
Embedded System-Design Verification and Test
Dr. Santosh Biswas

Prof. Jatindra Kumar Deka
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 01
Introduction

Welcome to the first lecture on embedded systems design.

(Refer Slide Time: 00:34)

to start let us define the premise of what we are going to study in this course. We are

going to study embedded systems. So, computers are no longer isolated desktop entities

with a monitor with a CPU and a keyboard only. They have been they have got

integrated into our lives via various gadgets and systems that we directly or indirectly

use. For example, microwaves, washing machines, mobile phones, automotive control

systems, our cars, flight control systems, the smart power grids etcetera.

So, what are these computing devices? What are these what are the characteristics of

these systems? These are embedded systems are embedded computing systems. An

embedded system is a device or system that includes a computer, but is not itself a

general purpose computer. So, therefore, you have a computing capability within which

is embedded within your microwave, but your microwave does something else the

computer is inside, which takes your programs as to how to cook your food, washing

machines can operate in various ports.

So, therefore, you have a computing platform inside the washing machines as well. So,

therefore, these are computers as components within bigger physical systems.

Now, if we look at the examples that we showed here, we have seen essentially simple

devices simple single devices like microwaves, washing machines, mobile phones to

very complex devices like automotive control systems and flight control systems and

even big geographically big distributed systems like the smart power grids, whereas

smart power grid will have a generation side, a transmission side, a distribution side and

consumption of electricity from generation to consumption of electricity.

And let us say, our computer within that embedded computer within computes at each

point in time. What is the real time balance of the power? For example, if I am

generating a certain amount of power and consuming another amount of power in real

time, what is the balance in power that we have in the grid and ideally it should always

remain balanced. So, those computers are come that are embedded within such big

systems will also be called embedded systems. So, it is not only a single device, it can be

embedded into a bigger distributed system as well.

(Refer Slide Time: 03:28)

So, what are the typical characteristics of embedded computing systems? Let us consider

this taking an example of a pacemaker; that is, let us has to be placed in a heart of a

person. What does a pacemaker do? A pacemaker generates electrical impulses through it

is electrodes so as to compensate for missing pulses, which are generated naturally

within the heart.

So, let us say the objective of our pacemaker would be to generate artificial heart

impulses. Whenever, the natural sequence of impulses are not are not periodic enough or

the frequency is not adequate enough the, this our pacemaker has to come up and

compensate for the impulses that could not be generated naturally.

So, therefore, what are the design constraints in this system? It has to have it has to

minimize delay why? Because, we said that, whenever the heart meets misses, fails to

generate impulses, I should the pacemaker should come in and generate impulses. So,

therefore, I cannot because, this is safety critical. I cannot say that, I got delayed in

generating an electrical impulse. I should be always be able to generate impulse within a

given certain interval of time. So, if it is missing an impulse within a certain period of

time, I should be able to generate the artificial impulse. So, it should minimize delay.

It should minimize area the computing platform, should minimize area why because, it

has to be a small device placed within the heart. So, it cannot be big it has to minimize

power. So, these pacemakers should remain in your heart at least for say 10 20 years. So,

the battery has to be capable enough to run for 10 15 years, 20 years. Hence, the

consumption of power by the computing system has to be low. It should improve

verifiability meaning that, the design of the system is safety critical.

So, we should be able to verify that the design meets all the specifications requirements

that we have put up before the design. So, I have certain properties the design should

meet, certain safety properties, certain functional properties, energy etcetera all these

properties is the design meeting. So, I my design should allow the verifiability and

coverage of all important properties that the system should satisfy.

We should have algorithms for better yield. So, how can we have algorithms? It should

be fault tolerant as well. The system should be fault tolerant as well. The design should

allow late testability of the manufactured system. So, I should have certain points in the

in the system through which ports in the system through which I can test that the

implemented system the manufactured system is working correctly.

So, it should allow design for testability and last but most important, it should be low in

cost, it should be available to the masses. So, the manufacturer product cannot be

extremely costly. Hence, all these design constraints need to be taken into account when

we are designing an embedded system such as a pacemaker.

Therefore, if we on the left, I have jotted down a few on the left, I have jotted down a

few typical important factors that an embedded design has to take care. For example, the

computers the embedded computing systems that we use may have stringent resource

constraints. They may be compact systems, may be some single simple processors

because, again I said it has to minimize area, it has to minimize power.

So, it cannot be very complicated. It may many a times it may have simple processors

limited memory within which I have to meet the performance criteria such as minimize

delay as well. It has to be reactive meaning, high performance minimize delay, high

performance. So many embedded systems need high performance.

It has to be real time meaning that it has to be predictable. So, when I it has to be able to

say that when the heart misses an impulse at say, time x within time x plus 10, I should

always be able to generate an artificial impulse from the pacemaker. Therefore, it has to

be real time meaning that, it has to be predictable. It should has ensured worst case

response times, it should be fault tolerant, it is a safety critical device placed within the

heart.

So, one module malfunctions. Then, another module at least there has to be a failsafe

state, where maybe even at reduced performance. It performs, it is able to function, it

does not completely crash. So, it should be tolerant to faults in the different modules of

the system.

It should consume low power as we talked up for the pacemaker and it should have short

time to market. So many for many embedded systems the time to market becomes very

short. Because, you we have discussed discovered an use case for a certain embedded

device.

For example, let us say, a new type of digital camera we want to design and put in the

market. So, if I take a long time to design and bring it to the market, the need for the

device may go, may not exist anymore. So, therefore, it has to have quick time to market

as well. So, these are all different design issues that are related to embedded systems.

Now, to satisfy all these design issues, the design has to be automated. I cannot do an

hand design of complex embedded systems and be able to satisfy all the different issues

that we talked about in the last slide, hence, we require computer aided design.

(Refer Slide Time: 10:07)

So, modern designs are too complex to be developed manually increasing levels of

integration of devices on a substrate. Now, we have platforms or chips which contains

multimillion gates, where extreme high levels of integration within the chip and

therefore, that we have diminishing cost of transistors. So, the amount of functionality

that we can put into a chip is increasing and therefore, more and more complex

embedded systems are being designed and these complex embedded systems are difficult

to design manually.

We have higher efforts towards system level integration. Now, we are designing a SOCS.

For example, our mobile phones contain processing units processing platforms that

contain say our general purpose processors, special purpose processors, power

management units, RFID. So, some are analog, some are digital and they are all

integrated on to the same substrate. So, they are on to the same board. Hence, we are

talking about systems on chips systems on boards the.

Why do we have higher levels of integration? Because, high levels of integration reduces

the number of components and such reduction in the number of components enhances

performance because, our component to component communication delay will reduce the

failures. if you have a components in the same module or the same chip, the chances of

failure are also reduced during let us say the communication.

It reduces design costs, it improves reliability, CAD provides a systematic step by step

design procedure. Another reason why computer aided design is used is that, because it

allows a systematic step by step design procedure, handmade designs can be Adhoc. We

may think that we are doing a very good design, but if it is not systematic and step by

step, our design process may not produce optimal results. Hence, we need CAD which

provides a systematic step by step design procedure from initial requirements

specification to the final implementation.

So, first, before the embedded system is designed, we only have initial English language.

Let us say, these are the requirements that my device should satisfy. These are the kinds

of requirements specification; we have these are hazy it is not formally defined from that

English language, incomplete specification. We need to formally step by step computer

aided design steps take us to a formal modelling design and implementation.

 (Refer Slide Time: 13:02)

Higher integration has led to huge power dissipation, because we have multimillion gates

for chip we have higher integration on the same chip. So, power dissipation may be for

example, through leakage, through the transistors, through the many transistors in this

highly integrated system has increased it is generating hotspots which because, leakage

power generates high temperature and higher temporary, higher chip temperatures may

induce faults in the system which are called hotspots.

So, if at a particular point in the chip the temperature rises, suddenly you create hotspots.

So, the design should take care that hotspots are not there and this may not be possible

through handmade designs. So, computer aided design again helps us there focus

towards low power design at each stage. So, that can be done only through systematic

computer aided design.

There is a distinct paradigm shift towards fault tolerant designs. Even simple devices for

example, our pen drives. Now, come with now, now are starting to come with certain

quantifiable levels of reliability, say it will run for these many these many reads and

writes ok. So, safety critical embedded systems such as variable healthcare devices, all

these things even simple designs as I said are coming with quantifiable levels of

reliability and hence these designs need to be fault tolerant.

Increasingly, stringent design matrix as we talked about the space pacemaker that is

performance sensitive, small in size, low power, fault tolerant, verifiable, testable, low

cost. So, all these design constraints are very stringent to build to bring together.

So, we need designs that satisfy all these constraints which is very stringent to meet and

handmade designs may not be sufficient to do all this. So, therefore, we need computer

aided design again and we need efficient algorithms at each stage of the design because,

why because, the design space is very huge meaning that, satisfying all these constraints,

the there can be a number of designs that satisfy all these constraints and we have to

choose that design point which is optimal. Therefore, we need efficient algorithms for

doing this and hence again computer aided design.

(Refer Slide Time: 15:34)

Now, therefore, how do such automation proceed in a step by step fashion such

automation proceeds through 3 distinct steps. So, computer aided design typically in an

embedded system typically proceeds through 3 distinct steps modelling design and

analysis. So, what is modelling? Modelling is the process of gaining a deeper

understanding of a system through imitation. So, we do not build the entire system, but

somehow we imitate the working the functionality of the system to understand what it is

output should be sometimes, when such models are very nicely and formally specified it

allows according by construction synthesis procedure to and implementation as well.

However, modelling again essentially is the process of understanding the system. So, it

makes an abstract system, we do not build the actual system the properties that we think

are important we model the system with those properties and check whether the, if the

design can satisfy those properties are not. So, models express what a system does or

should do. So, it describes the functionality of the system in a systematic manner.

Now, after modelling comes design, design is a structured creation of artifacts. So, in the

modelling phase, we have described the functionality or the tasks that the system should

do and what is the sequence of tasks that the system should do. Now, all these tasks must

be suppose executed on a computing platform. It will need a processor, it will need to

store data, it needs input data and it needs to store output data. Therefore, it requires

memories. It needs to communicate with other components and with the external world

and hence it needs communication devices such as buses.

So, all these are artifacts, which need to be chosen depending on what is the functionality

that we need to implement. Therefore, after the functionality is defined and we have

chosen the artifacts to implement those functionalities, we get a design and we also

specify in the design what will be the sequence of activities say, of let us say many tasks

that we are we have implemented on a particular artifact say a processor ok. So, this

encompasses the design therefore, the design specifies how a system does, what it should

do.

Finally, after the design, we have come up to a first cut design. Let us say, after

modelling and we have come up with the first cut, cut design of what should be the

artifacts that should implement those design. We need to analyse whether the design

meets. Say, the performance constraints the other non-functional constraints, say

constraints on energy consumption etcetera.

So, that is done through a process called analysis. Analysis is the process of gaining a

deeper understanding of a system through dissection ok. Through dissection and finding

out at each step why a system is performing in a certain way. So, therefore, it specifies

why a system does, what it does or fails to do what the model says it should do.

Now, if it finds out, when it finds out why a system let us say fails to do a certain thing, it

may be for example, because a function cannot be displayed or cannot be implemented

on a certain type of processing platform. Let us say and we need to change the

processing platform; that is what our analysis says.

So, therefore, we need to go back to the design and change the processing platform and

then come back and do the analysis again or it may find out that the requirements that we

had specified are incorrect and no matter what kind of, design artifacts you use. Those

requirements that we had specified in the model itself cannot be used to do the design.

So, therefore, we need to correct the mod a correct at the modelling phase itself. So,

analysis now tells me that whatever requirements, you had told in the modelling phase

was not correct. So, the functional model was not correct. Therefore, we need to correct

the functional model do a redesign and then do the analysis again.

Hence, the 3 phases are overlapped and iterative. So, we go for a modelling to design to

analysis we after design, we can come back to modelling change the model go back to

design or from analysis, we can go back and do a redesign or a remodelling ok. So, these

are the different design phases.

Now, we come to model based development, the first phase of design that we told

modelling we come to model based development the models are abstract and high level

descriptions of design objects.

(Refer Slide Time: 20:42)

It shows relevant features without the associated details just to take an analogy. For

example, let us say your Google maps, that you use every day is a model of a certain

geographical area. It does not take into details. Let us say that terrain, may not take let us

say that terrain, the exact water bodies many details of the actual geographical region, it

will just not take into account. However, it will take into account what is important for it.

For example, the road network the distance between 2 places etcetera. So, this is a model

the, your Google maps is a model of a region for a certain purpose.

For example, to find out what is the distance between 2 places and that it adequately and

nicely does hence models are abstract and high level descriptions of design objects this is

same for example, let us an embedded system the example I took during the during the

intro video that of a car parking system, that in a car parking system, you need an

embedded system that keeps into account the number of cars at any given time and we

build a finite state machine to which in; which the states are the number of cars at any

given time and the transition represent a car going out or a new car coming in it does not

model the actual car parking system.

However, it has a machine which it is a finite state machine model, which has relevant

details relevant features to model the computing embedded system that we want to

design a program or an embedded computing system that keeps into account at any point

in time the number of cars. Therefore, models show relevant features without associated

details.

However, models if nicely stated can be rigorously validated. So, if I have a formal let us

say a state machine design, then I can formally verify whether all properties are verified

whether all properties are verified can there be a deadlock with cars coming and coming

in and going out in the car parking system. So, I can verify certain properties like that

can an output of a data. We all will can always be received within say a certain time say

100 milliseconds.

So, these properties may be validated, if we have a formal modelling of the system.

Therefore, models can also be debugged and revised. It allows sometimes it allows

automatic generation of the final design, we will see 1 or 2 lectures later how modelling

can allow an automatic correct by construction design when nicely and formally

specified well take an example of that.

Hence, model based development. What is the paradigm? You first model and then you

design you verify the correctness of what you have designed and then you debug and

then you may need to go back to the model other design and this may continue one or

more times and hence, the plus and after you have design. Hence, the plus over here and

after you have ensured that the design is correct you implement it on actually

implemented on a platform manufacture it and then you validate the performance of that

is of the manufactured or implemented system the prototype system or the manufactured

system.

So now, we come to a bit more details on FSM based behavioural modelling.

(Refer Slide Time: 24:40)

So, what does behavioural modelling behavioural or functional model? It is a control

flow among components. It tells what are the distinct states, that an embedded system

can be in and how the change of states can occur. So, there are different modelling of the

behaviour; one is the functional modelling which it tells what are the functions that it

should do. You can also model the architecture and get a structural model. So, it which

will tell you the interconnection among components and finite state machine is an very

important behavioural modelling formalism which we will study in this course.

So, in a finite state machine, the system moves from discrete step in discrete steps from

one state to another by executing transitions. So, as I told you before as well, the states

tell you the static properties or it denotes a specific valuation of system variables and the

transitions tell you the dynamic properties. It tells you how the change in states occur

over time.

For example, let us say that, we want to design a very simple torch light controller a

small embedded computing device that will be put inside your torch light. Firstly, the

switch is off and then you when you press the switch you get to the lighted state. So, both

off is a static property is a static state of the device, and then when you press the button

then it takes you to another static state, which is light that the torch is now glowing and

then you press. When it when you press it again, it again takes you back to another static

state which is off state, back to the off state.

So, this is how you this is this is a very simple example. But, it tells you that what are

the; what is the essential idea behind modelling of the functionality of a system using

state machines.

 (Refer Slide Time: 26:50)

A major class of embedded systems are real-time in nature. So, what are real-time

systems? A systems whose specification includes 2 notions of correctness a fond of it has

to be functionally correct; that means, it should provide correct outputs and it has to

produce those outputs within time. So, a system whose specification includes both

functional as well as temporal notions of correctness logical correctness, it produces

correct outputs and temporal correctness produces outputs at the right time, in a real time

systems are characterized by things like this.

It is not enough to say that breaks in a car were applied, you want to be able to say that

brakes were applied at the right time to make another more say this pertinent example,

let us say you want to design the anti-lock braking system in a car. So, the antilock

braking system what it does is that, it allows the car to stop within a short distance

without the car; car locking it is wheels and skidding. So, it avoids the skidding of the car

which happens due to the locking of the wheels. When you mechanically press the brake

very hard, how does it do? It releases the wheels within short spans of time after the

brake is pressed.

Now, let us say you have a design constraint like this. So, once the brake is pressed, after

the brake is pressed, you need to release the brakes within let us say the next 100

milliseconds to stop the wheels from locking. Now, therefore, you have to complete the

functionality you have to do the computational job of releasing the brake from locking

and you need to do it within the next 100 milliseconds. So, this is a real time requirement

where you have a functional requirement that you have to complete a job and produce an

output, which is releasing of the brake and you have to do it within a certain deadline

which is 100 milliseconds in our case.

 (Refer Slide Time: 29:08)

Now, how do you model a real time embedded system? For example, let us take the torch

light. Example, a bit further our simple torch light now has 3 states one is the off state,

the one is the next is the lighted state and the further you have a brightly lighted state.

Now, what do you want? If the press is issued twice quickly, then the light will get

brighter. Otherwise, the light will be turned off the question is how quickly this model

does not specify anything. Now, how can you do it? You have to change the finite

automata to a timed automata, which allows the specification of real valued clock

variables.

(Refer Slide Time: 29:42)

Now, this one says that suppose you are at time 0, when x is equal to 0 and you and you

are in the off state and you press the switch at time 0, you go to the lighted state and then

if you press the switch. Again within the next 3 time units you go to the bright state if

you do not press within the next 3 time units you go back to the off state. So, here if you

press it within the next 3 time units, you go to the bright state. If you do not press it

within the next 3 time units, you go back to the off state and in any case, at the bright

state, you press the switch again, you go back to the off state ok. This is how you specify

a model or real time embedded system.

(Refer Slide Time: 30:44)

Now, we come to another important aspect many real time embedded systems are control

systems that it controls because it many real time in many embedded systems control a

bigger physical system right. So, these are control systems. For example, let us consider

a simple one sensor one actuator control system. So, here you have a sensor here you

have an actuator here you have a plant the physical system and here this red dotted box

you have the controller inside that. Let us say this is a simple cruise controller in your car

and the objective of the cruise controller is to maintain the speed of the car at say 40

kilometres per hour.

So, my reference input here is 40 kilometres per hour at which I want to keep the speed

the this reference is input is analog to digital converter and r k is the input to the

controller computation and let us say this plant is our car and this one the sensor is our

wheel speed sensor. And therefore, y t tells me what is the current speed of the car and

that is ad converted and we get they k, which is the current speed of the car and then the

control of computation tells me what.

 Firstly, it checks what is the error. That means, this was the desired speed and this is the

actual current speed and therefore, what is the difference in speed and let us say after that

this U k tells me how do you change the throttle of the car so, that the speed of the car

can reach the desired speed.

So, this U k is the digital output corresponding to the thing that, you want to say what is

the throttle that is needed to change the speed to the desired speed and that is again

digital to analog converter and this output goes to the actuator which is the plant. Again

the car and the throttle is changed and again we go on doing and go on checking what is

the current speed what is the desired speed, what is the error and what should be the

throttle and this goes on in the control system and this controller, if it correctly functions

will be able to effectively control and maintain the speed at around 40 kilometres per

hour.

(Refer Slide Time: 33:18)

Now, let us now take a deeper look into the control law computation or the control task

that we had remember that in the model before the control computation is a functionality

and it will be modelled in terms of a finite state machine and that will be converted into a

code sequential that is also a sequential model of a formal sequential model, which is in

the form of a program or code and that code will finally, be at will be referred to as a task

or control task and will run on a processor.

Let us take a look at this control task. So, what is happening in this control or

computation or this control task, we set the timer to interrupt periodically with a period

T. So, every T in units of time, I check what is the current speed of the car. Say at each

time what interrupt we do analog to digital conversion of y to know in T in the digitized

version of the current speed, then we compute the control output.

So, that the current throttle needs to be computed and output, the output u is then digital

to analog conversion converter and we feed it to the actuator this is what is happening

again and again every time period t. Therefore, t is called the sampling period. After

every after every sample period interval, you are checking certain parameters of the

physical system. For example, here the speed of the car T is a key design issue.

Why is it is? It is a key design choice because, suppose you check the speed of the car at

long intervals of time, then the speed of the car can from it is desired speed by a large

amount, which you do not want on the other side let us say you check the speed of the

car extremely frequently.

And therefore, the computation has to be done very frequently which will require a very

powerful computer or a platform on which to do the computation which may be un

required which may be not required for the system that you have and because it is

sufficient to let us say check the speed of the car every mm say 500 milliseconds or so or

1 second. You do not need to do it every let us say 1 millisecond hence the value of T is a

key design choice typically the range for T could be between 10 seconds to milliseconds.

(Refer Slide Time: 36:04)

Now, with this understanding of the control task we go deeper into the issues of few

issues related to control tasks to a real-time control task. So, task as we understood is a

sequential piece of code tasks require resources to execute, it will require memory, it will

require CPU, it will require non-critical section or non-pre-emptible resources it will

require network to communicate with others. So, therefore, tasks will require resources

to execute it is a piece of code which will require resources to execute.

So, in the design phase after we have we have found out the tasks in the design phase we

choose we choose resources for example, appropriate CPU’s appropriate network

protocol appropriate disk or memory etcetera. We choose and then schedule and map the

tasks on to these resources because multiple tasks may use these resources. Therefore,

we have to schedule and map the tasks on the resources and we said that the task is this

piece of code and this task is executed repeatedly every T time period. So, T is the

sampling period and every T time units. I am executing this task once. So, job is such an

instance one instance of the execution of the code of a task.

So, job is an instance of a task release time of a job the time at which the job becomes

ready to execute is called the release time of the job, absolute deadline of a job, the time

instant by which the job must complete execution is called the absolute deadline of the

job. And we also have a relative deadline of the job which is the deadline relative to it is

start time all these parameters in the form of an example.

(Refer Slide Time: 38:14)

Let us say you have a job the job is released at time 3 the start of the job happens the

actual start of execution of the job happens at time 5 and the completion of the job

happens at time 9 and the deadline before which the stipulated deadlines before which

the task should complete is 10. So, the job is released at time 3 it is absolute deadline is

10 it is relative deadline is 7. Why it is 10 minus 3? It is the deadline relative to it is start

time.

So, it is deadline is 7 and it is response time is 6. So, sub after the release of the job when

does the output of the job visible output from the execution of the job visible at time 9,

the output is visible and hence the response time is 6.

(Refer Slide Time: 39:11)

Now, we come to the definition of a real time periodic task. These tasks, these repetitive

tasks where the jobs come again and again could be of different types. It could be

periodic a periodics sporadic different types, we will look at them, but currently we take

just a look at periodic tasks, which we saw just now that at exact fixed intervals at

intervals inter arrival job inter arrival time of the jobs are fixed and constant.

So, one instance of the job comes every p time units here a periodic task whose

execution time is e and the that the task or job comes the job comes every p time units

the jobs repeat regularly period p is the inter release time, p has to be greater than 0.

Obviously, execution time e is the maximum time that the job can take you.

Remember that, before the execution of the job we do not know exactly how much time

the execution will take. Because, it will depend on the resource the task is executing the

actual time will vary on the data as well. The input data to the program because it can

have different control parts to the through the program so, the actual time is not exactly

known. However, we can have an estimate of the time that will that it will take in the

worst case called the worst case execution time and it has to be something that is

between e and p.

The execution time if it is more than p, it will never be able to complete before the next

job arrives. Hence, execution time the worst case execution time has to be between 0 and

p and then the utilization u is equal to e by p utilization u is a measure of what part of the

capacity of a processor that that I need to allocate for executing this job. For example, if

e is equal to p then U becomes 1, which means that one processor has to be dedicatedly

allocated for the execution of the job. If U is greater than 1, then e becomes greater than

p and the job can never satisfactorily then the jobs or the tasks can never satisfactorily be

executed on this processor.

So, here is an example of a task in with where we have shown 3 jobs. So, this periodic

tasks arrives every 5 time units and it has to be executed after it is arrival within 5 time

units. So, the first job executes at between 0 to 1 the execution time is obviously 1 in this

case the second job executes between 6 and 7, and the third job executed between 11 and

12 in this example.

Multiple tasks can execute on the same resource as we said. So, a resource can be shared

among multiple tasks and when a multi when multiple task share a single resource, we

have contention for the shared resource who will execute when who will execute earlier

who will execute later that has to be decided. We need to have we need to decide a

sequence of execution for the jobs of different tasks on this shared resource.

(Refer Slide Time: 42:45)

So, how do we understand whether a particular task or a set of jobs all jobs that are that I

have that I am executing on a resource will always meet, it is required constraints in the

form of say deadlines and stability. So, that is analysed through a mechanism called

schedulability. So, schedulability what is it? It is a property which indicates whether a

real time system or a set consisting of a set of real time tasks can meet their deadlines.

So, deadlines in the form of latency that is worst case system response time to events;

that means, after let us say the event an event can be the arrival of a job. So, after the

arrival of a job can I say that given these set of tasks, I will always be able to meet the

deadlines requirement.

So, given that a task arrives every 4 time units. Say, if it is arriving at 0 can I always say

that it will always be able to finish before 4, when it arrives at 4 can I say that it will

always be able to finish before 8 when I have 1 task in this case. For example, I possibly

will be able to say that yes I have just one thing to do only one task and I have 4 units of

time and I will be able to always meet it.

But, how do I say when I say I have 2 tasks; one task it has execution time one comes

every 4 time units and another task execution time of 2 comes every 5 units. What is the

mathematics that will allow me to say that, yes these 2 tasks together all jobs of these 2

tasks together will always be to meet all deadlines on a given resource.

What happens when I have 3 tasks now? So, we have to study how schedulability

analysis is done. So, in the face of and be able to say what will be the maximum latency

and the latency constraint will be met and whether with the system will be stable whether

this schedule will be stable. That means, during overload stability during overload and

means that the system will meet will be able to meet critical deadlines even if all

deadlines are not met.

So, stability tells me that when I have a overload and what is the meaning of overload;

that means, that the task that I have a many tasks have arrived and I cannot meet all

deadlines the total utilization has become more than the capacity. Do I my does my

schedule meet the stability criterion? Meaning that, can I still meet deadlines of critical

tasks if even if I am not able to meet all that is an analysis which is done through

stability, it is called stability analysis and we will look at it.

 (Refer Slide Time: 45:54)

Now, I will digress from the definition of from embedded systems to what are called

cyber-physical systems and IoTs I am digressing here because, in the subsequent

lectures. We will no more going to speak separately about cyber physical systems or

IoTs. But these are these discussions are relevant to embedded systems design because

they are so they cannot be they can be called certain generalizations of embedded

systems itself ok. So, or specializations of embedded systems itself, what is a cyber-

physical system an embedded system?

If we look at it is a computation and a physical system, I have a physical system and a

computing platform controlling that physical system that is an embedded system. Now, a

cyber-physical system is a cyber-component controlling a physical plant and how is the

cyber component different from the computation component of an embedded system.

Now, the cyber component not only includes computation, but also network or

communication between components. So, there can be multiple computing platforms

which communicate between through a network among themselves.

For example, you may have multiple components each having it is own computation

capability within a car and they may collaborate with each other and produce results for a

third component.

For example, let us say that I have this physical plant car and like in the previous

example I have sensors which take physical parameters from the car; one is let us say the

current wheel speed and the other is, let us say the current air fuel mixture in the fuel

injection system. So, this is the this sensor computes the air fuel current air fuel mixture

in the fuel injection system and this one computes the our previous as our previous

example, this one computes the current speed of the car and generates the throttle that it

needs to generate to go to a desired speed.

Now, the computation 3 here then let us say compute computation 3 and computation 2

together then let us say tells me what should be the change in air fuel mixture in the fuel

injection system so, that the desired throttle can be achieved. So, therefore, this cruise

control system and the fuel injection system they collaborate with each other to

determine what should be the final the talk with each other over a network to determine,

what should be the final air fuel mixture and that is again the actuator out the actuator

output and produces the final required air fuel mixture and that is fed to the physical

plant again that is a car.

So now, we have just have we have gone from embedded systems to cyber physical

system just to mean that the computation par part is not on the computation, but it is

cyber which includes a network communication along with computation and it controls

the physical component. So, this is a cyber-physical system.

(Refer Slide Time: 49:21)

And, what is an IoT or an internet of things again IoT can be defined as the use of

internal technology for cyber physical systems. Here the term IoT includes the technical

solution internet technology in the problem statement connected things. So, these things

are could be defined as individual embedded systems with the computing capability.

Now, these things communicate over the internet to do something that something which

includes both of them, but is different.

For example, let us say you have a wearable medical embedded system on a person’s

body which finds out the current mood of a person and you have another embedded

system. Let us say, a light which can which can automatically dim itself our torch light

example, for example, which can automatically dim itself or brighten itself.

Now, let us say both these things are connected to the internet and we have a third

system comprising which includes both these systems that is the wearable device and this

hour programmable light. These 2 systems that I have it together and depending on the

mood of the system what does this third system, which includes these 2 system does this

third system is essentially the IoT system.

So, what is this third system doing? It finds out the mood current mood of a person and

brightens or dims the light, it is an arbitrary example, but it tells you that it is the IoT is

the system that includes these things and provides a solution using internet technology.

So, IoT is the use of internet technology for cyber-physical systems and again if we come

back to this in the term IoT. Therefore, includes a technical solution the technical

solution is that the system will be able to automatically dim or brighten the light will be

able to automatically dim or brighten depending on the input provided by the variable

device that tells me the current mood of the person.

So, the term IoT includes a technical solution internet technology in the problem

statement connected things. So, why is such connectivity important?

(Refer Slide Time: 51:54)

In embedded systems, in the products related to embedded systems, because of various

reasons and we jot down a few of them because, IoTs are going to come in a big way and

all embedded systems designs may have to consider the component of connectivity and

IoT in their designs. So, connectivity is important why manufacturers can add value to

their products through connectivity.

Let us say, it allows customers to remotely connect to and control and monitor their

products say through apps.

For example, let us say I have an app which can control the AC in my home even

remotely. So, I am in a car 10, 10 minutes away from my home and I say through an app

that I have to on the AC. So, that when I actually reach home I have a cool room.

So, customers can remotely connect to control and monitor their products through say

apps it provides APIs to allow third parties to develop additional connections to their

products. So, if you have big systems which has which includes many systems say a

smart home system and in the in that there are various components in it various small

small systems and third parties providing these components, then third parties can

automatically provide updates on these components and provide value-added services.

So, it can provide APIs to allow third parties to develop additional connections to these

products ok.

So, I have a system of systems and it allows APIs and these APIs I can have additional

connections to these products, why will this product it expands a product value by

offering not only new functionality but also new ways of interacting with it. Suppose, I

can allow an API to update my system so, third parties can update my system and

enhance it is functionality this is what I come to in the next. So, it allows easy product

updates.

Upgrades will increasingly deliver be delivered via software for example, over there

updates for model S of them of the electric car company Tesla Autopilot. So, the

autopilot update is a software the autopilot update is a software which can be provided

over the air. So, over internet in the at night, let us say the car can be the autopilot can be

updated autopilot of my car it is sitting in the garage, but over the air over the internet

my autopilot software of my car can be updated.

So, all my systems nowadays are softwares my suspension the correctness of suspension

everything are softwares and they can be automatically updated over the end, if I allow

IoTs or connection through the internet.

 (Refer Slide Time: 54:59)

It will allow, additions addition to allows value addition to services offered with product

services can take advantage of cached data generated by an IoT product and stored in say

the cloud. For example, let us say you have a steel plant and that steel plant is an IoT

because various portions. It is an industrial IoT where various embedded computers are

coordinating among each other and taking the design from raw material to manufactured

steel ok.

Let us say, now the data corresponding to various parameters at different stages of

development of the steel is taken and put into the cloud for better analytics.

For example, combined with data analytics these services can become secret recipes that

gives competitive edge to the manufacture. It will help to draw conclusions from the past

and make predictions about future with respect to the steel plant. Let us say, it can say

that why certain design processes at certain times consume higher amount of energy, it

could detect that energy consumption is too high under certain conditions during steel

manufacture and find ways to improve our products efficiency.

Now, therefore, this because it is connected through the internet to the cloud it allows

better data analytics and hence efficient ways of correcting the behaviour of the system

the performance of the system.

It could help explain why a certain part is failing often and suggests design changes to

avoid the problem how can this why can this happen because, my data from the product

is continuously being taken to the cloud and I am being able to analyse. So, due to such

analytics in the cloud, I am being able to explain why a certain part. Let us say, is failing

and we can suggest changes to avoid the problem.

(Refer Slide Time: 57:09)

It can also allow predictive connectivity can also allow predictive maintenance the

manufacturer could detect when a part is about to fail. Before it actually fails and

scheduled maintenance during a planned downtime. For example, let us say a certain

component in an aircraft starts showing signs of failure. It does not actually fail during

the flight and then over the internet over connectivity, it can tell to say it is a Boeing

aircraft. It can tell the Boeing of service team that a certain component is has started

failing as showing signs of failure during flight.

So, how does that happen it the sensors in the sensors in the aircraft capture and send the

data and then the data analytics detect the failure the tailored solution triggers, a

breathless process automatically the tailored solution tells the service team that there is a

failure. And then, the field representatives are ready and the servicing is done whenever

let us say, the plane lands on a certain airport before actually the failure is has happened

the servicing has been done at the airport. Once the aircraft has landed, this is why

connectivity, this is how connectivity has helped in here, it can allow predictive

maintenance.

(Refer Slide Time: 58:34)

Providing service to systems consisting of products from multiple manufacturers, this we

already saw that a system can be may be made up of many other smaller systems. And

hence a manufacturer or a third party system level integrator could monitor the

performance of each device in the system and it can adjust device parameters and

behaviour to optimize the performance of the system as a whole.

So, it may allow if you have multiple smaller systems all these smaller systems can be

can be monitored to can be monitored and monitored and the parameters adjust so, that

the entire system as a whole can perform better.

It can also allow newer business models for example; customer can pay for proactive

maintenance services as we told. Let us say, for the Tesla car autopilot if proactive

maintenance is done the customer may need to pay some service to some money for that

service. It can also allow product as a service. For example, you have an embedded

system that you have a physical system. For example, it is a battery charging station of

your car, which is about to come for your electric car.

Now, this is attached with an embedded computing device which can then which can

schedule the service that is the charger that is the charging service to various cars. Then,

this product that is discharging system becomes a service, you do not require a personal

charger for your cars battery, but you can take the charger as a service discharging, as a

service this product now is available as a service.

So, the customer subscribes to the product instead of actually buying it, he subscribed to

the product that is the charging and pays a fixed amount on a predetermined schedule on

a specific time at a on a specific time of the day or month or annually or quarterly he can

schedule for charging of his of his car’s battery from a nearby say charging station.

And, because this charging station is has an embedded system and IoT device, which is

connected to the internet it can accept such requests and it can provide a schedule of

when a certain car will come for service, that is cars come for charging through the chart

through the cars charger sorry to the charging station for getting his battery charged, ok.

With this introduction to embedded systems and cyber physical systems and IoTs, we

come back to embedded systems design and what we will do in the rest of the lectures of

this designs course.

(Refer Slide Time: 61:48)

So, the embedded system design phase starts with the specification with the

decomposition of the functionality of the system into controllable smaller modules and

formally defining the behaviour of each of these modules in the modelling phase. After

that, we have an architecture selection phase where the choice of processing elements;

that means, we are which type of general purpose processor or a custom made processor

or a semi-custom made hardware will be use.

For example, we can use an FPGA we can use a dedicated hardware. We can design an

ASIC application specific integrated circuit or we can use a general purpose processor

what kind of memories will be used. What kind of interfacing, say Nuart what kind of

interfacing we will use what kind of communication buses or interconnection networks

will be used. All this has to come in the architecture selection phase.

Then from the architecture selections after the architecture selection is done we have to

map the functionality to hardware and software where hardware mapping to hardware

will mean that functionality has for that functionality. We need to make a dedicated

hardware or an application-specific integrated circuit for mapping to software, say we

may mean that we will write c codes for those function unity and executed execute it on

a general purpose processor. So, that will be mapping the functionality to hardware and

software and then we will do an integrated system level design.

So, we will have an entire system after that, which will include certain say hardware

components or certain software components and how they communicate among

themselves design of an integrated system such that end to end performance goals can be

satisfied. After the design, we have to prototype the system, we have to test verify and

validate the system. So, this is an overall glimpse of the design process of an embedded

system.

(Refer Slide Time: 64:00)

So, after such a design is done we get a complicated system such as this where let us say

we have a general purpose CPU containing 2 tasks task 1 and task 2 we have a dedicated

core processor let us say a GPU which has another task. So firstly, we have the tasks

which have been modelled. So, after modelling we get these tasks and these tasks are

then mapped and scheduled on these processors.

So, the subsystem A and subsystem B are say custom made assets for tasks which need to

be implemented in hardware because the performance goals are (Refer Time: 65:01) that

let us say cannot be implemented in software on a general purpose processor.

For when multiple tasks are on the same resource in the same CPU, I need to schedule

the tasks on the resource because multiple tasks are going to content for the resource I

may require DSPs Digital Signal Processors, I will require a communication medium to

talk among different components, I may need to have buffers for incoming data.

So, it has to it may have complex interactions say periodic aperiodic interactions with the

external world. It may have many possible inputs complex app in the application

programs can be very complex and hence its needing. For example, here are dedicated

hardware it may have complex pipeline structures etcetera ok.

Now, given this total integrated design, we need to verify that validate that end to end

performance goals will be satisfied for real-time embedded systems validation mostly not

always is almost always linked to satisfying constraints on time. For example, let us say

that we have our original cruise control system and the control system requires data

acquires data at the rate of n samples per second.

So, our cruise control system acquires data from the wheel at the rate of n samples per

second then one performance validation goal could be that can we ensure that each data

item will always be processed in less than 1 by n seconds. Because, every 1 by n seconds

a new censored input is going to come. And if we do not process it within less than 1 by

n millisecond the input sense data will be will come at a higher rate than it can be

processed.

So, to some to certain extent, I can solve this problem using buffers, but not if not the if

this continues continually; that means, the processing cannot be done for a long intervals

of time at times less than 1 by n seconds or let us. So, we can say that if we can always

process within less than 1 by n second, then I will not require a buffer at all this design

will not require a buffer and all these timing issues needs to be solved in the face of

various constraints.

(Refer Slide Time: 67:21)

For example, micro architectural integrates if the processor let us say, has out of order

execution then the time that will actually be required will depend on the dependency

among the instructions. Say, resource contention among programs running on the same

processing element that has to be solved through proper unit processor scheduling

resource contention among programs running on different processing elements. It will

require multi-processor scheduling contention due to other shared resources.

For example, last level caches. So, my instruction was a hit or miss on the cache, it will

depending on the hit or miss the time required for an instruction will change. So, the

timing issues have to be done the timing analysis has to be done in the face of all these

things.

Communication times over the bus and interconnection network what is the time it takes

for the messages to pass over the bus. So, how do you schedule it? You need to schedule

messages on a shared bus as well and find out in the worst case how much time it will

take to transfer a message.

Also, a synchronously coming interrupts from peripheral devices certain interrupts come

and stop your processing. So, even in the face of that, what is the bound on the time that

certain events will take. So, timing analysis has to take care of all these issues and we

will see and we will have an overview over the lectures as to how the design takes care

of all these issues. With this, we come to the end of this lecture. Before ending, will I

will just say, I will just tell you the books.

(Refer Slide Time: 69:07)

So, these are the books that you may refer for this course along with the lectures;

embedded systems design a unified hardware software introduction by Frank Vahid,

introduction to embedded systems Lee and Seshia embedded systems and software

validation Abhik Roychoudhury, hard real time computing systems Buttazo, real time

embedded systems Qiu and Li synthesis and optimization of digital circuits will majorly

require when we talk about hardware design by Giovanni De Micheli. So, with this, we

come to the end of this lecture.

