therefore, the addition of this simple call here, we call

a module 2 times with this with these 3 additional multiplication operation makes this

graph  non  makes  this  graph  are  non-chordal  graph.  And  hence  the  graph  coloring

algorithm on this conflict graph therefore, becomes np complete and we need to apply

enumerative techniques.
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Now, let us take another type of complication which is branching. Now we assume that

all operations there are simple one type of operation in this example all operations take 2

units’ times.

So, start times of the operation t a is at time step 1, t b starts at time step 3, t c and td are

2 mutually exclusive operations and they both start at time step 2. Now, c and d being

mutually exclusive or compatible, although they execute at within the same time step

because  they  are mutually  exclusive  they can  be implemented  by the  same resource

instance. Because either c or d will execute, both c and d will never execute they are

mutually exclusive by this branch.

And because of this mutual exclusion between c and d, there is not a chord between vc

and vd in the conflict graph. And therefore, again we have a non-chordal graph here.

Why? Let us see how. There is an a here; a and b are compatible; a and b are compatible



and hence there does not exist an edge in the conflict graph, a and c are not compatible

and here a and c have an edge. Similarly, a and d are not compatible and hence they are

they have an edge why are they not compatible because they overlap in time.

Again b and c are not compatible because they overlap in time, b and d also are non-

compatible because they overlap in time. And hence in this conflict graph this conflict

graph again becomes a non-chordal graph just by the introduction of a simple branch and

therefore, resource sharing over. So, modules which contain branches and loops become

non trivial and cannot be solved in polynomial time and I need enumerative techniques

for graph coloring, because this problem becomes np complete for general graphs non-

chordal graphs.

However, we can apply heuristic techniques to solve general graph coloring problems.

Although these although; obviously, such graph coloring techniques will not be optimal

may not be optimal such graph coloring may not give the minimum number of colors.

However, they are often essential when the problems of are of very large sizes. For np

complete  problems  as  we  have  seen  branch  and  bound  etcetera  similar  types  of

enumerative approaches can be applied to the graph coloring problem as well when we

are not studying it here.

We have taken we have understood a flavor of handling such big np complete problems

in with exponential complexity using combinatorial search approaches like branch and

bound  in  previous  lectures  and  we  will  not  consider  them  here.  Rather  we  will

understand a simple heuristic approach for solving the graph called the general graph

coloring problem.
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The solution proceeds as follows. Let us say we want to find out whether a conflict graph

is k colorable? So, we want to find out and allocate colors to a k colorable conflict graph.

So, if the graph is k colorable, we will be able to assign colors to the vertices of this

conflict graph. So, how do we proceed? We pick a node t with fewer than k neighbors.

So, in the conflict graph we pick a node t with fewer than k neighbors. Then we put t that

the node that is the node we have chosen and put it on the stack and remove it from the

graph. So, after we take this node out of the conflict graph, the edges adjacent into it also

move away, alright.  Now, this exposes a few more nodes with less than k neighbors

possibly.

Now, if we can proceed and go on doing this we will ultimately obtain the empty graph;

that means, fewer will go on taking up nodes pushing it onto the stack and until all nodes

in the graph have been put into the stack right. And then the graph becomes completely

empty, we may get stuck in between as well because we do not get the neighboring nodes

with less than k neighbors. And that does not mean that the graph will not be k colorable.

We should understand that this is a heuristic approach. Now, we assign colors to the

nodes in the stack one by one. We start with the last node added and at each step we pick

a color different from those assigned to already colored neighbors.



So, if I have neighbors previously colored neighbors with a certain color, when I take the

another  node out of the stack,  I cannot assign a color which is same as that of it  is

neighbors right. We will take an example to see this.
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So, let us say we are given this conflict graph. So, this conflict graph say has a, b, c, d, e,

f operations and we want to allocate all these operations are of the same type and we

want to allocate the minimum number of functional units necessary to color this graph.
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So, what do we have? We have k equals to 4. First, we will search for a node with less

than 4 neighbors.  So,  a  is  such a  node with less  than  4 neighbors.  In  fact,  a  has  2

neighbors. So, I can remove a from this graph.
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.

When I remove a from this graph, we this is the residual graph that residual conflict

graph that remains, a goes to the stack. Now, we have to find another graph which has

less than 4 neighbors. So, we are assuming that the graph is 4 colorable and hence we are

trying to find out neighbors which are less than 4. So, we choose d, d has 3 neighbors

less than 4 neighbors and we choose d.
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And after we have chosen d, the residual graph is this one; this is the residual graph that

remains and a d and a goes into the stack. Now, we see that all the remaining nodes have

less than 4 neighbors and hence I can choose in any order. So, we can remove any node.

We continue removing nodes until the graph is empty. So, febcda is a certain order of

choosing the nodes and the stack will be this after removal of all nodes.

So, before the start of the algorithm, we see that f has more than 4 neighbors more than 3

neighbors, e has 4 neighbors, c has 4 neighbors. So, I can choose either a or b or d. I had

chosen a that can be done randomly; however, I have chosen this order and I have come

to this place.
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And for now I have an empty graph. Now, when I have an empty graph and all nodes

have been put into the stack, I will start assigning colors to the nodes starting from the

top of the stack. And at the top of the stack I have f which is the last node I have added.

So, I had first added a, then I had added b, then I took it order cdef. Now, when I have

taken out c, I have allocated resource r 1 with the blue color to f at this step. Then I take

out the next color e and we see that e and f share an edge hence I allocate another distinct

resource r 2; resource 2 and color it red. And I use a distinct resource because they share

an edge.

Now, I will take out edge b. And we see that b has an edge with both f and e and hence I

cannot use the colors blue or red and I have used black here. So, I need another instance

of the resource. So, I have already used 3 instances of the resource for executing f b and

e, then I remove c.
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And I see that c also shares an edge with each of the previous nodes each of the previous

operations and therefore, I have to allocate another different color say pink to this node.

Now, I take out d. We see that d and b do not share an edge and hence d and b can have

the same color. So, the same resource instance can be used for both operations b and d.

Resource instance r 3 black can be used for both b and d. And at last I take out a, we see

that a and e can have the same color because they do not share an edge and the same

resource can be assigned to both of them.

Hence, I have been able to allocate all the operations of my operation constraints graph

using 4 colors from the corresponding conflict graph that I have by obtaining a coloring

of the conflict graph using 4 colors; this is a heuristic graph coloring methodology for

general graphs. Now, we must understand that like we said that across modules, when

there are loops as well as branches conflict graph becomes non chordal and becomes a

general graph and polynomial algorithms do not exist for coloring.

For functional units we studied that a similar thing happens for registers as well. Because

let us say this is an operation instance multiplication. And this operation floats its output

on a particular register. Suppose, I allocate a functional unit f 1 to this multiplication

operation  then  there  are  2  distinct  intervals  in  which  the  functional  unit  must  hold

operation 1. Similarly, there will be 2 distinct intervals for the corresponding temporary

register at the output of this multiplication operation.



And hence  the register  implemented  will  have  2 distinct  intervals  and will  not  be  a

simple interval graph anymore. And hence the register coloring problem or the register

allocation  problem will  also  become  a  general  graph  coloring  problem which  is  np

complete and one of the methods by which we can color such general graph is by the

graph coloring method that we just studied. We come to the end of module 2 of lecture 7.


