
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Addressing Modes, Instruction Set and Instruction Execution Flow
Lecture - 09

Instruction Execution

So, welcome to the module on addressing modes instruction set and instruction execution

flow, lecture number 3, in the unit number 3.

(Refer Slide Time: 33:00)

Since the last 2 units we have basically seen what is the basic structure and the

components of a CPU and external interface and we have seen basically the black box

architecture of a memory. So, with this we have built enough background to understand

the basic stuff which we are going to cover in this module that is, what is an instruction,

how it is executed, what are the different types and formats instruction set design and

what are the typical use of instructions to call functions and return procedure.

So, with the background build now we are going to see the first step that given a very

simple instruction how it is executed. So, that is this unit is dedicated to understanding

the execution of an instruction furthers the basic idea required for the memory

architecture as well as for the how the CPU is organized is means suffice.

(Refer Slide Time: 01:25)

So, as I told you that for a pedagogical prospective. So, we are first going to see what is

the summary of this unit. So, in this case we are first going to see what is the

performance or what is the functions which are performed by a CPU for executing an

instruction.

So, basically as it is a Von Neumann architecture so the instruction as well as data are in

the memory. So, first what happens? So, whenever you want to execute an instruction,

first we have to calculate the address of the instruction and in which memory location

and at what address the instruction is there. So, that is the first step. Secondly, the

instruction will be fetched, now it will be fetched and loaded into a special register call a

instruction register IR. So, now, instructions will be decoded that what he has to do

sometimes, it may be very simple like shift 2 numbers or add 2 numbers or do bitwise

shifting and sometimes it can be very complicate like a matrix multiplication. So, that is

actually called the instruction fetch.

Then you have to find out that is the operation decoding that what is the instruction

expected to do that is all the instruction basically has 2 minimum characters, minimum

feels one is the opcode that is the operations it has to do that is again binaries because all

the instructions are basically representing binary. So, one part of the address will be

dedicated for instruction decoding that is, that is what the instruction is expected to do

and it has to be decoded. Then based on that it may have it may operate on 2 numbers, it

may operate on 2 operands it may op operate on single operand. Like for example, if the

instruction just compares whether number is greater than 0. So, it is just a single operand

instruction or so add, but if it adds 2 numbers then it is 2 operand instruction.

So, next you have to find out that what we you find out all those things when you decode

an instruction, after decoding you have to find out whether you want one operand to be

fetched, whether you want 2 operands to be fetched or whether the operand is given itself

with the instruction. For example, I may have an instruction that is called immediate

addressing mode where the data is given in the instruction itself. For example, I may

want to compute 5 plus 5. So, this 5 plus 5 is the given in the instruction itself.

So, you need not go and bring the data from the memory itself so; that means, you have

to go for operand address calculation, but sometimes I may see that I want to add 3 with

the data which is available in the memory location may be the variable of the memory

address is 0003 h. So, in that case we have to go for operand address calculation and then

we have to fetch the operand from the memory.

So, after that is done you have to do the operation on the data and then you have to store

back the data in the memory, if it is required. So, in a nutshell basically we store fetch the

instruction, decode the instruction and then find out whether some operands has to be

fetched from the memory and then fetch the operands do the operation and store it in a

memory location.

So, generally we call this whole thing in a very few steps instruction fetch, instruction

decode, instruction execute. So, in decoding we generally involve decoding this

instructions as well as bringing the values from the memories or if the instructions are

immediate addressing mode then take the values from the instruction itself that is

decoding instruction fetch decode. In decode we do all the stuff and execute means

simply we execute the instruction, but in a details are given over here, so again.

(Refer Slide Time: 04:32)

So, generally from the users perspective we see that instruction 1, then instruction 2, then

instruction 3 it will keep on going if there is a jump instruction you will jump to the

position again come back and so forth.

But there is also very special stuff which is actually called the interrupt, sometimes based

on requirements you may want to interrupt the existing flow of instruction, that will be

based on requirement may be a code is executing at that time you want to move the

mouse. So, in that case the program will be interrupted and your mouse misplace will be

displayed and again the code will execute. So, interrupt so an interrupt is there. So,

basically suspense the normal code flow and immediately it has to service the interrupt

for example, the code is executing I am moving the mouse. So, the mouse is been

changed.

So, what happens, so the basic say for example, I am listening to music and at the same

time I am moving the mouse. So, for as (Refer Time: 05:22) limited fraction of time will

not in a; is in a very high speed processing in a module PC you do not get it time

difference, but what happens is that after is executing of the current instruction always

the system or the CPU checks whether there is a interrupt, for example, now I have

moved the mouse.

So, after execution of the instruction it will check the mouse has been moved it has to be

displayed. So, that is actually called the interrupt service routine that is displaying the

movement of the mouse in the appropriate place, then before servicing the interrupt what

are the current state of this code like for example, a code was adding two plus 3 plus 4

plus 5 in 3 instruction.

So, 2 plus 4 has already been added then the mouse movement was there is interrupt then

again you service the interrupt that is the mouse movement has been show, then again

you will come back to the normal code then again you have to recollect what I have

already done that is already I have adding 2 plus 3 that I have to remember recollect that

and then do the final calculation and keep on addressing.

So, before addressing the interrupt or servicing interrupt you have to store the present

status of the code like a program counter, the status register etcetera which is in a stack.

So, this is actually called saving the current program status (Refer Time: 06:26) then you

run the interrupt service routine, service the interrupt and again come back and recollect

what has been already return that is use pop of the values from the stack for the

corresponding registers and again then go ahead and stack executing the normal

instruction.

In a nutshell after every instruction is executed if check whether a interrupt has come, if

an interrupt has come save all the stuff like program counter, instruction register values

and some register values of that is the intermediate stuff of your code in a stack then

service the interrupt again come back from where we have left and an that point of time

you again recollect everything back and go ahead.

So, therefore, interrupt means not only servicing interrupt you have to store back

everything. So, after coming back you can start from where you have left. So, that is

actually a basic idea of instruction execution that is you fetch decode and execute and. In

fact, of the instruction interrupt then you have to service the interrupt service and then

again come back.

So, what are the objectives of this unit is the comprehension explain the fetch and

execute cycle of an instruction, that we will be able to explain what is the fetch and

execute cycle of an instruction or a how a instruction is fetched decode and executes,

then there is a direct mode as well as a indirect mode. So, we will be also able to express

indirect mode of a instruction execution direct mode is some operands will be the values

of your operands will be either in instruction or you can directly finding the value of the

instruction opp is of the operates the operands of the memory, but indirect means you

will be re directed to a memory location and in that memory location we will not have

the data.

But in that memory location you will have a another pointer which will go to the data

that is a indirect job, sometime if I see that load something from memory location 3030.

So, the data is expected into the memory location 30 30, but in indirect mode 30 30 will

have another memory location and that memory location will have the data. So, that is

actually indirect way of doing, it is what is the benefit etcetera we will see in coming

words and finally, describe the type of IO devises and interrupt cycle.

(Refer Slide Time: 08:27)

So, generally interrupts basically happened into IO, as I said like I am moving a mouse.

So, the interrupt has to be serviced. So, for example, I do not do that then what happens

you are running a long code and I am moving the mouse, I am not allowing the interrupt.

So, what is going to happen the whole code will run and then only we will able to see the

mouse movement, then what is going to happen then the main problem will be like for

example, I am showing the PPT a code is been executed and I do not allow the mouse

interrupt.

Then what will happen only after the whole PPT has been shown then only the mouse

movement will be displayed. So, this is not going to survive (Refer Time: 08:58). So,

therefore, that every time the PPT is running means some code are executing and this

been displayed in the screen. So, when I move a mouse the servicing the instruction by

interrupt service routine and after servicing is coming back. So, we will be also able to

describe what is a interrupt service routine and how its handles for IO device.

(Refer Slide Time: 09:18)

So, now we will see the details of the instruction cycle. So, the instruction cycle basically

has fetch, decode an operation fetch operate sorry operands fetch execute an interrupt, if

interrupt if it is there. So, basically as I told you decodes and operand fetch sometimes

we call as a decode itself and then execute. So, fetch decode execute, fetch decode

execute these are the 3 terms you always use decode means operators fetch is also

coming in the decode. So, fetch is fetch that is a memory we have already seen memory,

there are cells and you can access one cell at a time.

So, first whatever the instructions is available over there is fetch. So, how it will be

fetched, there is special registers which is actually called the PC that is called the

program counter. So, the program counter will initially have the value of the memory

location where the instruction starts, for the time being let us assume that the instruction

first instruction is located at 0000 H memory location. So, PC value will be 000 x. So,

PC means program counter is having the value of 0000 x. So, immediately that

instruction will be fetched and that will be exe decode and executed. So, whatever value

of the program counter that particular instruction is fetched.

So, how it is fetched? So, as you already knowing a one architecture both the instruction

as well as the data are in the instruction is in the memory, we do not differentiate that

way. So, fetching an instruction or fetching an operand of the data is the same way. So,

first we say that memory address register will have the value of PC because you have to

get the value of the instruction to a form the memory.

So, is already one (Refer Time: 10:47) you have to give the address of that instruction,

where is the address of that instruction the address of the instruction is in the PC. So,

memory address register will now have the value of the PC, next 1 g b is get given and

the registers is in read for the memories in read mode. So, memory that value in that

memory location which is mentioned in the PC will be located to memory buffer register

that is saying the 0 0 0 0 memory location which was in the PC is now being fetch that is

rate and the memory will be dumb the value of the instruction that is present in memory

location 0 0 0 0 two memory buffer register.

So, memory buffer register know will have the instruction which was in the memory

location 0000 that was pointed by the program counter, after doing this program counter

is incremented by 1 because now it has to in the next instruction cycle it has to take the

next instruction and then the memory buffer register that is the memory where is your

got the instruction right now will be given to the special register which is call the

instruction register that is the (Refer time: 11:44).

So, basically what happens? The instruction is taken from the 0eth memory location via

memory buffer register and it is put into a special purpose register call the instruction

register which will now handle the instruction. So, it now knows first instruction has

come which was pointed by the program counter. Now I have to decode and execute the

instruction, specially it has to be noted that now the program counter will be incremented

by 1 because now I want to execute the next instruction in the next cycle then the next

stage.

(Refer Slide Time: 12:15)

Now, the instruction is already presented the instruction register. So, now, what we have

to do we have to decode and fetch operation.

Sometimes some people actually say decode and operand fetch as 2 different parts

because you decode the instruction and then based on the requirement you have to fetch

it, but sometimes again you club them together it depends. So, of course, a instruction at

least has 2 parts, one is the operation to be perform that is defend by the oppcode

because a truth table what I have to do that is the job of instruction.

So, instruction must always have a specific part which is actually call the half code of the

one operation it has to do. So, may be if the I assume that there only 3 instruction in my

computer. So, may be 0 0 for add, 0 z 0 1 for fetch and 0 2 for right. So, I will add bring

some numbers and the half code will be 0 1 then I added it. So, the half code will be 0 0

and one by one divided by the half code will be 1 1, so 000 1 1 1. So, these are 3 two bits

required and the 3 combinations if the instructions of a computer has only 3 instructions.

So, there is some part of the instruction which is used code at (Refer Time: 13:18) tells

these computer what to do. Then depending on that you have fetch the operand, operand,

operands. That is very important. Because the instruction means you have do something

and do something on some operand operands. So, the operand values will be also this

specified in the instruction. So, depending on the instruction side type there can be two

operands, 3 operands 4, operands. In fact, theoretically speaking n number of operands

given a instruction. But if you have such long instructions I think you have already seen

what is going to happen then your memory width will be in huge. So, it do not want to do

that it you may have memory whose width may be 1 0 2 8 or 1 0 2 4 you do not like to

do that. Therefore, you always restrict our instruction let to certain limit.

Generally you may have two operate operands in that case. So, in that case phases 32 bits

instruction will suffice. So, now, there is something called addressing mode. So, there are

different types of addressing mode. Now what is an addressing mode? The addressing

mode means it will tell you that when of the value of the operands specified. The most

simplest word is immediate. We can always say that these one instruction call increment

I N C R increment and the value may be 3 this is one of the most simplest instruction it

test that increment had varies what you have to increment whatever value of the integer

which is given in the instruction itself. So, this is actually call the immediate instruction.

In that case operant fetch is not required at all. That is the in operand of the operand

operand is available in the instruction itself. But sometimes it is not very easy because

you will the idea is something like that this is a memory cell.

Now, 1 1 instruction, some part will taken by the off code that is of the n code what the

instruction will do the remaining part is be limit will be giving you to the right the

operands. So, for examples, this may be it may 8 bit assume then what happens maybe I

could 3 bits to have the number of operations. So, there are 8 operations. So, 3 bits one

for that. Now we have only 5 bits remaining; so, if have 5 bits remaining. So, whatever

data you can put can be maximum of 2 to the power 5. So, 0 to 2 the power 5 that is 32

numbers can already represented, but if I want to add 100 plus 100 then you cannot write

instruction like this. So, this not going to sup have may purpose.

So, better I can do I need a longer space to put the operands, but longer space to put the

operands means I have to make the instruction like longer either memory not very good.

So, what I will try to do? I will have direct addressing mode or a indirect addressing

mode. So, direct addressing mode means here I will put the value of the memory may be

I will write 30, 6 bits. Now this is going to point to a memory location and that memory

location you have the exact value. So, you can assume that the whole memory may be

say 32 bits correct and let us assumes that this is 32 bit and we have let me re-draw

properly.

So, the main problem is that immediate addressing is very easy to handle, but then you

will be limited by the range of data for this is the memory weight this 32 and let me have

a instruction where I assume 10 bits (Refer Time: 16:27) may be 1000 instructions were

10 bits are result for the instruction type and then 22 is for the operands.

(Refer Slide Time: 16:26)

So, may be what I can do is that. So, this 22 bits are result for the operands. So, what I

can do is that I can put some value directly here then my range will be 2 to the power 22,

but. In fact, generally we may not have a single kind of thing single operand instruction

will not have we may have 2, so one operand here one operand here. So, may be now 11

and 11, 22 plus (Refer Time: 16:59).

So, the range is 2 to the power 11, 2 to the power 11 and 10. So, 10 bits are result for

operation type if first operand is 11 bits second operand 11 bits. So, you cannot have 2

lakhs and 2 lakh number range kind of an operation because you are limited by 2 to the

power 11 that is nothing, but 2 0 2 4. So, range is 2 0 2 4 range is 2 0 2 4. So, two

operands range is a 0 to 2 0 2 4 if you want a have negative numbers then again it will be

happen.

So, what is the better of doing it? I actually put some memory location. So, now, the

range is 2 to the power 11, 2 to the power 11 you can access memory who sizes 2 to the

power 11 or 2 to the power 11. So, let me have a memory like this whose size is 2 to the

power 11. So, it will tell whatever memory location you will have, you will have point

one memory. If the memory reads you 32, so the your data is present over here. So, now,

what is the width of the data? Width of the data is 32 bits.

So, is the huge number to the 30 or 32 huge number you can do very high position

calculations. So, therefore, you always go for direct or there is non immediate mode of

instruction that is in the instruction you will give an address of a memory where the data

will be store. So, you can have a wider range of numbers should be represent. So, that is

actually called direct instruction. So, in that case you have to fetch the operand. So,

where the operand will be specified? The address of the operand will be specified in the

instruction itself.

(Refer Slide Time: 18:19)

So, what will have to do do that? Some sub steps will be required. So, again you have

take the value of the operand which is that is the address of the operand from the

instruction put it in the memory address register and again the memory that is now the

data of part of the memory. So, again the memory buffer register will have the value.

Like for example, I may have say ADD is an instruction and then I say 32 H then 32 H

then I act this side is not possible 33 x and 33 x; that means, there is a memory and I am

referring to 32 H location over here and I am this is locating 33 H, but now this is 32

bits.

So, I can add two 32 bits numbers together. So, this one this will now go to the address

bus the address bus will point over here and this one will bethis data will be fetched, next

this data will be fetched and you can add this two numbers. So, this is actually call

decode and fetch.

(Refer Slide Time: 19:14)

There is another instruction the benefits etcetera will show in the later units, but that is

something a call indirect mode.

So, what is an indirect mode? So, in an indirect mode what happens you can find out that

indirect mode, what indirect mode basically what happens that is in the last instruction

what will have seen? In the last instruction we said that the data will be present the

address of the data will be present in the instruction. So, now, you can go to a memory

location and in the memory location that data will be presented indirect means basically

there is one more step which is going over here.

So, in indirect mode what happens it is just one more re direction from the direct mode

that is this is an instruction this is your opcode this is referring to a memory location, in

that memory location in the direct mode we have the data itself, but now it will again

have some address to the another memory location were the data will be there. Now,

what are the advantages disadvantages will cover later in later the units and modules. But

idea is that double the whole that is you point from here to here, here also your data will

not be there, but the data will be in another memory location whose address is given over

here.

So, again it actually represents more wider range of memory or wide of you can excess

more wider range of memory over here. So, for example, as we are taking there 11 bits

and there 11 bits, so what is the range of memory you can excess? Only 2 to the power

11, but say your memory is an level of Giga bytes, 2 to the power 11 is already in the

level of kilo bites. So, I cannot have very wide address over here so, but if I have the

address of the address here then again it is a 32 bit. So, you can excess a 32, 2 to the

power 32 size memory by this method.

So, if you have taking the direct approach which was in the previous case. So, the

address of the operand was present directly over here you go to the memory location you

find it. But early this sizes of the memory that can be excess 11, 2 to the power 11. But if

I have a larger size memory then you will going to have the indirect one, that is from

here if point f errors of the data will not be there here will have the address of the data.

So, here is again 32 bit. So, now, it is 2 to the power 32. So, again full fledge memory

can be accessed over here. So, that is the again the advantage of indirect mode, but more

details will see in the later units here is what is the idea.

So, here the steps will be slightly indirect. So, what will happen?

(Refer Slide Time: 21:44)

First the memory address register will have the instruction register. Instruction register

have the address of a memory location that have the address of the memory operand

(Refer Time: 21:51). Memory address register initially will have that first whatever is 2

to the power 11 whatever register address you give it will be there, it will point to the

memory, memory will give the data, but again that memory here have again some

address that will be again fit to the memory buffer register and again then the data will be

coming out over here. So, that is multiple steps. So, memory address register is first will

on the instruction register first will give the value to the memory address register,

memory buffer register will have the memory cell whose address is in the MAR.

So, now it is actually again this value will be again fed to memory address register and

finally, this value will be given then actually indirect address. Now you have a wider

indirect means wider range of memory can be accessed.

(Refer Slide Time: 22:39)

Now, instruction has been fetched it has been decoded what to do and the operands are

also been fetched now your phase executing. So, this is actually the job of the CPU of the

processing unit will have to do the job that is simple. So, based on the off code you have

to either do any 3 of these things that is data transfer, either you read from the memory

write from the memory arithmetic and logic operation that is add subtract multiple

logical or not or sometimes you have to branch. That is based on the answer of

instruction either you will be the next instruction or will jump (Refer Time: 23:10) 20

steps ahead.

So, basically there are 3 type of instructions data transfer, arithmetic and logical, and

finally, control that is if then else kinds of a statement. Arithmetic means plus minus,

data transfer means it scan f, free f. So, scan f, free dividing in the C if the machine or in

the architecture version it will be load and store.

(Refer Slide Time: 23:27)

Now, we are coming to the indirect phase of instruction execution that is a interrupt. As

you again you discuss that interrupt is basically a normal flow of code is going on, then

some hardware of an IO devices interrupt which has to be serviced in urgent manner then

basically instruction starts.

So, what happens? So, after no interrupt can offer where the instruction is been

instituted, instruction 1 2 3 4 5 6 7 8 9 10 is going on it between no interrupt can come.

But after a instruction have been executed it will check with the there is an instruction

manner if there is a interrupt it has come then what you do you save the value of PC in a

stack. Why? Because a may PC may be 10 of when the interrupt has be occurred; that

means what, after executing instruction 9 PC has become 10 and then interrupt has

occurred. I have deducted the interrupt then while coming back you have to again restart

your code form 10th location or where or that is the PC value it be stable location.

So, what we will do? You will save the value of program counter all the registers

intermediates value in stack and then you will go to the instruction service routine who

will instruction service routine nothing, but another code itself or a code module with the

some instruction is a jump. So, how can you jump? Now the instruction service routine

address will be loaded into the PC, but we code actually was to execute to a 10, but now

instruction has interrupt has started so you have to service the interrupt that is a new set

of code you can think of to be a function it will jump and again come back.

So, I save the values of PC equal to 10 and save will other intimidator register and then I

put the address of the interrupt service routine to PC. Now this is will be start pointing

out to the instruction which is in the interrupt service routine, may be this is your

memory where your PC 10 it has to be executed, but some interrupt occur then your PC

jumping to here that is the ISR insert operating from here and after it is finishing that it

should again come back to 10. So, how it is done? Again the value after you complete the

ISR you put (Refer Time: 25:23) back the value of PC from the stack, so now again PC

will have the value of 10 and again you will restart everything. So, that is what is the

idea of interrupt service routine.

Again I will just show you the flow in a zoom manner.

(Refer Slide Time: 25:40)

So, you can see. So, address calculation whatever is done instruction you fetch, address

calculation for PC. So, the instruction is fetched from what is the value of the from the

memory in the PC instruction is fetched, then instruction is decoded, calculate the

address of the operands you have already seen if be in a direct, indirect, immediate fetch

operand if there multiple you have to do multiple times operation fetch. But I told you

that vary now less large number of operands in single instruction is a not a very good

idea. Keep on doing it, then after all the operands has been fetched you do the data

operation that is in fact, it may this your logic or an arithmetic operation that is the

operand that is your execution of the instruction then finally, again you have to find out

where the answer has to be store for that also some operand address calculation is

required.

Like for example, if you said that add a plus b and store it to some place or instruction

may be simple like store something to something. So, in that case the data operation will

be nothing will store of the instruction. So, you have to also go for operant address

calculation where you want to store the result, you store the result and you go on back.

But sometimes your operand address calculation may be very trivial line add

accumulator with memory location 32; that means, whatever the data is in a memory

location 32 as to be added to the accumulator and stored back into the accumulator itself.

Accumulator is a register, so operation calculation in this case trivial that is the

accumulator itself, but you still you have to do it store the result you have to keep on

doing it.

Now, this completes actually one set of instruction execution after storing then you will

check whether interrupt has done as arrived or not. We do not check any interrupt in

between because if you do it you may go into a dead lock board that one instruction is

not completed you start another instruction and so much lot of crumbles on stuffs may

happened.

So, we stop after the instruction has been completed then we check whether the interrupt

is there or not. If no, again you if PC has been already implemented you keep on in

fetching the instruction decoding it executing and go on, but if it is not then you have to

service interrupt. Servicing the interrupt means you have to basically here actually before

you service the interrupt here you have to save all the result of PC intimidator ALU is

etcetera and after you service the interrupt if the again reload the value of PC you save

everything.

So, at this point you save PC all program setter want after servicing the interrupt again

you pop and do your job. So, it is very simple fetch decode executing. So, keep there is

an interrupt if there is interrupt save everything service the interrupt again come back

and keep on doing that is what is the idea of a whole life of a instruction.

(Refer Slide Time: 28:15)

So, this is actually the figure. So, user program you check there is an interrupt you go to

the interrupt handler that is interrupt service routine. So, PC value should be I plus one or

something, but now it will be changing to may be some 25 or r bit value service the

interrupt again get back to the value of I plus 1 and again start execution that is what is

the vectorial representation.

(Refer Slide Time: 28:37)

Now, this something very interested. Now base basically there is something call a ICC

that is nothing but instruction cycle code that is how basically the cycle code that is at

what stage of instruction you are in, is it fetch, decode, interrupt or execution. How it is

determine that, what stage instruction is.

(Refer Slide Time: 28:43)

So therefore, there is a special code call instruction cycle code is a two bit code and it is

used to determine (Refer Time: 29:02). Now we will see how basically it is very

interesting and how basically this code for chased based on face to face, face to face. So,

0 0 is the fetch, 0 1 is the decode and operand fetch, 0 1 is the execute face and 1 1 may

be interrupt if it come. As I told you generally we talk fetch decode execute decode

means operand is also fetched is in that cycle. So, let us start over here. So, if you see.

So, what happens? So, let me zoom it over here. So, if you zoom it over here you can see

what happens basically. So, first 0 0, ICC value is 0 0 initially. So, instruction fetch it

comes over here. So, if its 0 0 means its instruction fetch. So, it will come to this part.

So, instruction is fetched. Now if you starting with the immediate addressing or non

immediate addressing.

So, if it an immediate addressing means what, the value of the operand itself is available

in the instruction itself. So, add accumulator 32 immediate address with the 32 with the

memory or it is an immediate. So, I say immediate; that means, value of what is value is

present in the accumulator has to be added with 32 and get the result back in the

accumulator, but sometimes we say the 32 H is a memory location in that case you have

to go to the memory location get the value and then add it.

So, immediate addressing means yes when I said the code of ICC as 1 0 lets go by this

flow and then will see immediate addressing then what we have to do then it is 1 0 and if

you come back to 1 0 you have note that 1 0 is means nothing, but execute; that means, if

you fetch the instruction if it is a immediate addressing immediate you make IC equal to

1 0 then means immediately you can execute. But if it is a immediate addressing then

you have to get the value of the operand from the memory. So, you make the ICC value

equals to 0 1. So, what is the value of ICC 0 1 what will happen it will come over here

ICC value is now basically from here is 0 1.

So, ICC is the 0 1 is instructed; that means, you have decode and fetch the operand

because the inst instruction is a immediate is a instruction which is non-immediate that is

the value is available in the memory location. Then you come over here then you check

is a direct or indirect direct is very simple the value of where the operand is available that

you address is available in the instruction itself. So, if it is yes fetch the operands from

the given instruction address because say that I have said add accumulator 32 memory

location.

So, the value what I have to add is available in the memory location 32. So, directly you

fetch the operands in the instruction and then make ICC as 1 0, ICC as 1 0 means directly

you can go for a instruction execution. If it is no then indirect, so what was indirect add

32 if I say that is an indirect instruction then I say add some accumulator 32; that means,

the 32 memory location that in 32 memory location also I do not have the value of the

operand 32 memory location have some value that value is again an address where the

value of the operand is exactly present.

So, it says fetch the operand from the given address in the instruction; that means,

whatever is a indirect one. So, the indirect one means say for example, 32. So, memory

location 32 now is a indirect instruction. So, you fetch the value from 32. So, what is 32?

That is again and address when we when we operands is specified. So, you give the

value of the value memory location 32 to this and then you fetching. So, again you can

easily understand. So, if I say fetch immediate 32 sorry direct 32 whatever you fetch the

operand from the given address in the instruction direct you can get the value of the

operand from the memory. But here is the indirect, so you go to 32 fetch the memory

location value and then you give it to this value. So, first you get go to 32 memory

location get the address of the operand and then again fetch then once in a indirect

manner or direct manner you get the operand make IC equal to 10 IC equal to 10 means

you directly you can execute.

So, now, all these fetching of a instructions are done, if it is immediate IC you can

directly make 10, bad execution no 0 1, no means you have to find out the values. So, if

it is direct you can directly face the value from the address which is available in the

instruction make it IC 1 0 means execute if it is no go in an indirect step and then make

IC equal to 1 0. So, now, IC has been executed. So, once the ICC is 1 0 you execute it.

After it has been executed you have to check for interrupt it interrupt is no make ICC

equal to 0 0 means next instruction will be fetched if it is yes then make IC equal to 1 1,

IC equal to 1 1 means again it will servicing the interrupt and have to servicing the

interrupt you make an ICC equal to 0 0, so basically these is the cycle.

So, in a nutshell you start with the ICC 0 0 code is instruction fetch, fetch it if it is

available in the in instruction the data is available or the operand available immediately,

make ICC equal to 10; that means, directly execute if it is a not an immediate make 0 1,

0 1 means they will be. So, in that case you will be executing this block and in this block

you will be executing it in that case means immediate means what directly value is

available did not do anything directly execute it, not available means you have go to this

middle block. So, in the middle block what happens in the middle block if look at it is

being transfer from 0 1. So, it is being transfer to this block.

 So, in this block it is a direct or a indirect way of may fetching the instruction and then

after fetching the instruction you go to the execute fetch that is 1 0 and after a 1 0 you

have fetched all the instruction and then sorry 1 0 means it is the instruction execution.

So, after you get the value of 1 0 you execute and it will 0 1; that means, it is not for

execute you have to get the data, to get the data you are going to go for that middle cycle

and once it is done you get make the value of IC 1 0. So, you execute it after execution

you check the interrupt if is the interrupt you make 1 1 that is the interrupt face service

the interrupt and again make it 0 0 for that you go to the fetch cycle.

So, this diagram basically shows the cycles in terms of instruction cycle code, you start

with 0 0 if everything is available in the code itself you directly make the code 1 0

execute it if not make it 0 1 get the data from the memory or indirectly from the memory

and then again go back to 0 0 if there is no interrupt if there is a interrupt make the code

as 1 1 and again after servicing the interrupt make it 0 0 now that is what is the idea.

(Refer Slide Time: 35:28)

So, again what I have told you is written over in this slide. So, first is 0 0 then ICC is

made equal to 0 1 based on what is the type of instruction. If it is immediate then you did

not do anything and otherwise you would make it 0 1 and after all the operands are

fetched you make it 1 0, that is now is ready to execute 1 0 means ready to execute 0 1,

means you have to face the data.

So, after data has been (Refer Time: 35:52) you make it 1 0 and then executed if there is

a interrupt you make the code 1 1 otherwise if there is a no interrupt you directly make it

0 0 and keep on going it. So, basically the cycle is 0 0, 1 0, 0 1, 1 0 and back. Sometimes

after this, this may coming, but otherwise is 0 0, 0 1, 1 0, 0 0 interrupt means it will

coming basically.

(Refer Slide Time: 36:13)

So, anyway this discussion is already I have done. So, instruction fetch, so what happens

in that cycle, then instruction decodes and instruction execute.

(Refer Slide Time: 36:22)

I will now it is better basically without going into the theory you can read over this

theory. So, it is taken the (Refer Time: 36:28) it is represented program counter then how

it is broad etcetera and then basically how it is executed. So, now, is better that will take

an example where then taking so much of all theory will take an example that in a

memory location there are two memory location FF0 and FF1 and FF2 is the place for I

have to store the result. So, some data is present in FF0 some data is present in FF1 I

have to add this two numbers and store the value in FF2. So, this is what I want to do and

I will show with an example.

Now, these are the data FF0 and FF1 are the two locations where data is present and you

have to write the value in FF2. So, these corresponds to the data memory of one

Neumann architecture, but then also some where the instruction should be present that

instruction which will do the adding for you.

(Refer Slide Time: 37:10)

So, let us assume that there is this is the code right, this is the code I will tell you and that

some where the code also has to be placed in the memory. So, we are assuming that the

memory location for the staring of the code is 3F0. So, what is the first instruction it will

said that load FF0 that is, so first data is FF0 so you load the value of FF0 in the

accumulated then you add the add FF1. So, what does it mean? It means that whatever

is the memory value available in FF1 that you add with accumulated. Now you

accumulated has the value present in FF0. So now, we will have FF0 plus FF1 and the

value will be stored in the accumulated.

Finally, STA FF2 means store the value of accumulator in the memory location FF2. So,

these are the 3 instruction LDA FF0, ADD FF1 and STA FF2. So, this 3 instruction also

will be stored in the memory because is a von Neumann architecture and the number is

starts from FF0. So, this is basically your simple code are the memory architecture, I will

go now step by step.

(Refer Slide Time: 38:02)

So, this is your architecture. So, you have see the 3F0, 3F1 and 3F2, these are the data

memory first instruction is 0 FF0, 0 is the code as I told you for fetching an instruction

from the memory location this is the memory location this is the memory location FF0 in

the accumulator. So, 0 is the op code here, FF0 is the memory location that is a direct

memory direct instruction, that is not an immediate not an immediate one because FF0 is

not a data, FF0 is basically points to that memory this one actually pointing if you look at

it, it is basically pointing to just memory location that is FF0.

So, is an direct addressing. So, if you just find out what is the value of this location that

is 5 will be (Refer Time: 38:50). 8 is the oppcode for add, add accumulator; that means,

whatever value is in the accumulator you add whatever is the value of FF1 memory

location and store it back to the accumulator. 1 is again the oppcode for right back what

is store. So, whatever value is stored in the accumulator you stored to this FF2. So, FF2

to this stored.

So, now, this is the basic memory conflict is a important registers are program counter,

instruction register, memory address register, memory buffer register, accumulator and

some normal register is available to us. So, program counter is always pointing to the

first instruction that is FF 3F0. So, program counter is pointing to this.

Now, next, next what happens? So, the program counter is now pointing to 3F0 that is

this memory location and this code will be 0 FF0 will go to the memory buffer register

because you want to read it; that means, whatever value in the PC that value will go to

the address register address buff of the memory and this location whatever is value over

there will first go to the memory buffer register and add this an instruction it will go to

the instruction register simple.

Program counter value will go to memory address register memory address register is

3F0, so this is the value of the 3 a register it will be faced over here memory buffer

register. Till now where do not know whether it is an instruction or data, but from the

memory register I will go to instruction register because we always start with the

instruction because nobody can start with the data an instruction then an instruction. So,

first instruction, so it is an instruction. So, instruction decoder has now the value of this.

Simple again repeating program counter has the value of 3F0 that is the memory location

where the first instruction is there, it is loaded to memory address register this value

memory gives the value of the memory buffer register, first instruction or the first

memory excess of a code that is always an instruction. So, it is going to the instruction

register that is FF0.

Now the instruction will special with the code it will find out 0. So, what is that first 0

means? It is the opcode. So, it means that you have to fetch the operand from the

memory location F FF0. So, if I assume that it is a 16 bit word, 4 4 4 the 16 bit word. So,

early first 4 bits are result for a oppcode and the other 3 bits are result for the memory

location address. So, in this case I can address a memory who sizes 2 to the power 4 plus

4 plus 4 that is 2 to the power 12. If you want to go for higher this one then you have to

go for a indirect addressing, then it will be continue over here and then the address will

be of this one will be able anyway that is not a concerned for us right now.

So, next stage what happens. Now, all this story has been done program counter is

immediately incremented by 1, it is now start pointing to 3F1. Then what? Name

instruction register already knew that I have to get the value from memory location

number FF0. So, FF0 will be the value of FF0 will be fetch to the memory buffer

register. Now there is difference between instruction fetch or the data fetch. So, this was

the first instruction which was fetch that is 0 F F 0. So, it is going to instruction register.

Now, the instruction register knows that instruction already be in there now I have to get

the data. So, where the data is there? So, FF0 the value of FF0 is in the memory address

register the memory will give the value of whatever is available in FF0 that is 0 0 0 5 to

the memory buffer register. Now it will not go to instruction register because this is a

data which is already what we have to do has been decoded by 2 it will go to

accumulated, 0 means load the value from the memory location to accumulator. So,

accumulator has the value 5.

Now next see what happens now the program counter has gone to this one. So, 8 FF1,

this is the new instruction. So, 3F1 means. So, 3F1 is the memory address this is the

value 8 FF1. So, this from this memory location it will go to the memory buffer register

and already in the last instruction here fetched the data, so this is a instruction. So, first

for the instruction next cycle we got a data. So, now, again it is a new data, but is an

instruction. So, that is 8 FF1. So, instead of going to the accumulator or anywhere else it

will put the value of 8 FF1 into the instruction register. Now, 8 stands for adding, adding

of where, whatever is in the accumulator that is 5 which whatever is the data available in

FF1. So, it will add 5 with the data available in FF1 and store it accumulator back.

So, let us go to the next step. So, even let me zoom it over and this is your step. So, now,

you see what I told you. So, again now instruction PC is not pointing to the next

instruction, but currently you are executing this. So, it is having the value of instruction

register 8 FF1. So, what it tells that I have to add, add what, whatever value is available

in the accumulator that is the previous value, with whatever is the value available in

memory location FF1 and I have to store it in some register or some accumulator in this

case right.

So, now the memory buffer register will have the value of memory address register will

have the value of FF1. So, FF1 will be memory address register; that means, this address

and whatever value is available in FF1 that is 7 will go to memory buffer register, that

one will be added with the accumulator and store back to the accumulator that is what is

being done by this opcode 8. So, know the value of this one is 7 plus 5 plus 7 is H C, I

get it right into the accumulator.

Now, the last instruction the PC is pointing to this one. So, now, just previous to that

excess the memory for data. So, again I will excess the memory for instruction. So, again

the value of PC that is 3F2 will be the memory address. So, this is 3F2 this data will be

put to memory buffer register so in fact, is an instruction for the last instruction was a

data excess. So, now, this is an instruction excess. So, now, the instruction will be going

over here, so 1 F F 2. So, it will be decoded what one stands for whatever is in the

accumulator please write back to the memory location that is specified over here.

So, memory location accumulator sorry accumulator has not the value of 0 0 0 C that is

the asset of the output weight has to be stored, one is saying that whatever is put in the

accumulator you have to write back where I have to write back I have to write back in

FF2; so again the last instruction how it is executed? So, PC has now gone to the next

instruction anyways not therefore, us, but is an intimated. So, now, the instruction was 1

F F 2, 1 taste that whatever is in the accumulator write back and FF2. So, what is FF2?

FF2 is this location. So, this FF2 will be copy to memory address register, but now the

memory will be in a write mode in all other step it was in a read mode. So, it will be in a

write mode. And what is the address? The address is FF2 it is a address register and what

I have write I have to what is the value of the accumulator. So, I will write the value of

the accumulator in memory buffer register.

In all other cases it was happening the other way round what was happening what was

available in the memory buffer register I was writing it to the IR if it is or the instruction

what I was writing to the in a accumulator if it is was a or sorry for I was writing to the

accumulator if it is was a instruction or in other way round means if it was an instruction

I was writing to the IR and it will some kind of data I was putting it to the accumulator.

But now I have to write back to the memory. So, what I am doing I am taking the value

of accumulator and writing to the memory buffer register and the memory buffer register

write the value in FF2 that is C. These completes the execution of these 3 steps you reach

add and again store back and this is actually done. So, after that the PC is calculating the

value of 3F3, but that is again the next instruction which is not at all concerned for us.

So, these in these unit we have shown basically what there is an instruction, basic idea,

what are the components it have, how they are executed, how they are fetched, what is

the life cycle of instruction. And with the a very nice example we have seen that how a

instruction is accessed, how it is fetched from the memory, then how it is executed, how

operands are face from the memory, how they are operated and again return back to the

memory or this completion of the instruction.

So, again towards the end we now again we have to see some of the questions and how it

meets the objectives. So, consider an instruction fetch cycle of this one, instruction fetch

execute the de decode explain the purpose of each of the 4 phases.

(Refer Slide Time: 46:45)

So, we easily go for the objective which says that explain instruction fetch execute

decode cycle. Explain the use of indirect cycle that is another objective. Briefly explain

using an example how to provides CPU services using an IO interrupt, but is as I we

have already at (Refer Time: 47:02) discuss how interrupt is done, over the interrupt

service routine. So, we after doing the unit obviously, an answering this question you

will be able to meet the third instruction, third objective. This, write the use of IO

devices an incorporation in the instruction cycle. So, these two of the, that actually match

question number 2.

(Refer Slide Time: 47:23)

Give a scheme to identify the 4 phases in instruction that is using the ICC. So, it can

match the instruct, that is the objective of explain the fetch and executes cycle of an

instruction and explain using a simple example how a assembly language code is

executed. Again the first and the second and third instructions are basically objective of

clarified over here; that means, if your assembly language have some interrupts then off

course these two inter interrupts objectives are made otherwise the first objective is

made. So, in fact we have now studied how basic instructions what is the basic

instruction, how its looks and how this unit actually an come process this 3 objectives.

The next week, next unit where going to see how we can design instructions on a specific

canonical format. At that time we have kept this in a very generic manner that is the

oppcode, this is the instruction, this is the part of data, this is the part of operands how

can we make it more formal as suitable for our computer architecture. That is what we

are going to study in the next unit.

Thank you.

