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Welcome,  in  this  lecture  we will  continue  our  discussion with virtual  memories  and

caches. We will start with a bit of recap from what we discussed in the last class. So,

particularly we will start by discussing a bit again, on virtually indexed physically tagged

caches. We had said last day that the problem with physically indexed physically tagged

caches was that, the TLB comes in the critical path for cache accesses.

So, therefore, cache access latencies are high because the TLB comes in the middle and

we cannot access the cache, until the complete physical address is generated. For to do

away with this, to improve the situation, so, virtually indexed virtually tagged caches

VIVT caches, we had proposed and there what happened is that the both the indexing

and tagging of the cache was done based on virtual addresses ok. So, the logical address

was used for both indexing and tagging of the cache

Now, this avoided TLB is to come into the critical path. So, TLB's are no more coming

into  the  critical  path;  however,  the problem again  it  was  that  both  the indexing and

tagging because, it is done with logical addresses, it has no connection with the physical

address and where a particular cache block is placed in physical memory. So, the issue is

that now the advantage of VIVT caches is that so, I do not have to go into the TLB. So,

even if there is a miss of the TLB and I have to go to the memory to bring in the physical

page number, even that is avoided and we do not need to go into the we do not need to

go into the TLB for that, if the if the data is in cache we are fine we are happy. So, we do

not go into the TLB to look for the physical address at all.

However,  the  problem as  we said  is  that  virtual  addresses  have  no  connection  with

physical addresses. So, a particular data in cache is now stored only with respect to what

the logical addresses and the logical address of different processes may be same. The

physical address so, multiple processors have different physical addresses. So, the data

corresponding to multiple processes will be stored in different locations in the physical



memory. So, when I have the cache that indexed and tagged based on physical addresses

I do not have the problem that the same cache block can be stored in multiple different

locations, or multiple different sets, in the cache the same cache block cannot be stored

in multiple different sets in the cache. So, the same block in physical memory cannot be

stored in multiple different sets in the cache. If I am address indexing and tagging the

cache using physical addresses.

However because these are first virtual addresses so, a block in physical memory can be

stored in multiple different locations or multiple different sets in the cache. And this is a

problem because  the  same virtual  address  can  mean  different  physical  addresses  by

different processors ok. So, therefore, the same cache physical cache block maybe stored

in different locations and therefore, the cache needs to be flushed, every time there is a

context switch and a different process comes into the CPU.

So, when one process is executing on the CPU, for that the for the virtual addresses of

that  process  I  am accessing the cache using virtual  logical  address  of  that  processor

process and now when there is a context which a different processor comes in and there

the virtual address will mean entirely different set of physical addresses and therefore,

the previous entire cache the cache needs to be flushed and, there can be a lot of cold

misses;  that means,  the previous data is all  rubbed is all  deleted from the cache and

therefore, when the new process comes in I will have nothing in the cache of nothing of

the physical memory in cache and therefore, I have to repopulate everything in the cache

corresponding to that process and this will lead to a lot of cold misses as it is called ok.

Because the cache is cold and I will cold or empty and therefore, I have to bring in data

from the physical memory into cache and so, that was the problem of virtually index

virtually tagged caches.

Now virtually indexed physically tagged caches was a compromise between these two.

So, in virtually indexed physically tagged caches what do we do? We index both the

cache and TLB concurrently using virtual address bits ok. So, the virtual page number

part of the virtual address is used to go use to search the TLB for a hit. So, the TLB is

fully is fully associative and so therefore, or in the all the entries in the TLB will be

searched  for  the  virtual  page  number  and  if  the  virtual  page  number  is  found  the

corresponding physical page number is taken.



Now concurrently I will use the physical page offset sorry, the virtual page offset which

is same as the physical page offset. So, the physical page offset will be used to index the

cache and if there is a if the physical page offset matches, if the physical page offset

sorry I will I will use the index took in I will go use the physical page offset to index the

cache and then corresponding to that I will try to match the tag at that particular at that

particular location that particular block, or a particular set of blocks in a set for a match

of the physical page number that I got as output from the physical page numbers.

(Refer Slide Time: 07:01)

So, here my TLB has produced a physical page number from here, I am indexing the 

cache. So, I have gone to a particular location and found a certain tag and that tag I have 

obtained. If this tag matches with the physical page number then I have a cache hit. So, 

why this is a benefit this is a benefit because, the cache the cache and the TLB is 

accessed concurrently not sequentially one after another, but concurrently and therefore, 

I save time; the TLB does not come in the critical path. However, if there is a TLB miss 

this access still has to wait, this access still has to wait to get the physical page number 

from memory back and then only we can we can have check for a cache hit. So, 

therefore, this strategy is helpful when there is a TLB hit.

So,  on  an  average  it  reduces  access  times,  with  respect  to  with  respect  to  virtually

indexed virtually tagged sorry with respect to physically index physical tagged cache

because the TLB and cache are accessed concurrently. With respect to virtually indexed



virtually tagged cache, it is it is not as efficient when one process is running because, if

there is a TLB miss I have to go to the physical memory; however, if there is a physical

TLB hit I have I can check for the cache hit without going into the physical memory and

I save time.

But this however, this approach avoids the need for need to flush the cache on a context

switch ok. So, why because the physical page offset and the virtual page offset are same

ok. So, therefore, when I am accessing the cache with the page offset part only of the

virtual page number. So, this is the complete virtual address, this is the complete virtual

address  and I  am accessing  the  cache  only with the  physical  page offset  part,  I  am

indexing the cache only with the physical page offset part, if I am doing this then what

essentially is happening is that, I am basically indexing the cache using basically using

physical addresses only, because the page offset part of the virtual address and physical

address is same.

So, if the cache is accessed only using the physical you only using the page offset part of

the virtual memory, then what happens is that let us say I have the page offset of 12 bits

12 bits. So, the page size is 4 KB and let us say my cache block size is 128 bytes. So

therefore, I have 8 into 4 32 cache blocks 32 blocks per page I have 32 blocks per page.

Now, each of these 32 blocks will go to a particular location in the cache, depending on

what, so I have 32 128 bytes ok. So, I have 128 bytes in is the block size. So, this will

require 7 bits this will require 7 bits and therefore, so this will require 7 bits and the other

5 bits will tell me where it will go in the cache ok. So, the cache the cache is no more

than 12. So, the cache  is  also 4 KB in size;  the cache is  4 KB in size and I  know

depending on what the other 5 bits are so, 7 bits the lower 7 bits are for accessing the

cache and the higher significant 5 bits will tell me which particular block in the cache,

this cache block is going to go, which particular line in cache will this particular cache

block.

So, these 7 bits each enumeration of the second bits will identify a particular cache block

and  this  cache  block  will  go  to  a  designated  location,  or  designated  line  in  cache

depending on the value of the more significant of the higher significant 5 bits. Now,

therefore, each cache block will have a designated location in cache and, the cache block

cannot sit cannot be located in to multiple locations in the cache, depending on means



irrespective  of  what  the  virtual  address  is  because,  the  physical  page  offset  and the

virtual page is same.

(Refer Slide Time: 12:00)
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When the situation changes, when we want to increase the size of the cache, now, when

we want to increase the size of the cache, then I need to use a part of the virtual page

number this part of the virtual this part these many bits let us say these are 3 bits. So, in

addition to the 12 bits that I have 12 bits that I have in addition to I was using 12 bits.

Now in addition to 12 bits let us say I used 3 more bits from the virtual page number to



index the cache, why because my cache was off size. So, I had 12 bits so, 12 bits can

access any one of 2 to the power 12 locations. So, any one of 2 to the power 12 blocks it

can access.

A barring the byte offset again, so, ok. So, it will it will it the page of so I will in I will

need few more bits, I will need 3 more bits. So, 3 more bits I have used to increase the

size of the cache. Now what is the problem that this has brought into? Now a particular

now a particular  block cache block a particular  block in physical memory can sit  in

multiple locations in the cache, why? Because these 3 bits these 3 bits will now depend

on what the virtual address says. This, previously what was happening I was only there

using this physical offset part of the cache.

And therefore,  when I  am when I  am when I  am appending it  to  the physical  page

number and the physical page offset, I know that corresponding to this physical address,

I my cache block will sit in a particular set or particular block in the cache only. Now

these 3 additional bits have created this problem that given for a given physical address

depending on what the values of these 3 bits are, it can it the same the same cache block

the same block in physical memory can go into different sets, different sets or different

blocks, depending on what type of set associative or direct mapped or what it is. So, let

us say if we have a set associative cache and therefore, the index part will tell me which

set which set in cache my particular physical my particular physical block will go into.

Now, this page offset part remains same, but these 3 these 3 bits become different. Now

these 3 bits therefore this, what happens due to this is that 2 to the power 3 or 8 different

location 8 different sets ok. Now these 3 bits mean 8 different sets for a given this part

remaining same, this part of the address remaining same, even the physical page number

remaining same, when the physical page number remains same and this part remains

same; that means, I am going to the same physical address, I am trying to access the

same physical address.

However, depending on what the value of this 3 bits are the same physical address. So,

the block which contains this physical address can go into 8 different sets in the cache.

So, I will I will reiterate based on this physical page number and this page offset let us

say a situation, in which this physical page number is same and the physical page offset

is same and I am trying to index the cache using this index. Now this part of the index is



going to remain same for this physical address. However, for the same physical page the

physical page number could be different sorry the physical for the same physical page

number  depending  on what  these  3  bits  are  the  same physical  block  can  go  into  8

different sets in cache and this as he had told is the synonym problem.

(Refer Slide Time: 16:55)

And one of the ways in which we had discussed 3 ways, I will today I will just recap the

last one; one of the ways to handle this synonym problem was page colouring. And we

said what was page colouring it is to restrict virtual page to physical page frame mapping

in OS, we will restrict virtual page to physical page frame mapping in the OS.

So, how will we do this? We will try to make sure that the index that the virtual address

produces ok. So, virtual address meaning the virtual address meaning this one, this entire

thing is basically part of the virtual address. This is the virtual address, so, that is why it

is a virtually indexed cache. So, this is part of the virtual address. So, the index that the

virtual address produces, we will try to make it same as if the physical add if the in the

equal to the index that the physical address would create.

And how will we do that? We will do that using a scheme called page colouring in which

all physical page frames are coloured. So, how are they coloured. So, now the physical

memory if we see let us say this is the physical memory and this one is let us say the

pages in it these are the pages in it, physical memory and these are the pages in it. Now

this one will require what one this page offset. So, page offset page offset will address



each location within this page, within each page the page offset can locate. Now which

page will be given by the page number? 

Now let us say we coloured the physical memory into 8 colours. So, colouring means I

will give a unique ID. So, let us say this one is given 0 0 0, this one is given 0 0 1. So, 0

1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0, 1 1 1. So, I give 8 different colours. So, now, again for the

next set of next set of pages, I will again give colours to it 0 0 0, 0 0 1, 0 1 0, 0 1 1, 0 1 1

and likewise it will go on ok. So, I will I will go and colour each page in the in the

physical  memory. So, statically  before in the system, I  will  know that  this  page has

colour 0 0 0, page 2 has colour 0 0 1, page 3 has colour 0 1 0 likewise. And again this

one will have again colour 0 0 0, this one will have again colour 0 0 1. So, for each page

I will know what is it is colour ok.

Now, what  will  I  do is  that.  So,  each  cache block within this.  So,  the  page will  be

composed of a integral number of cache blocks. So, in this in this particular page there

will be a number of blocks. So, not cache block, but number of blocks. So, each page

again will have a number of blocks like we had set in the previous case that our page had

was composed of 32 blocks. So, each page had 32 blocks. Now here all these blocks will

have a colour of 0 0 1; all these colour all these all these blocks in physical memory

within this page will also have the same colour as the page.

So, now for each block in physical memory I know what colour it is ok. Now we I will

use the scheme; a physical page of one colour is mapped to a virtual address by the OS in

such a way that that a set in cache always gets page frames of the same colour. Now a

physical page of one colour is mapped to a virtual address; so, this physical page will be

mapped to a virtual address ok. Now if this page I will always map to a virtual address

such that those 3 bits, those 3 bits, these 3 bits in a, we in a these 3 bits will also have 0 0

1 ok.

So, this physical page will be mapped to a virtual will map to such a virtual address, such

that those 3 bits in a, of the virtual address will have will be 0 0 1 ok. Now what happens

if for this virtual address therefore, I know that those 3 bits will be 0 0 1; so, the virtual I

am restricting what,  I  am restricting  during the mapping of the physical.  So,  for the

virtual address I will map a physical page frame.



Now when I am doing this mapping between virtual address to physical address, I will I

will map such a physical page number to a virtual page number that those for in that

virtual page number those 3 bits of a will be 0 0 1, if this is the physical page I am

referring  to.  So,  only those virtual  addresses will  be able  to get  these physical  page

frames, if that virtual address or those set of that virtual page number. 

So, this page number will be given to such a virtual page number, in which those 3 bits

of a will be 0 0 1. So, by this scheme I will always be able to ensure that this page will

go to the same set in cache. So, when this page goes to the same set in cache, I will be

able to avoid the synonym problem. Now, we will quickly study page replacement and

go and look at page replacement again. So, that we discuss one more important problem

which is Belady’s anomaly and progress from there.

(Refer Slide Time: 23:40)

So, we had already told why page replacement is required.



(Refer Slide Time: 23:41)

And to reduce page fault rates.

(Refer Slide Time: 23:46)

And we said what reference string are is. So, these are the set of pages that that the that a

processor is accessing.



(Refer Slide Time: 23:57)

Then we discussed different page replacement policies, the first one we discussed was

first in first out, in which the oldest page in physical memory is the one selected for

replacement.  So,  the  oldest  page  in  physical  memory  at  any given time  is  used  for

replacement.

(Refer Slide Time: 24:17)

And we discussed this we will discuss again with respect to Belady’s anomaly. So, I am

not going into first in first out.



(Refer Slide Time: 24:26)

We will look at FIFO issues again with respect to Belady’s anomaly.

(Refer Slide Time: 24:29)

So, I will not going into this again, for optimal replacement we said that we replace the

page which will not be referenced for the longest time in future. So, I will have to know

using an oracle as to which pages will be accessed in future, this is not possible and

hence this optimal page replacement policy is not realizable in practice, but we use this

to measure or evaluate and compare other algorithms against, how good it is. Because we



cannot do better than the optimal, we will use it to compare other algorithms with respect

to this one.

(Refer Slide Time: 25:07)

Then we came into least recently used and we said that in least recently used, we replace

that page in memory that has not been accessed for the longest time in the past. So, at

any point in time I will then the page frames which page frames will be contained, the

page the pages in the physical memory will be the one which is most recently used. So,

the least recent to used one will be will be will be replaced, when I need to replace a

page. So, when I need to replace a page when do I need to replace the page? When there

are no free frames in memory and to get a new page into the physical memory, I have to

replace an existing page in the page in the physical memory, send it to the secondary

memory, if it is dirty and then bring in a new page.

So, we said that LRU was the is the optimal algorithm is an optimal algorithm, when

with the restriction that I can look back in time, but I cannot look forward; that means,

this is this is a this is practical because, looking back is possible; looking forward in what

will  happen  in  future  it  is  not  possible,  but  what  has  happened  we  already  know,

therefore looking back in future this is the optimal algorithm. Why? Because it always

keeps the most recently more most recently used pages at any given time.



(Refer Slide Time: 26:38)

So, we looked into least recently used, so, I will not go into that anymore, but we will

study what were the problems with you are we also saw this what are the problems with

LRU and we said that the problem was in practical implementation, why is in such a

thing why is it difficult to implement in practice because, at each point in time for each

page in the physical memory, I have to keep when it was accessed because, I am I am I

am evicting the page, I am replacing the page which is least recently used. So, I need to

know among all pages in physical memory which one is the least recently used.

So, what is the what is the logical way of doing that? I will have to keep a global clock

and whenever memory is being accessed I will I will take the stamp of the global clock

and put that stamp on this physical page. So, when I need to evict pages, I will I will I

will have a time stamp associated with each physical page in memory, whenever the page

is accessed I provide it a time stamp I provide the time at which it was accessed and

therefore, I will know which one among all the pages in physical memory, which one

was least  recently  used,  which was accessed farthest  back in  time.  And that  will  be

evicted. So, this will this has a lot of hardware cost because and also overheads because,

at each access I have to update the value of this time stamp corresponding to that page.

And this is hard.

So, anyhow the solutions are this so, I keep the hardware clock ticks on every memory

reference. So, this is this keeps global time. So, with respect to memory reference for



each memory reference irrespective of which process does this reference, I keep a global

clock and I go on incrementing a global clock. Now the value of this global clock is the

time stamp which is attached to a page whenever it is referenced and the page with the

smallest time value is replaced.

Now this is a very costly solution as we said; a simpler solution is this: We keep a stack

of references and the stack is maintained as a doubly linked list and, on each reference to

a page we what do we do? So, when a page is referenced and it is found in physical

memory, it will be in a certain position in the stack. So, I take that take this take this

reference this page and the node in the stack corresponding to this page I take it out and

put it on the top of the stack. So, this will require the updation of the 6 pointers. And now

at any point in time because, whatever when whenever a page is being accessed I am

taking that page out and putting on top of the stack, now what is happening is that when

so, what is happening is that when I need to replace a page, the page which is at the

bottom of the stack is a least recently used one and that is replaced.

(Refer Slide Time: 30:07)

So, both techniques require additional hardware and memory because memory references

are a very frequent phenomena. It is the overhead, the overhead if we implement it in

software in software means whenever, there is a memory reference I have to go to the OS

and update either I have to do a stack operation, or I have to do more costly continuously

I have to do or I have to do I have to update the timestamp corresponding to that page.



Now, in the first approach when I am using counters, what happens is that when I need to

replace a page I have to search all my timestamps corresponding to all pages to find the

find the page with the least value of the timestamp, which is very costly. Now when I am

using a stack at each memory reference, I have to take that node from the stack and put it

on the top of  the stack.  If  this  one has a  slightly  higher  overhead possibly than the

counter one than the counter one; that means, just updating the timestamps, but when I

am I need to replace a page the stack is lower overhead that stack has lower overhead,

why? Because, we do not need to search the entire all pages in physical memory to find

the least timestamp page.

And that I do not need to do. I will just go to the bottom of the stack and evict that node

out ok. So, the so during the replacement stack is better; however, for both I need to

implement  both  stack  and  this  counter  one  in  hardware  memory.  So,  both  these

techniques therefore, require extra hardware as memory references are a very frequent

phenomena it is impractical to invoke the OS on every memory reference. 

So, if I do not implement this counter method or the stack method in hardware I have to

implement that in software, meaning that whenever there is a memory reference, I have

to go to the OS and update data structures, which is also impractical because memory

references are a very frequent phenomena. So therefore, the exact version of ALU is not

often used and instead approximate a LRU is commonly used.

(Refer Slide Time: 32:29)



So, one of the most common implementations is to use an approximate version of ALU,

which uses reference bit in the page table for each page. So, what how does this operate?

On a reference to a page this bit is set to 1 ok. So, each page has a reference bit when I

when I  am referring to this  page when I  am accessing this  page and this  page is  in

memory I am setting this bit from 0 to 1, if it is not already 1 ok.

Now, at and I have time periods or frames or intervals.  So, fixed size intervals after

which I check for the after which I set the bits of all pages, I said the reference bits of all

pages to 0. So, I when at the start of a time interval, I set the reference bits of all pages to

0 and then within that particular interval every page that is referenced their reference bits

are set to 1. And then when the when a particular page has to be replaced, I will try to use

a page for which the reference bit is 0. So, a reference bit is 0 means that in the in the

current  time interval  it  has not been accessed; that  means,  it  has it  is  it  is  of higher

probability that it is of higher probability that this page will also not be used in the recent

future because, it has not been used in the current timestamp.

This anyway does not mean that  this  is the least  recently used,  but it  is the it  is an

approximate LRU to avoid the high hardware cost of LRU, I will just keep one reference

bit on each memory reference if that reference bit is 0 I set it to 1 and during replacement

I try to find a page for which the reference bit is 0; that means, which has not been used

it is with the approx with the approximate assumption that this is not a very frequently

used page because, this has not been accessed in the current time interval and therefore,

this one could be a good page to replace ok.

Now if all bits are same for a for a given reference bit suppose I find out among all pages

for which the reference bit is 0, I may like to select the one which has which was which

came into memory at the earliest; that means, first in first out, I will use FIFO for a given

value of the reference bit. So, if I get a set of pages with reference bit 0, I can choose the

one which came into memory at the earliest ok. So, that will be that will be evicted; so

among all pages which have the same reference bit, I use the FIFO strategy to find out

the page which needs to be replaced.



(Refer Slide Time: 35:46)

The next one is sampled LRU, sampled LRU who is an extension over the approximate

LRU which we studied using just one reference bit. And it has slightly higher hardware

cost in that, the first byte of each page is used by this strategy. Now what happens is this,

that instead of in addition to the reference bit I have a reference byte for each page. So,

the first byte of a page will be used as a reference byte reference byte for the page. Now

at set time intervals I have similar time intervals as was for the simple approximate LRU

I have similar time intervals.

And we take an interrupt and get the OS involved. So, at the end of each time interval

there what I was doing, I was I was setting all the reference bits to 0. Here, additionally

what I do is I get the OS involved and what does the OS do here? The OS reads the

reference  bit  for  each  page;  the  OS  reads  the  reference  bit  for  each  page  and  the

reference which is stuffed, so, at the beginning byte for the page. So, in addition I already

have the reference bits for each page.

So, at the beginning of the interval I read the reference bit of each page and, stuff it into

the  reference  byte.  And then I  all  reference  bits  are  again  clear;  very similar  to  the

previous scheme, this one is very similar to the previous scheme, the only difference

being that before setting all the reference bits of each page to 0, I copied the reference

bits of each page and stuff it into the reference byte. And then on a page fault I replace

the page with the smallest reference byte.



(Refer Slide Time: 37:54)

So, how does this scheme work? Now let us say these are my reference bytes for each

page. So, these are distinct pages; page 1, page 2, page 3, page 4, page 5 and this is the

page table. So, this is the page table and the page table contains my reference bits; these

are my reference bits for these pages.

Now, what happens is that now when at the at the end of so, I mean what has happened is

that  here,  my time interval  has come to an end; the current time interval.  So, at  the

beginning of every time interval, the OS takes charge and let us say this one is the end of

one time interval, there is an interrupt and the OS has taken charge. What does the OS

do? It first throws these bits. So, these the least bits are thrown away and what am I

doing? I am stuffing all these bits to these places ok.

So, I am stuffing these bits so, when I stuff this bits , so, see these bits here are the same

as the MSBs here, as the MSB here, then I am clearing all my reference bits ok, I am

clearing all my reference bits. Now what happens? The values this byte; if I take the

numerical value of this byte. So, I take this value of this each of these reference byte; this

reference byte. So, I take the numerical decimal value say decimal value of this byte.

Now what does this decimal value tell? This decimal value tells me in the last 8 intervals

what was the access pattern of it.

And this  MSB has  the highest  weight  meaning that  it  could  be that  in  the  last  few

intervals this page was not used, but this page was used immediately here. So, even if



these bits are 0, I should keep this page. So, and let us say so therefore, the numerical

value of this byte tells me how good is this page for replacement; lower the value of this

byte better is a better is this page or candidate for replacement. So, I should replace a

page having least value for this byte. Why? Because this tells me this byte tells me two

things. A very low value of this byte tells me that this page was not accessed recently and

this page was not accessed possibly many times recently.

So, this page was not accessed very recently and this page was not accessed possibly not

many times recently. So, this is what it tells me the numerical value of this byte. So, I

will replace that page having low numerical lowest numerical value of this byte. Again

for all pages having the same value of this numerical byte, so, having the same numerical

value all pages for which the numerical value of this byte is same, I will choose that page

which came into the memory at the earliest. So, among all pages having the same value

of this numerical byte numerical value of this byte, I will use the FIFO strategy to choose

in for choosing the page which has to be replaced.
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So, we will  now look at  the clock algorithm or the second chance page replacement

algorithm. So, it is an extension, it is it uses the reference bits you uses the reference bits

in a different way. So, how does this operate? So, on a page fault it searches through

pages and then if the pages reference bit is set to 1, then it sets it to 0 and skips it. So, it

gives the this page as second chance. So, if it is 1 it does not it does not replace it, but it



sets it to 0 ok. Now if a pages reference bit is 0 this is selected for replacement, if it is 0

then among all pages that is 0 I use the FIFO strategy to replace the one which has 0.

Now it searches it starts the search from where the know where the last search was left

off.
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So,  how does  this  scheme work?  So,  let  us  say the  previous  search  ended with the

pointer;  that  means,  the  last  page  which  was  accessed  was  page  6  ok,  which  was

accessed which was page number 6. Now this is the pointer to the first page to check. So,

for all pages I have a circular link list, for all pages I have a circular link list. And for you

suppose the user  references  page  number 4 and that  is  not  currently  in  the  physical

memory. So, I have to replace to bring in page 4, I have to replace some page. So, last

time the search ended just before page 6, in the physical frame containing page 6. So,

now, I will start from the frame containing page 6, P 6. So, this one becomes the first

page to check.

Now, therefore  so,  first  I  find  that  the reference  bit  is  1  and not  0.  So,  I  make the

reference between 0 and I do not replace this page, then I come to the next frame; this

frame contains P 1, the reference bit is 1 not 0. So, I only set it to 0 and go to the and

check the next  frame,  I  come to the next  frame,  it  contains  page number 7 and the

reference bit is and the reference bit is 1. So, again I set it to 0 and I again proceed, when

I come to page when I come to the next page frame I see that it contains page 3 and a



reference bit for page 3 is 0; which means that in the current time interval page 3 was not

accessed.

So, therefore, I select page 3 for replacement and after replacement I so, I select page 3

for replacement and it  goes to P 4 page number 4 comes in page of page 3 and the

reference bit again is set to 1. And then for the next search it now points to this page

frame. So, my current search ended at this page frame and then my next therefore, search

will start from the next page frame. So, user references page 4 this is not currently page,

we start at page 6, we check P 6 P 6 then P 1 then P 7 and set their reference bits to 0,

give them a second chance. And then check page 3 and notice that the reference bit is 0

and then we select P 3 for replacement and set the pointer to P 9 for the next search. Now

what is good about this algorithm is that if all pages are 1, then ultimately in the next

round I will I will select this page.

This one has a low overhead why? Because I am not searching for all pages which has a

reference  bit  of  0.  So,  possibly  which  has  a  reference  bit  of  0  and  I  am going  on

searching  for  the  next  page  which  has  a  reference  bit  of  0.  So,  if  all  pages  have  a

reference  bit  of  1,  it  will  the  search  will  circle  through all  page  frames  in  physical

memory and then come back to the first page which was for which the memory bit was

set to 0 from 1 and it will be the 1 to be evicted. So, although this page is referenced, but

I have been able to give a second chance and because all pages have been recently used I

could not find a page with the reference bits 0 and I choose I will choose that one for

replacement.
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Now, one aspect which the second chance algorithm does not take care, or ignores is that

was is this page dirty or not is this has this page been modified has been written to or not,

if a page has not been written to it is dirty. So, before a dirty page can be replaced it must

be written to disk. Before a dirty page has been replaced it must be written to disk and

this  has  higher  overhead.  A clean  page  does  not  need to  be  written  to  the  disk and

therefore, it has much lower overhead as replacement I can just discard this page because

it is not written and therefore, it does not need to be written back to disk, it can just be

discarded and in it is place a new page can come to ok.

The page on disk is already up to date. So, we would rather replace an old clean page old

and clean page will rather an old clean page than an old dirty page. So, if I if both pages

are old I will choose one which is which is which is clean and which is not dirty, because

it will I do not have to write that page back to disk.
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So, now, we will go and see an extension of the modified clock replacement algorithm,

in which we use the 2 bits both the reference bits and the dirty bit. It is similar to the

clock algorithm, but now each page instead of having 2 states whether it is referenced or

not referenced will all have 4 states, whether it is referenced or not referenced and also

whether it is dirty or non dirty. So, if a page has its reference bit 0 and it is it is dirty bit

also 0, it means that this page was not referenced in the current interval and is also clean;

that means, it is while when replaced I do not need to write this page back on to disk.

If it is 0 1 it is not referenced and but it is dirty. So, it is not referenced in the current time

interval, but in the last wherever it was last used whenever, it was last used it was written

to therefore, if I choose this page for replacement I need to write this page first back into

disk then bring a new page. Then it the next one is 1 0, the page has been referenced in

the  current  interval,  but  is  clean  that  means,  I  do  not  I  can  discard  this  page.  All;

however, it was referenced so, it could be that it will again be referenced in the near

future; however, because I have no one to replace I may need to replace this if the other

options are not there.

So, and if it is 1 1 it is both referenced and then dirty this one is the is the late least

preferred set of pages, if the if a page has the pages which have this 1 1 set they will be

the least preferred set of pages to be replaced. So, the order of preference for replacement

goes from the one above. So, how will the modified clock replacement algorithm work?
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So, add a second bit to the page table the dirty bit, hardware sets this bit on right to a

page fine, the OS can clear this bit ok. Now, just do clock algorithm and look for the best

page to replace. So, what do you do? In one round of the clock you try to find 0 a page

which is 0 0 and in this one if you have for all those pages which are 0 1 you set it to 0 0

ok. So, if you have the least significant bit 1 in the first round you set it to 0 and, you go

on looking for a page which is which has a page which has both bits 0. If you find a page

which has both bit 0, you use it for replacement. If you see that if both bits are not 0, then

you find out whether the least significant bit is non-zero, if the least significant bit is

non-zero you set it to 0 fine. Now, in the in the first round if now no page is found, then

you find try to find a page for which is which is if you try to find a page which is then 1

0. So, you go on making multiple passes in the order of preference setting 1 bit to 0 at

that time and hence you will you will you may require multiple passes to passes through

the list to get to a desired page to get the desired page for replacement.
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So, now before proceeding we will take a small example. Consider a computer system

with 10 physical page frames, so, I have 10 physical page frames. The system is provided

with an axis sequence a 1, a 2, dot dot dot up to a 20, a 1, a 2, so. Pages a 1 up to a 20 are

accessed one after the other and again in sequence page a 1 up to a 20; where each a i is a

distinct virtual page number. So, each a i is a distinct virtual page number. Determine the

difference in the number of page faults between the last in first out page replacement

policy and the optimal page replacement policy.

So, let us first see what will happen in the last in first out page replacement policy? I

have 10 physical page frames. So, a 1, a 2 dot dot up to a 10 will result in compulsory

misses. So, 10 page faults page faults. So, compulsory page faults 10 page faults ok.

Now a 11 who so it is last in first out. So, last in is a 10; so a 11 will replace a 10, a 12

will replace who will who will it replace it will replace a 11 ok. And then there will be

again these 10 page faults up to a 20 up to a 20 so, 10 page faults ok. Now after this what

do you have? You in the in the page frames you have a 1 to a 9, so, after this sequence

after this one is done, you have after the first set of 1 to 20 references you in the in the

physical memory you have pages 1, a 1, a 2, a 9 and a 20; this is what you have. Now,

therefore, the next set of 9 accesses do not result in a page fault in the LRU, in the least

last in first out page replacement policy these will be hits. So, this will be page hits, this

will not be page for this will be hits.



Now, a 10 will again result in a fault.  Now who will a 10, a 10 will be who will it

replace? So, this is a last in last in first out page replacement policy. So, therefore, so

therefore, a 10 will a 10 when it is accessed it will it will be replaced by the one which

came in last; who came in last a 20 because, a 1 to a 9 resulted in page hits they were not

brought in. So, last in, in this system of in this system that means, in the set of 10 page

frames that I have currently this set of 10 page frames that I have currently a 20 is the

last in page.

So, a 10 will be again replaced by this one. So, a 10 will replace a 20, a 11 will again

replace a 10 will again replace a 10 will again replace a 10 and likewise, a 20 will result

in a page fault and it will replace a 19 likewise. So, therefore, how many page faults will

you have? You will you will have here, let us see these are 10 page faults again these are

10 page faults and, then from a 20, a 10 to a 20 you will have 11 more page faults. So,

this one will be 11 page faults.

So, for the last in for the LIFO strategy for the LIFO strategy, you will have 31 page

faults;  for  the  LIFO strategy, you will  have  31 page  faults.  Now when you use the

optimal  page replacement,  you see that  this  20 page faults  will  still  be there.  In the

optimal  page  replacement,  these  20  faults  will  still  be  there  because  these  are  all

compulsory their page faults ok. Now in the in the optimal policy also when 11 comes it

will replace page 10 because, it will see in future and find out whom to replace ok. It will

find out that  a 1 and to  a 9 will  be replaced will  be needed later. So,  it  will  go on

replacing them ok. So, in a similar way as the as the LIFO strategy it will also do the

same and at the end of the first 20 accesses it will also have the optimal policy will also

have a 1, a 2, a 9 and a 20 in the in the memory ok.

Now, what will happen a 1 to a 9 will be page hits, when a 20 comes in now which 1 will

which page will the optimal page replacement policy replace? It will replace any one of

the pages between a 1 and a 9, but it will not replace a 20 ok. So, why will that happen?

Because a 20 it knows that will be needed again. So, a 10, a 11, a 10, a 11, a 12 these

when this will be accessed it will go on accessing these one, it will it will keep a 20 in

the memory.

So, that when a 20 is needed again later it will be found in the physical memory; a 20 the

access of a 20 will not result in a page fault for the optimal page replacement algorithm



because, it has a oracle to know which page will be used in future ok. So, a 20 will not

result in a page fault and therefore, the optimal policy will incur only 30 page faults. So,

the question determine the difference in the number of page faults between the LIFO

page replacement policy and the optimal page replacement policy, the answer will be 1,

the difference is 1.
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Now we go on to understand one aspect of page replacement, which was important for

which is  important  from a theoretical  perspective  and,  also because this  was quite  a

concern for early page replacement  designer page replacement  policy designers,  who

used  a  FIFO for  their  replacement  algorithms.  So,  the  people  who  used  FIFO well

encountered an anomaly which is which is popularly, or commonly known as Belady’s

anomaly.

Now, what is this? Let us say that you have 3 page frames, let us say you have 3 page

frames in memory ok. The your whole memory consists of only 3 page frames, in one

situation and 4 page frames in another situation.  So, in one case you have a system

containing 4 frames in memory and in one case you have 3 frames in memory. Now,

sometimes it so, happens that for example, for this reference string it so happens that

FIFO replacement for the FIFO replacement policy, when you have lower number of

frames in memory, you will have lesser lower number of page faults, then when you have

more number of frames in memory, you will have more page faults.



Now this should not happen right because, you have more space in physical memory

when you have more space 4 frames in physical memory means that you have higher

space the capacity of the physical memory is higher, than when you only have 3 frames

in physical memory ok. So, the capacity of the physical memory is higher, but you still

are encoding higher number of page faults. So, this is an anomaly which is referred to as

Belady’s anomaly.
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Now we will try to see in more detail why this happens? Now the reason for Belady’s

anomaly has been found to be this; pages in memory at any given time for the stipulated

number of frames is not always a subset of the pages when the number of frames become

higher. So, why does Belady’s animal happen? Because, suppose I have 3 frames, at any

given time the num, the frames the pages that are there in memory is not a subset of the

of the pages that are there when my number of number of frames are higher.

So, when my number of frames are lower, if thus the pages that I am containing are not a

subset when my number of pages are higher then Belady’s anomaly occur. We will take

an example we will take the example of this reference string and see why and how this

happens. So, these are the set of memory references and these are the set of memory

references shown here, 1 2 3 4 1 2 5 1 2 3 4 5. So, these are the references shown here.

Now at time 0, so this 1 is time 0 time 1 time 2 first reference second reference third

difference fourth reference like this.



So, ref hash; this one is 1 2 3 4 like this it progresses so, at the first reference. So, I am

bringing in page number page 1 to frame 1 and what happens is that it comes to frame 1

and frame 2 and frame 3 are empty. So, there is a page fault; there then 2 comes in and

goes to  the second empty frame,  the frame 2 is  empty and 2 goes here,  for the 3rd

reference 3 comes in frame number 3, for the 4th reference because I am using a FIFO

policy first in first out. So, 1 was first in so, 4 replaces 1 and it again incurs a miss. Now,

1  comes  in;  now, 1  has  already  been  replaced  in  the  previous  access.  So,  1  again

encounters a miss and it replaces 2.

Now, 2 is accessed again, 2 again incurs a miss because, 1 has replaced 2 and therefore,

it replaces 3 then 5 is accessed now, 5 incurs a miss. So, the first in among these 3 pages

is 4. So, therefore 5 replaces 4 in frame number 1. So, then what happens? Then we find

that 1 comes in and 1 is already there. So, therefore, this is green and this is not a miss

this is a hit then 2 comes in 2 is already there in frame number 3. So, this is again a hit,

then 3 comes in; however, 3 has been replaced and because and because 1 is currently the

one with the which is which is earliest which came into the memory earliest. So, 3 is

replaces 1 and then 4 comes in and 2 is now the one which is the earliest one which has

come into memory. So, 4 replaces 2 and then 5 comes in 5 is already there in memory.

So, this one is a hit.

Now, when I have 4 frames in memory these are the set of accesses. Now, what has

happened? See so, 1 comes in miss, 2 comes in miss, 3 comes in miss, 4 comes in miss,

then 1 comes in 1 is a hit because it is already there I do not need to replace, 2 comes in 2

is already there it is a hit is not a miss, then 5 comes in 5 replaces 1 because 1 is the

earliest one which came in it is in the FIFO order 1 is replaced, then 1 comes in; 1 is then

2 is the one in the FIFO order which needs to be replaced.

So, 1 replaces 2 then 2 comes in 2 replaces 3 and then 3 comes in then 3 replaces 4 and

all other accesses are miss. Now, we see that when you have when you have 3 frames in

memory, when you have 3 frames in memory the number of page faults are 9; you have 3

hits ok. And when you have 4 frames in memory, you have you have only 2 hits. So,

therefore, you have 10 page faults, here you have 9 faults and here you have 10 faults.

Now, let  us  see  why this  has  happened?  If  you see  what  has  happened.  So,  at  this

position I have 5 2 3 4 in the in the 4 frames and, here I have 5 1 2. Now, 5 1 2 is not a



subset of 5 2 3 4 because, 5 1 2 because 5 1 2 is not a subset of 5 2 3 4 when 1 is

accessed. So, when 1 is accessed 1 is there in memory here, but at this point in time 1 is

not there in the physical memory when I have 4 frames. So, I have a miss here when 1 is

accessed, but I have a hit here when 1 is accessed, why because if we go back to the

definition again the pages in physical memory at any given time.

So, these are each different times, at any given time the pages in physical memory for a

stipulated number of frames. So, pages are so for 3 frames for a stipulated number of

frames 3, it is not always a subset of the pages that are there the pages that are there,

when your  number  of  frames  become higher,  when your  number  of  frames  become

higher the pages are not a subset. For example, here 5 2 3 4 is not a superset of 5 1 2 and

therefore, for this case 1 is a hit and for this case it is not.

For the same reason again 2 is a hit so this 5 1 3 4 is so, 5 1 2 is not a subset of 5 1 3 4

and therefore is this 1 was a hit here, but this resulted in a miss. Again in this case 5 3 4

is not a subset of 4 1 2 4 1 2 3 and therefore, when 5 is accessed here 5 results in a miss

here however, 5 is a hit here ok. So, Belady’s anomaly occurs because, pages in memory

at any given time for the stipulated number of frames is not always a subset of the pages

when number of frames become higher.
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Now, the optimal algorithm and LRU both the optimal algorithm and the LRU do not

exhibit Belady’s anomaly. The optimal algorithm always maintains the most frequently



used pages to be accessed in future. So, optimal algorithm what does it maintain? At any

point in time the optimal algorithm maintains the most frequently used pages sorry, the

most recently. The most recently used the most recently used to be used pages to be

accessed in future and this one LRU keeps the most recently used pages most recently

most recently used pages accessed in the past.

So, because LRU at any given in time point at any given point in time, whatever be the

number of frames that are available. What does an LRU do? It replaces the least recently

used page. So, therefore, what are the pages that are there in the memory at any given

time the most recently used pages are there and what does optimal algorithm keep the

most recently used pages that will be accessed in future. Whatever, I have written here

may not be exactly correct, but I am telling it that optimal algorithm will keep at any

point in time the most recently to be accessed pages in future and LRU keeps the most

recently used pages accessed in the past.

Irrespective of the number of frames: So, irrespective of the number of frames both these

algorithms keep the most recently accessed pages. Now most recently used pages, most

recently used pages for a lower number of frames is always the subset of the pages we

have for a higher number of frames. Suppose I have a certain number of frames and, I

and at  a given time I have a certain number of pages in memory ok. Now the most

recently you so, let us say I am using the LRU algorithm. So, the most recently used

pages will be there in memory for 3 frames.

Now the most recently used pages at that point in time for 4 frames will always be a

subset, will always be a superset of the most recently used pages if I have 3 frames. The

most recently used pages for 4 frames will always be a superset of the most recently used

pages for 3 frames. This is why Belady’s anomaly is not there in the least recently used

algorithm neither is it therefore, the optimal algorithm.
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Now, we will go into another concept called page buffering. Now, page buffering it is

expensive to wait for a dirty page to be written out. Now, let us say during a replacement

I will need to replace a dirty I have to replace a dirty page. Now, it is expensive to wait

for the dirty page to be written out. Instead what we can do, to get this process quickly

started we can always keep a pool of free frames. Now, these frames are free, how do we

make it free on a page how do we do this business? On a page fault, we select a page to

replace and then write a new page into a frame in the free pool. So, at any given time I

have a pool of free frames.

So, there I can just close my eyes and bring a page into this free pool without looking

into anything else. But how do I maintain this free pool? I will first choose a page for

replacement,  mark  the  page  table  restart  the  process  after  replacement.  So,  I  have

brought a page from the disk and put it into this free frame, but then I take this page

which I have used for replacement and put it into the free frame pool. So, at any point in

time, I have a kitty of free frames that are ready for replacement. And for the current

access I am using a free frame from by free frame pool, but I am using a free frame. So, I

will replenish that free frame pool by one frame after replacement.

So, I will restart the process after replacement and then I will quietly do my business of

creating  one  more  free  frame.  So,  if  the  selected  page  frame  is  dirty,  then  after

replacement I will I am I will I will I will put that page into this and then put this page



into the free frame pool and because this dirty page was not put into the memory during

replacement, this overhead is not visible to the page replacement. And this dirty page by

putting this dirty page into the disk happens after the replacement and after the process

has started and when this process is working in the CPU, I am replacing this dirty page

into the disk I am putting this dirty page into the disk and creating the free frame pool.

So, place frame holding the replaced bit in the free pool ok. So, this is how buffering will

work.

Now, one more important aspect is that one more enhancement that we can do with this

is that, when I am replacing when I am replacing I may not just I may not destroy the

contents of the page, I have put it in the free frame, I have done the replacement is if

required, but in the free frame let us keep the page intact do not destroy the contents of

the page. If that page is required to be replaced in any case this page is clean and can be

used because, it is there in the free frame pool, but by chance if this free frame which I

have kept it in the free frame pool but by chance let us say this page is accessed by one

process.

Now I can keep a pointer that this page is still there although it is there in the free frame

pool, it is it is actually there in physical memory still now, it has not been replaced. So, I

can I can access it from the free frame pool itself. So, I will get the page in main memory

I have to I do not have to go to the disk to get this page. So, even if I put pages in the free

frame I will just I will just keep a mark at as to what pages are there in the free frame

pool at any given time and if there are access I will be able to put that use that page from

the free frame and use that instead of going to the disk.



(Refer Slide Time: 74:58)

Now, allocation of frames; now still  now we are saying that a page does not a page

frames have no connection with the with the processes. Now, this is entirely not true. So,

each process requires a minimum number of frames. So, typically what do we do is that

we allocate a certain number of physical page frames to each process. However, this is

done using many schemes, there can be a fixed allocation scheme, there can be there can

be a prioritized allocation scheme and it has many variations.
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For example, the first strategy is to is the fixed allocation scheme. In the fixed allocation

scheme let  us say I have 100 frames in physical memory after these 100 frames are

available after allocating frames to the OS and I have 5 processes. So, the degree of multi

programming is 5, I give each process 20 frames, I divide the frames into this into this 5

processes. So, this one will be called a fixed allocation, fixed allocation. Otherwise we

can do a proportional allocation, I allocate fairly based on the process size. So, the for

example, let us say let s i be the size of process p i and capital S be the total so, size of

the process p i in say number of pages.

And  S  is  the  summation  of  the  pages  summation  of  the  number  of  pages  over  all

processes that are currently there that are currently active. And let m be the total number

of frames that are there in physical memory. So, then the number of frames that will be

allocated to a certain process to process p i a i, the number of frames a a i that will be

allocated to process the process p i will be given by s i divided by capital S into m. So,

this will this is so I allocate a number of frames proportional to the size of the process.

For example, let us say I have 64, I have 64 frames in physical memory and s 1 has a size

of 10 virtual pages, s 2 has a size of 27 virtual pages that it requires.

So, therefore s 1 plus s 2 is 137 so, total number of pages summation s i is 137 and out of

which s 1 has a size of only 10. So, out of so I allocate and let us say 2 pages out after

out of this 2 this 64 minus 1 is 64 minus 2, so 2 pages I am using for OS. So, out of this

remaining 62 pages out of this remaining 62 pages I will allocate 4 pages to process a 1

and I will allocate the remaining 57 pages to process a 2. Why? Because p 2, the process

p 2 has a much larger size s 2 equals to 127, 127 pages.

So, that the number of frames that is expected to that this page process 2 is expected to

require is much more than p 1 because, p 1 has a much smaller size with respect to in

terms of the number of pages p 1 has a much smaller  size.  So, I will  allocate when

allocating frames, I will allocate p 1 only 4 page frames and, I will allocate p 2 57 page

frames because, their sizes are also very skewed.

Now, if  I  allocate  the  same  number  of  frames  we  understand  that  the  memory  the

memory utilization will not be that good.
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Now the next is priority based allocation. Now, priority based allocation is proportional

allocation using priorities, now instead of instead of sizes I use priorities. So, if process P

i generates a page fault select for replacement 1 of it is frames is available, otherwise

select for replacement of frame from a process with lower priority number.

So, now, what it does? So, I have allocated let us say based on proportion I have first

allocated  the  frames  to  different  processes.  Now, during  replacement,  if  I  have  free

frames allocated to this process I do a local replacement, I will choose a frame from the

frames I will choose a page for replacement from the frames which are allocated to this

process.  However,  if  none of  the  frames  are  free.  So,  if  all  frames allocated  to  this

processes are busy; that means, are allocated and no frame is free, then I will choose a

frame the free frame from a lower priority process. So, I will take a frame from a lower

priority process ok.
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This is the priority based allocation scheme. Now, after this we come to the concept we

understand the concept of thrashing. So, this we will continue in the next lecture. 


