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Welcome to the first lecture on embedded systems design. 

(Refer Slide Time: 00:34)

to start let us define the premise of what we are going to study in this course. We are

going to study embedded systems. So, computers are no longer isolated desktop entities

with  a  monitor  with  a  CPU  and  a  keyboard  only.  They  have  been  they  have  got

integrated into our lives via various gadgets and systems that we directly or indirectly

use. For example, microwaves, washing machines, mobile phones, automotive control

systems, our cars, flight control systems, the smart power grids etcetera.

So, what are these computing devices? What are these what are the characteristics of

these  systems?  These  are  embedded  systems  are  embedded  computing  systems.  An

embedded system is  a device or system that  includes  a  computer, but is  not  itself  a

general purpose computer. So, therefore, you have a computing capability within which

is  embedded  within  your  microwave,  but  your  microwave  does  something  else  the



computer is inside, which takes your programs as to how to cook your food, washing

machines can operate in various ports.

So, therefore, you have a computing platform inside the washing machines as well. So,

therefore, these are computers as components within bigger physical systems.

Now, if we look at the examples that we showed here, we have seen essentially simple

devices  simple single devices  like  microwaves,  washing machines,  mobile  phones  to

very complex devices like automotive control systems and flight control systems and

even big  geographically  big distributed  systems like  the  smart  power grids,  whereas

smart power grid will have a generation side, a transmission side, a distribution side and

consumption of electricity from generation to consumption of electricity.

And let us say, our computer within that embedded computer within computes at each

point  in  time.  What  is  the  real  time  balance  of  the  power?  For  example,  if  I  am

generating a certain amount of power and consuming another amount of power in real

time, what is the balance in power that we have in the grid and ideally it should always

remain  balanced.  So,  those  computers  are  come that  are  embedded  within  such  big

systems will also be called embedded systems. So, it is not only a single device, it can be

embedded into a bigger distributed system as well.

(Refer Slide Time: 03:28)



So, what are the typical characteristics of embedded computing systems? Let us consider

this taking an example of a pacemaker; that is, let us has to be placed in a heart of a

person. What does a pacemaker do? A pacemaker generates electrical impulses through it

is  electrodes  so  as  to  compensate  for  missing  pulses,  which  are  generated  naturally

within the heart.

So,  let  us  say  the  objective  of  our  pacemaker  would  be  to  generate  artificial  heart

impulses. Whenever, the natural sequence of impulses are not are not periodic enough or

the  frequency  is  not  adequate  enough  the,  this  our  pacemaker  has  to  come  up  and

compensate for the impulses that could not be generated naturally.

So, therefore, what are the design constraints in this system? It has to have it has to

minimize delay why? Because, we said that, whenever the heart meets misses, fails to

generate impulses, I should the pacemaker should come in and generate impulses. So,

therefore,  I cannot  because,  this  is safety critical.  I  cannot  say that,  I  got delayed in

generating an electrical impulse. I should be always be able to generate impulse within a

given certain interval of time. So, if it is missing an impulse within a certain period of

time, I should be able to generate the artificial impulse. So, it should minimize delay.

It should minimize area the computing platform, should minimize area why because, it

has to be a small device placed within the heart. So, it cannot be big it has to minimize

power. So, these pacemakers should remain in your heart at least for say 10 20 years. So,

the  battery  has  to  be  capable  enough  to  run  for  10  15  years,  20  years.  Hence,  the

consumption  of  power  by  the  computing  system  has  to  be  low. It  should  improve

verifiability meaning that, the design of the system is safety critical.

So, we should be able to verify that the design meets all the specifications requirements

that we have put up before the design. So, I have certain properties the design should

meet,  certain safety properties,  certain  functional  properties,  energy etcetera all  these

properties  is  the  design  meeting.  So,  I  my design  should  allow the  verifiability  and

coverage of all important properties that the system should satisfy.

We should have algorithms for better yield. So, how can we have algorithms? It should

be fault tolerant as well. The system should be fault tolerant as well. The design should

allow late testability of the manufactured system. So, I should have certain points in the



in  the  system through  which  ports  in  the  system through  which  I  can  test  that  the

implemented system the manufactured system is working correctly.

So, it should allow design for testability and last but most important, it should be low in

cost,  it  should  be  available  to  the  masses.  So,  the  manufacturer  product  cannot  be

extremely costly. Hence, all these design constraints need to be taken into account when

we are designing an embedded system such as a pacemaker.

Therefore, if we on the left, I have jotted down a few on the left, I have jotted down a

few typical important factors that an embedded design has to take care. For example, the

computers the embedded computing systems that we use may have stringent resource

constraints.  They  may  be  compact  systems,  may  be  some  single  simple  processors

because, again I said it has to minimize area, it has to minimize power.

So, it cannot be very complicated. It may many a times it may have simple processors

limited memory within which I have to meet the performance criteria such as minimize

delay as well.  It  has to be reactive meaning,  high performance minimize delay, high

performance. So many embedded systems need high performance.

It has to be real time meaning that it has to be predictable. So, when I it has to be able to

say that when the heart misses an impulse at say, time x within time x plus 10, I should

always be able to generate an artificial impulse from the pacemaker. Therefore, it has to

be real time meaning that,  it  has to be predictable.  It  should has ensured worst case

response times, it should be fault tolerant, it is a safety critical device placed within the

heart.

So, one module malfunctions. Then, another module at least there has to be a failsafe

state, where maybe even at reduced performance. It performs, it is able to function, it

does not completely crash. So, it should be tolerant to faults in the different modules of

the system.

It should consume low power as we talked up for the pacemaker and it should have short

time to market. So many for many embedded systems the time to market becomes very

short. Because, you we have discussed discovered an use case for a certain embedded

device.



For example, let us say, a new type of digital camera we want to design and put in the

market. So, if I take a long time to design and bring it to the market, the need for the

device may go, may not exist anymore. So, therefore, it has to have quick time to market

as well. So, these are all different design issues that are related to embedded systems.

Now, to satisfy all these design issues, the design has to be automated. I cannot do an

hand design of complex embedded systems and be able to satisfy all the different issues

that we talked about in the last slide, hence, we require computer aided design.

(Refer Slide Time: 10:07)

So,  modern  designs  are  too  complex  to  be  developed  manually  increasing  levels  of

integration of devices on a substrate. Now, we have platforms or chips which contains

multimillion  gates,  where  extreme  high  levels  of  integration  within  the  chip  and

therefore, that we have diminishing cost of transistors. So, the amount of functionality

that  we  can  put  into  a  chip  is  increasing  and  therefore,  more  and  more  complex

embedded systems are being designed and these complex embedded systems are difficult

to design manually.

We have higher efforts towards system level integration. Now, we are designing a SOCS.

For  example,  our  mobile  phones  contain  processing  units  processing  platforms  that

contain  say  our  general  purpose  processors,  special  purpose  processors,  power

management  units,  RFID.  So,  some  are  analog,  some  are  digital  and  they  are  all



integrated on to the same substrate. So, they are on to the same board. Hence, we are

talking about systems on chips systems on boards the.

Why do we have higher levels of integration? Because, high levels of integration reduces

the number of components and such reduction in the number of components enhances

performance because, our component to component communication delay will reduce the

failures. if you have a components in the same module or the same chip, the chances of

failure are also reduced during let us say the communication.

It reduces design costs, it improves reliability, CAD provides a systematic step by step

design procedure. Another reason why computer aided design is used is that, because it

allows a systematic step by step design procedure, handmade designs can be Adhoc. We

may think that we are doing a very good design, but if it is not systematic and step by

step, our design process may not produce optimal results. Hence, we need CAD which

provides  a  systematic  step  by  step  design  procedure  from  initial  requirements

specification to the final implementation.

So, first, before the embedded system is designed, we only have initial English language.

Let us say, these are the requirements that my device should satisfy. These are the kinds

of requirements specification; we have these are hazy it is not formally defined from that

English language, incomplete specification. We need to formally step by step computer

aided design steps take us to a formal modelling design and implementation.

 (Refer Slide Time: 13:02)



Higher integration has led to huge power dissipation, because we have multimillion gates

for chip we have higher integration on the same chip. So, power dissipation may be for

example, through leakage, through the transistors, through the many transistors in this

highly integrated system has increased it is generating hotspots which because, leakage

power generates high temperature and higher temporary, higher chip temperatures may

induce faults in the system which are called hotspots.

So, if at a particular point in the chip the temperature rises, suddenly you create hotspots.

So, the design should take care that hotspots are not there and this may not be possible

through  handmade  designs.  So,  computer  aided  design  again  helps  us  there  focus

towards low power design at each stage. So, that can be done only through systematic

computer aided design.

There is a distinct paradigm shift towards fault tolerant designs. Even simple devices for

example, our pen drives. Now, come with now, now are starting to come with certain

quantifiable levels of reliability, say it will  run for these many these many reads and

writes ok. So, safety critical embedded systems such as variable healthcare devices, all

these  things  even  simple  designs  as  I  said  are  coming  with  quantifiable  levels  of

reliability and hence these designs need to be fault tolerant.

Increasingly, stringent  design matrix  as we talked about  the space  pacemaker  that  is

performance sensitive, small in size, low power, fault tolerant, verifiable, testable, low

cost. So, all these design constraints are very stringent to build to bring together.

So, we need designs that satisfy all these constraints which is very stringent to meet and

handmade designs may not be sufficient to do all this. So, therefore, we need computer

aided design again and we need efficient algorithms at each stage of the design because,

why because, the design space is very huge meaning that, satisfying all these constraints,

the there can be a number of designs that satisfy all these constraints and we have to

choose that design point which is optimal. Therefore, we need efficient algorithms for

doing this and hence again computer aided design.
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Now,  therefore,  how  do  such  automation  proceed  in  a  step  by  step  fashion  such

automation proceeds through 3 distinct steps. So, computer aided design typically in an

embedded  system  typically  proceeds  through  3  distinct  steps  modelling  design  and

analysis.  So,  what  is  modelling?  Modelling  is  the  process  of  gaining  a  deeper

understanding of a system through imitation. So, we do not build the entire system, but

somehow we imitate the working the functionality of the system to understand what it is

output should be sometimes, when such models are very nicely and formally specified it

allows according by construction synthesis procedure to and implementation as well.

However, modelling again essentially is the process of understanding the system. So, it

makes an abstract system, we do not build the actual system the properties that we think

are important we model the system with those properties and check whether the, if the

design can satisfy those properties are not. So, models express what a system does or

should do. So, it describes the functionality of the system in a systematic manner.

Now, after modelling comes design, design is a structured creation of artifacts. So, in the

modelling phase, we have described the functionality or the tasks that the system should

do and what is the sequence of tasks that the system should do. Now, all these tasks must

be suppose executed on a computing platform. It will need a processor, it will need to

store data, it  needs input data and it needs to store output data. Therefore, it requires



memories. It needs to communicate with other components and with the external world

and hence it needs communication devices such as buses.

So, all these are artifacts, which need to be chosen depending on what is the functionality

that we need to implement.  Therefore,  after  the functionality  is defined and we have

chosen the artifacts  to  implement  those functionalities,  we get  a design and we also

specify in the design what will be the sequence of activities say, of let us say many tasks

that we are we have implemented on a particular artifact say a processor ok. So, this

encompasses the design therefore, the design specifies how a system does, what it should

do.

Finally,  after  the  design,  we  have  come  up  to  a  first  cut  design.  Let  us  say,  after

modelling and we have come up with the first cut, cut design of what should be the

artifacts  that  should implement  those design.  We need to analyse whether  the design

meets.  Say,  the  performance  constraints  the  other  non-functional  constraints,  say

constraints on energy consumption etcetera.

So, that is done through a process called analysis. Analysis is the process of gaining a

deeper understanding of a system through dissection ok. Through dissection and finding

out at each step why a system is performing in a certain way. So, therefore, it specifies

why a system does, what it does or fails to do what the model says it should do.

Now, if it finds out, when it finds out why a system let us say fails to do a certain thing, it

may be for example, because a function cannot be displayed or cannot be implemented

on  a  certain  type  of  processing  platform.  Let  us  say  and  we  need  to  change  the

processing platform; that is what our analysis says.

So, therefore, we need to go back to the design and change the processing platform and

then come back and do the analysis again or it may find out that the requirements that we

had specified are incorrect and no matter what kind of, design artifacts you use. Those

requirements that we had specified in the model itself cannot be used to do the design.

So, therefore, we need to correct the mod a correct at the modelling phase itself.  So,

analysis now tells me that whatever requirements, you had told in the modelling phase

was not correct. So, the functional model was not correct. Therefore, we need to correct

the functional model do a redesign and then do the analysis again.



Hence, the 3 phases are overlapped and iterative. So, we go for a modelling to design to

analysis we after design, we can come back to modelling change the model go back to

design or from analysis, we can go back and do a redesign or a remodelling ok. So, these

are the different design phases.

Now, we come to  model  based  development,  the  first  phase  of  design  that  we told

modelling we come to model based development the models are abstract and high level

descriptions of design objects.

(Refer Slide Time: 20:42)

It  shows relevant  features  without  the  associated  details  just  to take an analogy. For

example, let us say your Google maps, that you use every day is a model of a certain

geographical area. It does not take into details. Let us say that terrain, may not take let us

say that terrain, the exact water bodies many details of the actual geographical region, it

will just not take into account. However, it will take into account what is important for it.

For example, the road network the distance between 2 places etcetera. So, this is a model

the, your Google maps is a model of a region for a certain purpose.

For example, to find out what is the distance between 2 places and that it adequately and

nicely does hence models are abstract and high level descriptions of design objects this is

same for example, let us an embedded system the example I took during the during the

intro  video that  of  a  car  parking system,  that  in  a  car  parking system,  you need an

embedded system that keeps into account the number of cars at any given time and we



build a finite state machine to which in; which the states are the number of cars at any

given time and the transition represent a car going out or a new car coming in it does not

model the actual car parking system.

However, it has a machine which it is a finite state machine model, which has relevant

details  relevant  features  to  model  the  computing  embedded  system that  we want  to

design a program or an embedded computing system that keeps into account at any point

in time the number of cars. Therefore, models show relevant features without associated

details.

However, models if nicely stated can be rigorously validated. So, if I have a formal let us

say a state machine design, then I can formally verify whether all properties are verified

whether all properties are verified can there be a deadlock with cars coming and coming

in and going out in the car parking system. So, I can verify certain properties like that

can an output of a data. We all will can always be received within say a certain time say

100 milliseconds.

So, these properties may be validated,  if  we have a formal modelling of the system.

Therefore,  models  can  also  be  debugged  and  revised.  It  allows  sometimes  it  allows

automatic generation of the final design, we will see 1 or 2 lectures later how modelling

can  allow  an  automatic  correct  by  construction  design  when  nicely  and  formally

specified well take an example of that.

Hence, model based development. What is the paradigm? You first model and then you

design you verify the correctness of what you have designed and then you debug and

then you may need to go back to the model other design and this may continue one or

more times and hence, the plus and after you have design. Hence, the plus over here and

after  you  have  ensured  that  the  design  is  correct  you  implement  it  on  actually

implemented on a platform manufacture it and then you validate the performance of that

is of the manufactured or implemented system the prototype system or the manufactured

system.

So now, we come to a bit more details on FSM based behavioural modelling.
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So, what does behavioural modelling behavioural or functional model? It is a control

flow among components. It tells what are the distinct states, that an embedded system

can be in and how the change of states can occur. So, there are different modelling of the

behaviour; one is the functional modelling which it tells what are the functions that it

should do. You can also model the architecture and get a structural model. So, it which

will tell you the interconnection among components and finite state machine is an very

important behavioural modelling formalism which we will study in this course.

So, in a finite state machine, the system moves from discrete step in discrete steps from

one state to another by executing transitions. So, as I told you before as well, the states

tell you the static properties or it denotes a specific valuation of system variables and the

transitions tell you the dynamic properties. It tells you how the change in states occur

over time.

For example, let us say that, we want to design a very simple torch light controller a

small embedded computing device that will be put inside your torch light. Firstly, the

switch is off and then you when you press the switch you get to the lighted state. So, both

off is a static property is a static state of the device, and then when you press the button

then it takes you to another static state, which is light that the torch is now glowing and

then you press. When it when you press it again, it again takes you back to another static

state which is off state, back to the off state.



So, this is how you this is this is a very simple example. But, it tells you that what are

the; what is the essential idea behind modelling of the functionality of a system using

state machines.

 (Refer Slide Time: 26:50)

A major  class  of  embedded  systems  are  real-time  in  nature.  So,  what  are  real-time

systems? A systems whose specification includes 2 notions of correctness a fond of it has

to be functionally correct;  that means, it  should provide correct outputs and it  has to

produce  those  outputs  within  time.  So,  a  system  whose  specification  includes  both

functional  as  well  as temporal  notions  of  correctness  logical  correctness,  it  produces

correct outputs and temporal correctness produces outputs at the right time, in a real time

systems are characterized by things like this.

It is not enough to say that breaks in a car were applied, you want to be able to say that

brakes were applied at the right time to make another more say this pertinent example,

let  us say you want to design the anti-lock braking system in a car. So, the antilock

braking system what it  does is  that,  it  allows the car to stop within a short  distance

without the car; car locking it is wheels and skidding. So, it avoids the skidding of the car

which happens due to the locking of the wheels. When you mechanically press the brake

very hard, how does it do? It releases the wheels within short spans of time after the

brake is pressed.



Now, let us say you have a design constraint like this. So, once the brake is pressed, after

the  brake  is  pressed,  you need to  release  the  brakes  within  let  us  say  the  next  100

milliseconds to stop the wheels from locking. Now, therefore, you have to complete the

functionality you have to do the computational job of releasing the brake from locking

and you need to do it within the next 100 milliseconds. So, this is a real time requirement

where you have a functional requirement that you have to complete a job and produce an

output, which is releasing of the brake and you have to do it within a certain deadline

which is 100 milliseconds in our case.

 (Refer Slide Time: 29:08)

Now, how do you model a real time embedded system? For example, let us take the torch

light. Example, a bit further our simple torch light now has 3 states one is the off state,

the one is the next is the lighted state and the further you have a brightly lighted state.

Now, what  do you want? If the press is issued twice quickly, then the light will  get

brighter. Otherwise, the light will be turned off the question is how quickly this model

does  not  specify  anything.  Now, how can you do it?  You have to  change the  finite

automata  to  a  timed  automata,  which  allows  the  specification  of  real  valued  clock

variables.
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Now, this one says that suppose you are at time 0, when x is equal to 0 and you and you

are in the off state and you press the switch at time 0, you go to the lighted state and then

if you press the switch. Again within the next 3 time units you go to the bright state if

you do not press within the next 3 time units you go back to the off state. So, here if you

press it within the next 3 time units, you go to the bright state. If you do not press it

within the next 3 time units, you go back to the off state and in any case, at the bright

state, you press the switch again, you go back to the off state ok. This is how you specify

a model or real time embedded system.

(Refer Slide Time: 30:44)

 



Now, we come to another important aspect many real time embedded systems are control

systems that it controls because it many real time in many embedded systems control a

bigger physical system right. So, these are control systems. For example, let us consider

a simple one sensor one actuator control system. So, here you have a sensor here you

have an actuator here you have a plant the physical system and here this red dotted box

you have the controller inside that. Let us say this is a simple cruise controller in your car

and the objective of the cruise controller is to maintain the speed of the car at say 40

kilometres per hour.

So, my reference input here is 40 kilometres per hour at which I want to keep the speed

the  this  reference  is  input  is  analog  to  digital  converter  and r  k  is  the  input  to  the

controller computation and let us say this plant is our car and this one the sensor is our

wheel speed sensor. And therefore, y t tells me what is the current speed of the car and

that is ad converted and we get they k, which is the current speed of the car and then the

control of computation tells me what.

 Firstly, it checks what is the error. That means, this was the desired speed and this is the

actual current speed and therefore, what is the difference in speed and let us say after that

this U k tells me how do you change the throttle of the car so, that the speed of the car

can reach the desired speed.

So, this U k is the digital output corresponding to the thing that, you want to say what is

the throttle that is needed to change the speed to the desired speed and that is again

digital to analog converter and this output goes to the actuator which is the plant. Again

the car and the throttle is changed and again we go on doing and go on checking what is

the current speed what is the desired speed, what is the error and what should be the

throttle and this goes on in the control system and this controller, if it correctly functions

will be able to effectively control and maintain the speed at around 40 kilometres per

hour.
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Now, let us now take a deeper look into the control law computation or the control task

that we had remember that in the model before the control computation is a functionality

and it will be modelled in terms of a finite state machine and that will be converted into a

code sequential that is also a sequential model of a formal sequential model, which is in

the form of a program or code and that code will finally, be at will be referred to as a task

or control task and will run on a processor.

Let  us  take  a  look  at  this  control  task.  So,  what  is  happening  in  this  control  or

computation or this control task, we set the timer to interrupt periodically with a period

T. So, every T in units of time, I check what is the current speed of the car. Say at each

time what interrupt we do analog to digital conversion of y to know in T in the digitized

version of the current speed, then we compute the control output.

So, that the current throttle needs to be computed and output, the output u is then digital

to analog conversion converter and we feed it to the actuator this is what is happening

again and again every time period t. Therefore, t is called the sampling period. After

every after  every sample period interval,  you are checking certain  parameters  of the

physical system. For example, here the speed of the car T is a key design issue.

Why is it is? It is a key design choice because, suppose you check the speed of the car at

long intervals of time, then the speed of the car can from it is desired speed by a large



amount, which you do not want on the other side let us say you check the speed of the

car extremely frequently.

And therefore, the computation has to be done very frequently which will require a very

powerful  computer  or a platform on which to do the computation which may be un

required  which  may be  not  required  for  the  system that  you have  and because  it  is

sufficient to let us say check the speed of the car every mm say 500 milliseconds or so or

1 second. You do not need to do it every let us say 1 millisecond hence the value of T is a

key design choice typically the range for T could be between 10 seconds to milliseconds.

(Refer Slide Time: 36:04)

Now, with this understanding of the control task we go deeper into the issues of few

issues related to control tasks to a real-time control task. So, task as we understood is a

sequential piece of code tasks require resources to execute, it will require memory, it will

require  CPU, it  will  require non-critical  section or non-pre-emptible  resources it  will

require network to communicate with others. So, therefore, tasks will require resources

to execute it is a piece of code which will require resources to execute.

So, in the design phase after we have we have found out the tasks in the design phase we

choose  we  choose  resources  for  example,  appropriate  CPU’s  appropriate  network

protocol appropriate disk or memory etcetera. We choose and then schedule and map the

tasks on to these resources because multiple tasks may use these resources. Therefore,

we have to schedule and map the tasks on the resources and we said that the task is this



piece of code and this  task is  executed repeatedly  every T time period.  So, T is  the

sampling period and every T time units. I am executing this task once. So, job is such an

instance one instance of the execution of the code of a task.

So, job is an instance of a task release time of a job the time at which the job becomes

ready to execute is called the release time of the job, absolute deadline of a job, the time

instant by which the job must complete execution is called the absolute deadline of the

job. And we also have a relative deadline of the job which is the deadline relative to it is

start time all these parameters in the form of an example.

(Refer Slide Time: 38:14)

Let us say you have a job the job is released at time 3 the start of the job happens the

actual  start  of execution of the job happens at  time 5 and the completion of the job

happens at time 9 and the deadline before which the stipulated deadlines before which

the task should complete is 10. So, the job is released at time 3 it is absolute deadline is

10 it is relative deadline is 7. Why it is 10 minus 3? It is the deadline relative to it is start

time.

So, it is deadline is 7 and it is response time is 6. So, sub after the release of the job when

does the output of the job visible output from the execution of the job visible at time 9,

the output is visible and hence the response time is 6.
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Now, we come to the definition of a real time periodic task. These tasks, these repetitive

tasks  where  the  jobs  come again  and again  could  be  of  different  types.  It  could  be

periodic a periodics sporadic different types, we will look at them, but currently we take

just  a look at  periodic tasks,  which we saw just  now that  at  exact  fixed intervals  at

intervals inter arrival job inter arrival time of the jobs are fixed and constant.

So,  one  instance  of  the  job  comes  every  p  time  units  here  a  periodic  task  whose

execution time is e and the that the task or job comes the job comes every p time units

the jobs repeat regularly period p is the inter release time, p has to be greater than 0.

Obviously, execution time e is the maximum time that the job can take you.

Remember that, before the execution of the job we do not know exactly how much time

the execution will take. Because, it will depend on the resource the task is executing the

actual time will vary on the data as well. The input data to the program because it can

have different control parts to the through the program so, the actual time is not exactly

known. However, we can have an estimate of the time that will that it will take in the

worst  case  called  the  worst  case  execution  time  and  it  has  to  be  something  that  is

between e and p.

The execution time if it is more than p, it will never be able to complete before the next

job arrives. Hence, execution time the worst case execution time has to be between 0 and

p and then the utilization u is equal to e by p utilization u is a measure of what part of the



capacity of a processor that that I need to allocate for executing this job. For example, if

e is equal to p then U becomes 1, which means that one processor has to be dedicatedly

allocated for the execution of the job. If U is greater than 1, then e becomes greater than

p and the job can never satisfactorily then the jobs or the tasks can never satisfactorily be

executed on this processor.

So, here is an example of a task in with where we have shown 3 jobs. So, this periodic

tasks arrives every 5 time units and it has to be executed after it is arrival within 5 time

units. So, the first job executes at between 0 to 1 the execution time is obviously 1 in this

case the second job executes between 6 and 7, and the third job executed between 11 and

12 in this example.

Multiple tasks can execute on the same resource as we said. So, a resource can be shared

among multiple tasks and when a multi when multiple task share a single resource, we

have contention for the shared resource who will execute when who will execute earlier

who will  execute later that has to be decided. We need to have we need to decide a

sequence of execution for the jobs of different tasks on this shared resource.
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So, how do we understand whether a particular task or a set of jobs all jobs that are that I

have that I am executing on a resource will always meet, it is required constraints in the

form of say deadlines  and stability. So,  that is  analysed through a mechanism called



schedulability. So, schedulability what is it? It is a property which indicates whether a

real time system or a set consisting of a set of real time tasks can meet their deadlines.

So, deadlines in the form of latency that is worst case system response time to events;

that means, after let us say the event an event can be the arrival of a job. So, after the

arrival of a job can I say that given these set of tasks, I will always be able to meet the

deadlines requirement.

So, given that a task arrives every 4 time units. Say, if it is arriving at 0 can I always say

that it will always be able to finish before 4, when it arrives at 4 can I say that it will

always be able to finish before 8 when I have 1 task in this case. For example, I possibly

will be able to say that yes I have just one thing to do only one task and I have 4 units of

time and I will be able to always meet it.

But, how do I say when I say I have 2 tasks; one task it has execution time one comes

every 4 time units and another task execution time of 2 comes every 5 units. What is the

mathematics that will allow me to say that, yes these 2 tasks together all jobs of these 2

tasks together will always be to meet all deadlines on a given resource.

What  happens  when  I  have  3  tasks  now? So,  we  have  to  study  how schedulability

analysis is done. So, in the face of and be able to say what will be the maximum latency

and the latency constraint will be met and whether with the system will be stable whether

this schedule will be stable. That means, during overload stability during overload and

means  that  the  system will  meet  will  be  able  to  meet  critical  deadlines  even  if  all

deadlines are not met.

So, stability tells me that when I have a overload and what is the meaning of overload;

that means, that the task that I have a many tasks have arrived and I cannot meet all

deadlines  the total  utilization  has become more than the capacity. Do I  my does my

schedule meet the stability criterion? Meaning that, can I still meet deadlines of critical

tasks  if  even if  I  am not  able  to  meet  all  that  is  an analysis  which is  done through

stability, it is called stability analysis and we will look at it.
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Now, I will digress from the definition of from embedded systems to what are called

cyber-physical  systems  and  IoTs  I  am  digressing  here  because,  in  the  subsequent

lectures.  We will no more going to speak separately about cyber physical systems or

IoTs. But these are these discussions are relevant to embedded systems design because

they  are  so  they  cannot  be  they  can  be  called  certain  generalizations  of  embedded

systems itself  ok. So, or specializations of embedded systems itself,  what is a cyber-

physical system an embedded system?

If we look at it is a computation and a physical system, I have a physical system and a

computing platform controlling that physical system that is an embedded system. Now, a

cyber-physical system is a cyber-component controlling a physical plant and how is the

cyber component different from the computation component of an embedded system.

Now,  the  cyber  component  not  only  includes  computation,  but  also  network  or

communication  between components.  So,  there  can  be  multiple  computing  platforms

which communicate between through a network among themselves.

For example,  you may have multiple components each having it is own computation

capability within a car and they may collaborate with each other and produce results for a

third component.

For  example,  let  us  say that  I  have  this  physical  plant  car  and like  in  the  previous

example I have sensors which take physical parameters from the car; one is let us say the

current wheel speed and the other is, let us say the current air fuel mixture in the fuel



injection system. So, this is the this sensor computes the air fuel current air fuel mixture

in the fuel  injection  system and this  one computes  the our  previous  as  our  previous

example, this one computes the current speed of the car and generates the throttle that it

needs to generate to go to a desired speed.

Now, the computation 3 here then let us say compute computation 3 and computation 2

together then let us say tells me what should be the change in air fuel mixture in the fuel

injection system so, that the desired throttle can be achieved. So, therefore, this cruise

control  system  and  the  fuel  injection  system  they  collaborate  with  each  other  to

determine what should be the final the talk with each other over a network to determine,

what should be the final air fuel mixture and that is again the actuator out the actuator

output and produces the final required air fuel mixture and that is fed to the physical

plant again that is a car.

So now, we have just  have we have gone from embedded systems to cyber physical

system just to mean that the computation par part is not on the computation, but it is

cyber which includes a network communication along with computation and it controls

the physical component. So, this is a cyber-physical system.
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And, what is an IoT or an internet  of things again IoT can be defined as the use of

internal technology for cyber physical systems. Here the term IoT includes the technical

solution internet technology in the problem statement connected things. So, these things



are could be defined as  individual  embedded systems with the computing  capability.

Now, these things communicate over the internet to do something that something which

includes both of them, but is different.

For example, let us say you have a wearable medical embedded system on a person’s

body which finds out the current mood of a person and you have another embedded

system. Let us say, a light which can which can automatically dim itself our torch light

example, for example, which can automatically dim itself or brighten itself.

Now, let  us say both these things are connected to the internet  and we have a third

system comprising which includes both these systems that is the wearable device and this

hour programmable light. These 2 systems that I have it together and depending on the

mood of the system what does this third system, which includes these 2 system does this

third system is essentially the IoT system.

So, what is this third system doing? It finds out the mood current mood of a person and

brightens or dims the light, it is an arbitrary example, but it tells you that it is the IoT is

the system that includes these things and provides a solution using internet technology.

So, IoT is the use of internet technology for cyber-physical systems and again if we come

back  to  this  in  the  term  IoT.  Therefore,  includes  a  technical  solution  the  technical

solution is that the system will be able to automatically dim or brighten the light will be

able to automatically dim or brighten depending on the input provided by the variable

device that tells me the current mood of the person.

So,  the  term  IoT  includes  a  technical  solution  internet  technology  in  the  problem

statement connected things. So, why is such connectivity important?
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In embedded systems, in the products related to embedded systems, because of various

reasons and we jot down a few of them because, IoTs are going to come in a big way and

all embedded systems designs may have to consider the component of connectivity and

IoT in their designs. So, connectivity is important why manufacturers can add value to

their products through connectivity.

Let us say, it  allows customers to remotely connect to and control and monitor their

products say through apps.

For  example,  let  us  say I  have an app which can control  the AC in my home even

remotely. So, I am in a car 10, 10 minutes away from my home and I say through an app

that I have to on the AC. So, that when I actually reach home I have a cool room.

So, customers can remotely connect to control and monitor their products through say

apps it provides APIs to allow third parties to develop additional connections to their

products. So, if you have big systems which has which includes many systems say a

smart home system and in the in that there are various components in it various small

small  systems  and  third  parties  providing  these  components,  then  third  parties  can

automatically provide updates on these components and provide value-added services.

So, it can provide APIs to allow third parties to develop additional connections to these

products ok.



So, I have a system of systems and it allows APIs and these APIs I can have additional

connections  to  these  products,  why  will  this  product  it  expands  a  product  value  by

offering not only new functionality but also new ways of interacting with it. Suppose, I

can  allow an  API to  update  my system so,  third  parties  can  update  my system and

enhance it is functionality this is what I come to in the next. So, it allows easy product

updates.

Upgrades will  increasingly deliver  be delivered  via  software for example,  over there

updates  for  model  S  of  them  of  the  electric  car  company  Tesla  Autopilot.  So,  the

autopilot update is a software the autopilot update is a software which can be provided

over the air. So, over internet in the at night, let us say the car can be the autopilot can be

updated autopilot of my car it is sitting in the garage, but over the air over the internet

my autopilot software of my car can be updated.

So, all my systems nowadays are softwares my suspension the correctness of suspension

everything are softwares and they can be automatically updated over the end, if I allow

IoTs or connection through the internet.
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It will allow, additions addition to allows value addition to services offered with product

services can take advantage of cached data generated by an IoT product and stored in say

the cloud. For example, let us say you have a steel plant and that steel plant is an IoT

because various portions. It is an industrial IoT where various embedded computers are



coordinating among each other and taking the design from raw material to manufactured

steel ok.

Let  us  say, now the  data  corresponding  to  various  parameters  at  different  stages  of

development of the steel is taken and put into the cloud for better analytics.

For example, combined with data analytics these services can become secret recipes that

gives competitive edge to the manufacture. It will help to draw conclusions from the past

and make predictions about future with respect to the steel plant. Let us say, it can say

that why certain design processes at certain times consume higher amount of energy, it

could detect that energy consumption is too high under certain conditions during steel

manufacture and find ways to improve our products efficiency.

Now, therefore, this because it is connected through the internet to the cloud it allows

better data analytics and hence efficient ways of correcting the behaviour of the system

the performance of the system.

It could help explain why a certain part is failing often and suggests design changes to

avoid the problem how can this why can this happen because, my data from the product

is continuously being taken to the cloud and I am being able to analyse. So, due to such

analytics in the cloud, I am being able to explain why a certain part. Let us say, is failing

and we can suggest changes to avoid the problem.
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It  can  also  allow  predictive  connectivity  can  also  allow  predictive  maintenance  the

manufacturer  could  detect  when  a  part  is  about  to  fail.  Before  it  actually  fails  and

scheduled maintenance during a planned downtime. For example, let us say a certain

component in an aircraft starts showing signs of failure. It does not actually fail during

the flight and then over the internet over connectivity, it can tell to say it is a Boeing

aircraft.  It can tell the Boeing of service team that a certain component is has started

failing as showing signs of failure during flight.

So, how does that happen it the sensors in the sensors in the aircraft capture and send the

data  and  then  the  data  analytics  detect  the  failure  the  tailored  solution  triggers,  a

breathless process automatically the tailored solution tells the service team that there is a

failure. And then, the field representatives are ready and the servicing is done whenever

let us say, the plane lands on a certain airport before actually the failure is has happened

the servicing has been done at  the airport.  Once the aircraft  has landed, this  is  why

connectivity,  this  is  how  connectivity  has  helped  in  here,  it  can  allow  predictive

maintenance.
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Providing service to systems consisting of products from multiple manufacturers, this we

already saw that a system can be may be made up of many other smaller systems. And

hence  a  manufacturer  or  a  third  party  system  level  integrator  could  monitor  the



performance  of  each  device  in  the  system and  it  can  adjust  device  parameters  and

behaviour to optimize the performance of the system as a whole.

So, it may allow if you have multiple smaller systems all these smaller systems can be

can be monitored to can be monitored and monitored and the parameters adjust so, that

the entire system as a whole can perform better.

It can also allow newer business models for example; customer can pay for proactive

maintenance  services  as  we told.  Let  us  say, for  the  Tesla  car  autopilot  if  proactive

maintenance is done the customer may need to pay some service to some money for that

service.  It can also allow product as a service.  For example,  you have an embedded

system that you have a physical system. For example, it is a battery charging station of

your car, which is about to come for your electric car.

Now, this is attached with an embedded computing device which can then which can

schedule the service that is the charger that is the charging service to various cars. Then,

this product that is discharging system becomes a service, you do not require a personal

charger for your cars battery, but you can take the charger as a service discharging, as a

service this product now is available as a service.

So, the customer subscribes to the product instead of actually buying it, he subscribed to

the product that is the charging and pays a fixed amount on a predetermined schedule on

a specific time at a on a specific time of the day or month or annually or quarterly he can

schedule for charging of his of his car’s battery from a nearby say charging station.

And, because this charging station is has an embedded system and IoT device, which is

connected to the internet it can accept such requests and it can provide a schedule of

when a certain car will come for service, that is cars come for charging through the chart

through the cars charger sorry to the charging station for getting his battery charged, ok.

With this introduction to embedded systems and cyber physical systems and IoTs, we

come back to embedded systems design and what we will do in the rest of the lectures of

this designs course.
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So,  the  embedded  system  design  phase  starts  with  the  specification  with  the

decomposition of the functionality of the system into controllable smaller modules and

formally defining the behaviour of each of these modules in the modelling phase. After

that, we have an architecture selection phase where the choice of processing elements;

that means, we are which type of general purpose processor or a custom made processor

or a semi-custom made hardware will be use.

For example, we can use an FPGA we can use a dedicated hardware. We can design an

ASIC application specific integrated circuit or we can use a general purpose processor

what kind of memories will be used. What kind of interfacing, say Nuart what kind of

interfacing we will use what kind of communication buses or interconnection networks

will be used. All this has to come in the architecture selection phase.

Then from the architecture selections after the architecture selection is done we have to

map the functionality to hardware and software where hardware mapping to hardware

will  mean that  functionality  has for  that  functionality. We need to  make a  dedicated

hardware or an application-specific integrated circuit for mapping to software, say we

may mean that we will write c codes for those function unity and executed execute it on

a general purpose processor. So, that will be mapping the functionality to hardware and

software and then we will do an integrated system level design.



So, we will have an entire system after that, which will include certain say hardware

components  or  certain  software  components  and  how  they  communicate  among

themselves design of an integrated system such that end to end performance goals can be

satisfied. After the design, we have to prototype the system, we have to test verify and

validate the system. So, this is an overall glimpse of the design process of an embedded

system.
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So, after such a design is done we get a complicated system such as this where let us say

we have a general purpose CPU containing 2 tasks task 1 and task 2 we have a dedicated

core processor let us say a GPU which has another task. So firstly, we have the tasks

which have been modelled. So, after modelling we get these tasks and these tasks are

then mapped and scheduled on these processors.

So, the subsystem A and subsystem B are say custom made assets for tasks which need to

be implemented in hardware because the performance goals are (Refer Time: 65:01) that

let us say cannot be implemented in software on a general purpose processor.

For when multiple tasks are on the same resource in the same CPU, I need to schedule

the tasks on the resource because multiple tasks are going to content for the resource I

may require DSPs Digital Signal Processors, I will require a communication medium to

talk among different components, I may need to have buffers for incoming data.



So, it has to it may have complex interactions say periodic aperiodic interactions with the

external  world.  It  may  have  many  possible  inputs  complex  app  in  the  application

programs can be very complex and hence its needing. For example, here are dedicated

hardware it may have complex pipeline structures etcetera ok.

Now, given this total integrated design, we need to verify that validate that end to end

performance goals will be satisfied for real-time embedded systems validation mostly not

always is almost always linked to satisfying constraints on time. For example, let us say

that  we have our original  cruise control  system and the control  system requires data

acquires data at the rate of n samples per second.

So, our cruise control system acquires data from the wheel at the rate of n samples per

second then one performance validation goal could be that can we ensure that each data

item will always be processed in less than 1 by n seconds. Because, every 1 by n seconds

a new censored input is going to come. And if we do not process it within less than 1 by

n millisecond the input  sense data  will  be will  come at  a higher  rate  than it  can be

processed.

So, to some to certain extent, I can solve this problem using buffers, but not if not the if

this continues continually; that means, the processing cannot be done for a long intervals

of time at times less than 1 by n seconds or let us. So, we can say that if we can always

process within less than 1 by n second, then I will not require a buffer at all this design

will not require a buffer and all these timing issues needs to be solved in the face of

various constraints.
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For example, micro architectural integrates if the processor let us say, has out of order

execution then the time that will actually be required will depend on the dependency

among the instructions. Say, resource contention among programs running on the same

processing  element  that  has  to  be  solved  through  proper  unit  processor  scheduling

resource contention among programs running on different processing elements. It will

require multi-processor scheduling contention due to other shared resources.

For example, last level caches. So, my instruction was a hit or miss on the cache, it will

depending on the hit or miss the time required for an instruction will change. So, the

timing issues have to be done the timing analysis has to be done in the face of all these

things.

Communication times over the bus and interconnection network what is the time it takes

for the messages to pass over the bus. So, how do you schedule it? You need to schedule

messages on a shared bus as well and find out in the worst case how much time it will

take to transfer a message.

Also, a synchronously coming interrupts from peripheral devices certain interrupts come

and stop your processing. So, even in the face of that, what is the bound on the time that

certain events will take. So, timing analysis has to take care of all these issues and we

will see and we will have an overview over the lectures as to how the design takes care



of all these issues. With this, we come to the end of this lecture. Before ending, will I

will just say, I will just tell you the books.
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So,  these  are  the  books  that  you  may  refer  for  this  course  along  with  the  lectures;

embedded  systems design  a  unified  hardware  software  introduction  by  Frank Vahid,

introduction  to  embedded  systems  Lee  and  Seshia  embedded  systems  and  software

validation Abhik Roychoudhury, hard real time computing systems Buttazo,  real time

embedded systems Qiu and Li synthesis and optimization of digital circuits will majorly

require when we talk about hardware design by Giovanni De Micheli. So, with this, we

come to the end of this lecture.


