
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture – 11
Page Frame Allocation and Thrashing

(Refer Slide Time: 00:26)

Welcome, in this lecture we will continue our discussion with paging. We have looking

at schemes, to improve the performance of paging; in this we looked in the last lecture

we looked at page replacement algorithms, where better page replacement algorithms

improve the performance of paging. Then we looked at the scheme of page buffering;

which is related to the issue that when during replacement when we have to write to a

dirty page, that dirty page has to be first written to disk and the system has to wait for

this dirty page to be written out to disk and then only the page that is required can be

brought into the memory frame.

Now to avoid this waiting time, we keep a pool of free pages at any point in time so

when we need to replace we as before we select a victim page, if that page is dirty we

will write we will write it to the disk, but, but what we do is that instead of writing to this

dirty, we select the victim page fine, but before writing this victim page to disk that

victim page if it is dirty to disk what we do is, we select a page from the free pool and

allocate this for replacement and therefore, the system does not have to wait for this

frame to be for the victim page to be written to be to be written to disk first; before

replacement so whenever there is a replacement I choose a frame from the free frame

pool and allocate this for replacement.

Now, after I have given this and the data has been written from the secondary storage

into this frame in the free frame pool and the process has been restarted subsequent to

service of the page-fault; then the I O channel is free again and then what we do this

victim page is written to the disk and then after this victim page is written to the disk,

this page modified bit or the dirty bit for this page is again reset and then this frame is

again added to the free frame pool.

Now this basic scheme was an extension to this basic scheme is that, what we do is that

whenever I O channel is free I find out a dirty page and I write it down into the disk so I

all I maintain a queue of all the dirty pages that are currently there in memory and

whenever the I O channel is free, I slowly in my in the in the when the I O channel is

free I write it down into the disk and add these pages into the free frame pool. Another

small extension to this scheme is that so I whenever I have written a page a dirty page so

the pre in the previous scheme we saw, that I took a dirty page and I wrote it on to the

disk in my free time and then I added it to the free frame pool.

Now, I have added this to the free frame pool, I have added this frame into the free frame

pool, but when I have written I have not destroyed the contents of this frame; I have

written the contents of the frame into the secondary storage and I have reset the dirty bit

file and I have also added this page in page frame into the free frame pool, but this does

not mean that I have destroyed the contents of this page.

So therefore, if it so happens that my processor needs a page, which is there in the free

frame pool and the then instead of going to the storage I can directly take thus that page

from the free frame pool itself; again this issue what we are trying to say is that I have a

page for which its dirty bit is on therefore, according to the earlier scheme in when the I

O channel is free, I O processor is free I have written this page into the into the free

frame pool sorry into the disk, and then I have added this page into the free frame pool,

but I addition of this page frame into the free frame pool does not destroy the contents of

this page so by chance in sub during subsequent accesses the processor needs this page,

this page of is there in the free frame pool; I directly take it from the free frame pool, I do

not have to go to the secondary memory and therefore, I save a page-fault so whenever I

have to access after I will see the free frame pool first, if the page is there in the free

frame pool I have to I will I will take it from there itself instead of going to the disk.

(Refer Slide Time: 05:30)

Then we look at schemes for allocation of frames. Till now we have been looking at

schemes where I have the entire set of frames in the in the memory and any page can be

replaced by any process so I have a global set of frames and the replacement algorithm

will search from this global set of frames to find a frame for replacement and give me.

Now, this may hit the performance of processes; so to avoid that what we do is that we

often allocate a minimum number of frames to each process so each process needs a

minimum number of frames. Now why does it need for example, to execute an

instruction it will need one page from in which the instruction is there; it will also need

data, it may need to read data, it may need to write data so whenever it needs to read

data, it will it will have to read from data from the pages in memory which contain that

data it so these pages corresponding to this process have to be kept in main memory;

page which contains the instruction needs to be kept in memory.

The pages which are there which contains the data needs to be kept in memory and the

pages where the data needs to be written to needs to be kept in memory so therefore,

there is a minimum set of active pages with which process is at any time is working on.

This set of active pages it must keep in memory so therefore, each process at any given

point in time will require a minimum number of frames to be allocated to it, because

these frames will contain the pages, active pages that this process needs at any time. If

this minimum number of frames is not given to the process; the process will frequently

page-fault so to avoid that each process must be allocated a minimum number of frames

to ensure a minimum level of performance.

Now, allocation schemes are typically of two types fixed allocation and priority based

allocation and there are many variations of this.

(Refer Slide Time: 07:52)

.

In a fixed allocation scheme what happens? Suppose this is basically equal allegation for

example, if you are given 100 page frames, if you are given 100 page frames and we

have 5 processors, we give 20 frames to each process so just you know the number of

processors and you know the number of frames; number of frames divided by number of

processors and therefore, that many frames is allocated to each process so in addition to

this you can keep some free frame buffer pool for each process. Now against as against

this equal fixed allocation, we also have Proportional allocation so what does

proportional allocation do it tries to fairly allocate frames to each process based on

process size.

So what we are trying to do? We are trying to find out how many frames should be

allocated to each process; the first one looked at fixed allocation, where all processes

gets depending on the degree of multi programming depending on how many processes

can co-exist together, co-execute together in the processor and so that many processors

need to be kept in main memory when I know this; when I know that therefore, the

degree of multi programming I divide the frames equally among these processors,

irrespective of the characteristics of each process ok.

So, therefore if the process is big a small process which requires a small number of pages

at a given time and a big processor let us say which requires a large number of frames at

a given time, we will get the same number of pages so the small process will do very

nicely and the large process may be maybe doing bad in performance because, the large

process has an insufficient number of frames allocated to it whereas, the small process

has surplus frames allocated to it so the small process does very well, but the large

process does not as well because the number of frames allocated to it is not as it requires.

Now, to overcome this problem, we looked at proportional allocation; what do we do in

proportional allocation? We allocate the frames to processes based on the process size

ok. This is dynamic this the so the number this is dynamic as the degree of multi

programming process sizes are subject to change. The size of a process; that means, the

size of a process in main memory at a given time, will vary in time; the degree of multi

program that is the that is the number of processors that are co-executing together in the

system at a given time will also vary; therefore, the number of frames allocated to a

process will also vary in proportional allocation.

For example, let us say m is the total number of frames that are there in memory at a

given time. Let s i be the size of process P i and S is the summation of the size of

individual processes; so the size of process in terms of the number of pages it requires; m

is the total number of frames and how does this allocation, how many how many frames

with will process will process P i get, it will get a i number of frames, how is a i

calculated? It is calculated as small s i the number of frames it requires, capital S divided

by capital S the total demand for s into m the total number of frames available in

memory.

So, let us say if we have two processes the first one requires 10 pages, the second one is

a big process requires 127 pages so capital S becomes 137 so for the first process the

number of frames that the first process P 1 will get will be a 1 and how is a 1 calculated;

10 divided by 137 into 62 equals to 4 why 62? Because they let us say we have allocated

2 frames for the operating system and the rest of the frames are allocated to user

processes let us say.

And then how many frames will the second process get? The second process will get 127

divided by 137 into 62 which is approximately equal to 57 so here we are allocating

frames based on the sizes proportionally we are allocating frames proportional to

proportionally to processors based on the size of the processes in terms of the pages it

requires.

(Refer Slide Time: 12:31)

Now, the use of a priority based allocation scheme using now it may so happen; now

when we are using this priority based allocation scheme, we are ignoring priorities of

processes. Now we may so want that we will allocate a higher number of frames to a

high priority process while making low priority process suffer, because if for a we want

higher performance for the high priority processes with respect to the low priority

processes. Now to take care of this, we can use to allow this such priority based

allocation; what we can do is we can use a proportional scheme using priorities; that

means, instead of instead of process sizes instead of the sizes of processes in terms of the

number of pages it requires; we can proportionally allocate frames to processes based on

the priority of the processes. So if you proportionally allocate based on priorities instead

of the sizes of the processes we are we are doing a priority based allocation; however, if

we are only doing a priority based allocation and looking at nothing else we are

completely ignoring the size of the processes.

So, we can also do a priority based proportional allocation; based on a combination of

priority and size, instead of going aggressively for only priorities. So a combination of

priority proportional allocation of frames to processes based on a combination of priority

and size may be will balances both priority as well as the requirements of the processes.

It takes care of both the priority of the processes and the requirements of the processes in

number of frames; it tries to look at both ends and do a better allocation ok. So, this is all

with priority based allocation; the other issue to look is doing a global versus local

allocation of frames.

Now, in a local frame allocation we said that we have allocated till now, we were the

discussion that we have been doing deals with this; how many frames will I allocate to

each frames? Let us say I have allocated as and as a certain number of frames to each

process currently under execution; now how will the replacement work in this scenario?

Now there are two there are two replacement schemes, there are two ways to look at

replacement after we have allocated frames to each process. One is local replacement in

which page replacement will only occur within pages which are allocated within frames,

which are allocated to a given process. So let us say I have a process P 1 and I know that

I have allocated a set of 10 frames to this process. Now during replacement I will only

consider these 10 frames when I am doing a replacement.

I will not consider for allocation frames allocated to other process for this process. This

is a completely local replacement strategy; that means, when replacing I will only

consider pages of these frames of this process for replacement, against global allocation

what will wait what will I do in global replacement? So during replacement I can look at

the entire set of processes that I have and choose any frame for replacement for this

process. So let us say in global replacement I have a process P 1 and then what happened

this P 1 has done a page-fault and I require to replace a page, while during replacement I

will not see whether I will not replace this page into a frame of P 1 I may not; I will

consider all frames in my entire memory and I can choose any frame for replacing this

page, and then this frame will be will come into will come into P 1.

So P 1 has done a page-fault, P 1 contains a set of 10 frames. Now in global replacement

I am not considering that I will only use one of these 10 page frames for replacement. I

will consider all frames that are in memory at a given time and I can choose any frame

for replacing this page and after this frame will now be added to the frame pool of P 1

ok. So this will happen in global replacement; in right in completely global replacement

and against completely local replacement.

A third strategy is this; a priority based third strategy is this. Let us say if a process P i

generates a page-fault; select for replacement one of its frames is available, so this is

local replacement. So you try to do a local replacement if you have a free frame in your

if you have a free frame, in the pool of frames that are allocated to P i, use that frame for

replacement. If you do not have a free frame; what do you do? Otherwise you try to

select for replacement of frame from a process with lower priority number. So this

process P i has a priority or importance either you try to get frame, local replacement

from local replacement from a frame of this process or you choose a frame from a

process with lower priority; what does this allow? It allows a high priority process to

increase its frame allocation at the expense of low priority processes.

Now when you, when you allow this semi global allocation what you basically do is that

the number of frames after you do this replacement; so basically you are stealing a frame

from a lower priority process after replacement. And after replacement this stolen frame

will be added to the frame list of P i; so the number of frames which are allocated to the

lower priority process reduces and the number of frames allocated to P i increases. So

therefore, using this scheme this scheme allows a high priority process a P i here to

increase its frame allocation at the expense of low priority processes.

(Refer Slide Time: 19:14)

Now, we come to the next issue which is thrashing; now we are saying that as we have

discussed each process requires a minimum number of active pages, when it is executing

at a given time. This is required for the instructions so the pages that it requires for the

instruction that it is executing the data it requires for these instructions and the data it

requires to write to.

So these active pages is at least required for the at a given time; so these active pages are

required by the process and this process the number of active pages that will be required

by the process at a given time is a characteristic of the process itself; what how it is using

data and how it is using, how it is executing data, how it is executing instructions at a

given time; that will determine the number of pages that it requires.

Now we said that we have allocated a certain number of frames to each process; now if a

process does not have enough pages ok, does not have enough pages then page-fault rate

becomes high; what do we mean by does not have enough pages? So in the frames that

are allocated to it so sufficient frames are not allocated to this process, for its active

pages to be in memory; that is why we are saying that the process does not have enough

pages in memory. So if it does not have active pages if it cannot keep all its active pages

in memory then the process will frequently page-fault. A page that it requires is not there

in main memory and therefore, it has to be brought from secondary memory.

Now, we need to do a page-fault to get this page; now for that because we have to

replace this an existing page so we need to do a page-fault to get this page; then we need

to replace an existing frame, because it does not have enough frames in memory all its

frames all its pages that are there in its frames are in active views, it needs to replace an

existing frame, but because all these pages are inactive use; it quickly needs to replace

the frame back. It is replacing it is replacing a page which is in active use; to get the page

that it to get the page that it immediately needs, to get a page that is not there in main

memory and it immediately needs. It is replacing a page which is also in active use.

Now because this page in active use very quickly in future that page which it has

replaced and put in secondary memory will be required again and this will lead to low

CPU utilization, because the process will spend will be spending more time in serving

the servicing the page-faults. This will lead to low CPU utilization the operating system

and a problem, another problem is that especially for early operating systems this was a

grave problem; that the operating system maybe thinking that it needs to increase the

degree of multiprogramming why?.

Because the CPU utilization has reduced why has the CPU utilization reduced? Because

processes are doing page-fault servicing more than it is executing and why is that so?

Even if let us say we are using a global replacement algorithm. One page does not have

enough pages in memory and therefore, it is it is continuously doing a page-fault and

when which is doing a page-fault it may be encroaching into frames allocated to other

processes, reducing the number of frames allocated to those processors; moreover what

happens is that the I O processor remains busy servicing page-faults; so when other

processes it even if other processors have enough frames in memory; whenever it

requires a page from the secondary storage it has to wait because the other process has

completely consumed I O processor.

Suppose I have a process P 1 which is doing which is continuously doing page-faults

because it does not have enough frames in memory and I have process P 2, which for

which it has enough frames and to keep its active pages. This one P 2 has enough frames

to P 2 has enough frames to keep all its active pages in memory P 1 does not have

enough frames to keep all its all its active pages in memory P 1 does not have. Now P 1

is continuously doing a page-fault and in doing so it is keeping the I O processor busy.

Now when P 2 whenever it requires one page and it does one page-fault it will it will find

the I O processor busy because, P 1 is completely consumed the I O processor and

therefore, the performance of P 2 is also going to reduce.

Now in this way the whole CPU utilization the execution in the CPU is going to reduce

because everybody is waiting for some of its pages to be brought from secondary

memory. All processes in memory are waiting for some of its pages to be brought from

secondary memory because I O processor is busy. Now if the operating system fails to

understand this situation, when it sees the CPU utilization low; it may think that it does

not have enough processes in main memory to execute in the CPU. So it will push in

another process into the main memory by increasing the degree of multi programming;

when one more process gets into the main memory and it tries to co-execute; it will also

encroach into frames of allocated to other processes. It will take away frames allocated to

other processes and the performance of the system will further degrade.

So another process when added to the system will further degrade the total performance

of this system and CPU utilization will dip further, because of two reasons because the

new process will again ask for pages; from secondary memory and also other processes

have for other processes that the number of frames allocated to them have reduced

because the new process have to be given a minimum number of frames. Due to both

these reasons the CPU utilization is going to reduce further and therefore, the CPU

utilization will finally, plunge.

So, what is the formal definition of thrashing? when a process spends more time

swapping pages in and out of memory than actually execution on the CPU, we say that

the system is undergoing thrashing or the process is undergoing thrashing; when a

process spends more time in swapping pages in and out than actual execution on the

CPU then we say that the process is thrashing. The system will also undergo a complete

if this process is thrashing for a long time and the thrashing is severe it will also degrade

the performance at the entire system as we discussed.

(Refer Slide Time: 26:40)

Now, so therefore, when we increase CPU utilization or we increase the degree of multi

programming up to a certain extent; we are we increase CPU utilization; then after that

more the processors will start spending more time in paging than in execution, because

there are so many processes have come are co-existing in the main memory; not enough

frames could be allocated to keep the active pages of these processes in main memory.

So when we are increasing the degree of multi programming; the number of processes

that are co-executing on the CPU are increasing and all these processes will take a share

of the of frames allocated in main memory.

So why because each of these processes will be allocated a certain number of frames;

now therefore, when the number of processes increase the number of frames allocated to

each process reduces when the number of frames reduces after a certain time, after a

certain increase in the degree of multi programming, there will not be enough frames for

each process to keep all its active pages. Now for a given process when it when it is not

able to keep all its active pages in memory; when the number of frames allocated to a

process is not is not sufficient to keep all its active pages in memory then the process will

start thrashing.

When the process starts thrashing and when more and more degree of multi

programming increases, more and more processes starts thrashing and this will finally,

bring down the entire performance of the system; which means that the CPU utilization

will reduce. CPU utilization meaning the percentage of time, that the CPU is spending in

executing instructions. So that will increase up to a certain extent, when the degree of

multiprogramming is increased why? Because up to this case I am keeping more

processors and therefore, I am keeping more processors in memory and I am utilizing the

CPU to a higher extent, because more number of processors are there. So even if some

other processes are being suspended for memory I O etcetera void whatever; some other

processes will be there for utilizing the CPU and the CPU will be efficiently sharing

itself among multiplexing itself among all these processes, but after a certain extent the

number of frames allocated to each of these processes decreases and then thrashing starts

and the CPU utilization plunges.

(Refer Slide Time: 29:25)

Now, you cannot say that using any such model, you cannot say that a fixed number a

certain fixed number of frames is sufficient for a given process; why because the active

pages that the that that a particular process requires is going to vary; why because

depending on the locality of reference for a process will vary depending on what it is

doing at a given time.

Now, for example, let us say at a given time it is continuously within a loop and is

executing a certain set of instructions and a certain set of data it is operating on a matrix.

so it requires a certain number of pages for that matrix and a certain number of pages for

the instructions within that loop. So let us say that at a given time a process is executing

a loop; so this loop contains a set of instructions and let us say in this loop it is executing

on a matrix. So if I am able to keep enough frames, enough pages it if I have enough

frames for this process to keep the pages of this matrix that are actively being used and

enough pages for the instructions in the loop then I will not suffer a lot of page-faults;

however, if I am not able to keep the if the number of frames are not sufficient to keep

the data corresponding to the matrix or the data corresponding to the instructions; in the

main memory pages if I do not have that many sufficient number of frames, then there is

going to be a lot of page-faults need possibly leading to thrashing.

Now this when now if the if now the program comes out of this loop and does something

else the requirements of its active pages corresponding to data as well as for instructions

is going to change. So therefore, over time a programs characteristics characteristic in

terms of the active pages; that is required is going to change and this is captured by

something called the working set model. So for the working set model we first define a

working set window.

A working set window is a fixed number of page references in the past; let us say you

look at 1000 page reference, 10000 page references in the past. So, delta equals to 10000

instructions in the past ok. So WS i is a working set of process i; Let us say WS i is the

working set of process I. It is defined as the number of distinct pages referenced in the

most recent delta references. So let us say these are not 10000 instructions, but 10000

references.

So, in the last 10000 references how many distinct pages were reference; this will be

called the working set of the process. For example, let us say that this is the sequence of

references for a given process. Now if the working set delta equals to 10; then at time t 1

I am going to look at the last 10 in 10 references and I want to find out how many

distinct page pages were referenced in the last 10 page references. For this case the

number of distinct pages that were referenced in the last 10 references are 1 2 6 5 and 7.

So 1 2 5 6 7 are the distinct pages referenced in the last 10 references.

So I will say that the working set of this processor process is 5; which is a measure of the

number of active pages that it requires at this point in time; given a working set window

delta of 10. Now let us say after a certain amount of time at time t 2 this is what

happened at time t 1. Let us say now at time t 2 what has happened the characteristic of

the program has changed. Now the program is doing something else and it is

continuously referencing pages only 3 and 4. So in the last ten page references at time t

2; what is happening is that it has the unique or the distinct pages that it has referenced is

only 3 and 4. So the working set at time t 2 is 3 and 4; while the working set at time t 1 is

1 2 5 6 7. So the demand for pages varies depending on time and is defined and is

roughly defined by the working set at a given time.

Now, if this working set delta working set window is too small; it will not cover the

entire locality of a process what do we mean by the locality of a process by the locality

of a process we will mean at a given time; what is does what is it doing and what are the

active pages it is referencing, that will define the locality of the process. Now if the delta

is if this value of delta is very small it will not cover the entire locality of the process. So

let us say even if delta says that it requires the working set size is 5 and if we then give 5

frames for it, it will still encounter a lot of faults because the it has not covered delta is so

small; that it has not covered its entire locality and the other hand if delta is too large it

will encounter multiple localities and then I will I will uselessly allocate more frames to

this process than it actually requires.

May be at the expense of other processes because other processes will possibly not get

enough frames may not get enough frames. So if the total demand for frames will

demand D will be given by the summation of the working sets of all processes and we

can say that the system will be thrashing if the total demand is greater than m which is

the total number of frames available in my main memory. If the total demand for frames

which is basically roughly defined by the working set of the processes as we said. So if

the total demand which is the summation of the working sets of all processes is more

than the total number of frames available in main memory; the system is going to

experience thrashing.

So, what do you do when D when the total demand is greater than the number of

processes that you have; you suspend or swap out one of the processes. So you go on

suspending processes until you have sufficient number of frames for each process,

possibly you will suspend the low priority processes to start with to allow high priority

processes to have better performance.

(Refer Slide Time: 36:30)

Now working set size has been a very successful model, but a more direct approach is to

directly work on the basis of how many know what is the page-fault frequency that a

particular process is currently experiencing. Working set size is a fine model, but a more

direct approach than working set size is to measure the page-fault frequency at a given

time and to establish to at a given time to for each process to have an acceptable page-

fault frequency for each process. For example, the page-fault frequency for a low priority

process the acceptable page-fault frequency for a low priority process may be higher than

the acceptable page-fault frequency for a high priority process; however, for each process

we can set an acceptable page-fault frequency rate ok.

So establish acceptable page-fault frequency rate and use local replacement policy. If the

actual rate is too low the process loses frames, we deduct frames from this process. So if

the if the if the page-fault frequency for a process is lower than a given threshold; that

means, what it does not require frames allocated to it. Then we can take frames from this

process and give it to somebody else.

So if the actual page-fault frequency rate is very low, the process loses frames. We take

frames from this process and give it to other processes. If the actual page-fault rate

frequency is very high then the process gains frames. If the actual page-fault frequency is

very high it means that this process possibly does not have enough frames to keep all its

active pages therefore, it needs more frames for it. Now it can be given from other

processes to it.

So, this figure shows us that for a process I have an acceptable upper bound and I have

and a lower bound. If the page-fault frequency decreases than this lower bound; what we

do is that we decrease the number of frames allocated to this process when the when the

when the number of when the page-fault frequency for this process is higher than this

bound; that means, it that that means, the process is experiencing more page-fault than it

is supposed to; what we should do is? We should increase the number of frames allocated

to this process so that it can keep more active pages in it and this is how it controls page-

fault frequency; with this we come to the end of this lecture.

