
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Lecture – 29
TLBs and Page Fault Handling

In the last lecture we saw that in the absence of any measure the sizes of page tables can

be huge. Therefore, we studied different techniques by which the sizes of page tables can

be controlled. 

This  lecture  we will  start  with the discussion on how address translation  using page

tables can be made faster. 

(Refer Slide Time: 00:52)

What is the motivation? As we discussed page tables are usually kept in main memory;

therefore, for each data reference we will typically require two memory accesses if we do

not take any measure. 

One access of which will be to access the page table entry itself and then when we access

the page table entry we get the main memory address or we get the main memory page

number and we generate the physical address subsequent to that and then the second

memory reference will be to access the actual data that we require from main memory.



Now, main memory references are typically very costly with respect to if we had found

the data in cache let us say; main memory accesses we said would be of the order of 50

to 70 nanoseconds; as against cache which could be around 5 to 10, 1 to 10 nanoseconds

ok, around 5 to 10 nanoseconds. 

And therefore, it is necessary that we take action to reduce this page table access in main

memory. Now, there are two typical strategies which are employed here. The first one is

to implement the page table in hardware and the other one is to use a translation look

aside buffer.

(Refer Slide Time: 02:20)

When we implement the page table in hardware how do we do it? We implement the

page table using a dedicated set of registers and obviously, it is applicable for systems

where the page table sizes will typically be smaller. For example, in embedded systems.

Now, during a contact switch when a new process has to be brought into the CPU. 

The CPU dispatcher will reload these page table registers along with other registers and

the program counter. In order to restore the save state of a process and activated; So,

basically during a context switch what happens? The saved state of a process is brought

into cache. 



And what are what is the typical what do we mean by the saved state of a process? The

contents of its page table and the contents of its other registers and also the program

counter. 

So, therefore, after the context switch when the process is brought into memo memory

the because we have the saved program counter known, so the process can start from the

from the place where it was previously evicted from CPU. 

Now, when the page table is in hardware I have to reload all the registers in page table

during a context switch because that is part of the saved state. If the page table is in

memory it is sufficient to load the page table base register corresponding to this process.

Because the page table is in memory; I only need where in memory the page table starts. 

So, therefore the page table base register only needs to be brought in during a context

switch. However, when I am implementing this page table in hardware I need to bring in

the entire set of registers which is the page table into the hardware after the during the

contact switch.

An example of such hardware implemented page tables is the DEC PDP 11 architecture.

the DEC PDP 11 architecture is a 16 bit small computer. So, it has 16 bit logical address

space with 8 KB page size. So, therefore, if it is a page 8 KB page size, so therefore, the

offset part of the virtual address is 2 to the power 13 bits. So, 2 to the power 10 into 38

KB; so, 2 to the power 13 bits is the size of the page offset part in the virtual address.

So, the number of pages is just, you consumes only 3 bits; so, 16 minus 13 3 bits. So,

therefore, the page table the system contains only 8 pages and therefore, the page table

consists of 8 entries in fast registers. However obviously, such hardware implementations

of page tables are impractical for computers with very large address spaces. 

For example, if we have a 32 bit computer and let us say in that computer we use 4 KB

pages for example, then I will use 12 bits for the page offset part and therefore, I will

have 20 bits for the page numbers. 

And therefore, we have 2 to the power 10 into 2 to the power 10; 2 to the power 20

entries in the page table which is 1 million; 2 to the power 20; 1 million page table



entries  and  obviously,  such  very  huge  sizes  of  page  tables  cannot  be  implemented

through registers in hardware. 

(Refer Slide Time: 06:10)

Before proceeding we take an example. A machine has a CPU with a 32 bit address space

and uses 8K pages. The page table is entirely in hardware with one 32-bit word per entry.

When a process starts the page table is copied to the hardware from memory. At a rate of

one word every 100 nanoseconds. 

So, therefore,  the page table is in hardware. So, we are trying to look at what is the

problem for big computers in a 32 bit computer if the entire page table is in memory. We

will look at one of the computers in addition to space. 

So, the machine has 32 bit address space and it uses 8K pages; the page table is entirely

in hardware with one 32-bit entry per word 32-bit word per entry. When a process starts

the page table is copied to the hardware from memory at a rate of one word every 100

nanoseconds.

So, to copy one word from memory it takes 100 nanoseconds. If each process runs for

100 milliseconds and this includes the time to load the page table what fraction of the

CPU time is devoted to loading the page tables. 



(Refer Slide Time: 07:34)

So, the page size is 8K or 2 to the power 13. So, 13 bits we consume for the page tables.

So, therefore the total number of page table entries becomes 2 to the power 32 minus 2 to

the power 13; which is 2 to the power 19; which is 2 to the power 10 intro 2 to the power

9 or 524288. So, these many page table entries are there in the page table. All these have

to be copied from memory into hardware during a context switch. 

So, the total time to load the page table will be what; 524288 and each of them consumes

100 nanoseconds. If you convert it to milliseconds divided by 10 to the power 6, we get

52.4 milliseconds. So, therefore, 52.4 percent of the total CPU time in this case he spent

loading page tables. 

So, I have a time slot size in which I will execute a process and I execute a process for

100  milliseconds,  for  each  process  I  give  100  milliseconds  and  out  of  that  52.4

milliseconds is only consumed for loading the page table from memory into hardware. 

So, basically I am not being able to do anything any good work other than loading the

page table from memory into hardware which is very costly. So, therefore, when the page

table is in hardware it is only possible in cases where the address space virtual address

space sizes are small and we have a small number of page table entries.



(Refer Slide Time: 09:25)

So, then how to what is the other way around when we have large address spaces? So,

how to control the time consumed for accessing page tables and doing address translation

for large computers with large virtual address spaces? 

For example, says 32 bit computers, how will we do that? We typically do that using in

memory page tables. So, we now we do not keep the page tables in hardware. We keep

the  page  tables  in  memory  itself.  However;  we  use  the  property  of  the  locality  of

reference of page tables. So, therefore, here is the first point page table access page table

access exhibits good locality of reference. 

So, therefore, once a page table entries access it is supposed to be accessed soon again.

So, the same page because our memory references,  our memory accesses tend to be

clustered in both time as well as space. So, the data that I am consuming nearby data I

can I would consume in the recent future; nearby data I will access in the recent future

and the same data I may access again in the recent future. 

So, I have both temporal locality as well as spatial locality for page memory accesses.

And therefore,  the same happens for page table accesses page table entries, the same

page table entries is likely to be accessed soon again. So, therefore we can use a fast

cache for page table entries and this  cache is  called the translation look aside buffer

within the CPU.



So, we look up the virtual page number in the TLB. So, what do we have? We get the

virtual page number is generated by the process that is the CPU and I look up that virtual

I divide that virtual page number into the page offset part and the page number part. So,

the page number part is now floated to the TLB. So, the TLB, the TLB the stack part of

the TLB contains virtual page numbers.

So, we look up the virtual page number in the TLB. If I get a match, if I get a match with

the tag I get the corresponding physical page number from the data part of this TLB. So,

the tag part of the TLB contains a virtual page number and the data part of this TLB

contains  the  corresponding physical  page  number. So,  when I  get  the  physical  page

number I can access the physical memory by adding up with the page offset which is

directly obtained from the virtual address itself. 

Now, during a hit what happens? We get the physical page number and we get the and as

I said I get I can get the data from physical memory. I said the physic I said the reference

bit. 

So, this one R is the reference bit; I said the reference bit to indicate that in this in the in

the  in  the  current  time epoch I  have  referenced this  page  to  indicate  that  I  said the

reference bit. If this I am writing on to this on to main memory, if I am writing on to

main memory I also said the dirty bit on; So, therefore, to indicate that this page has been

modified. 

However, when I get a miss, if the if my virtual page number does not match with any of

the tags present in the in the in the translation look aside buffer, then I have a miss in the

page table ok. If I have a miss in the page table I need to get the translation from memory

from the page table. Now, in this case there can be two distinct cases that I have a miss in

the TLB, but the data is in memory. 

Therefore,  the  data  is  also  in  the  page  table  and I  just  get  the  translation  from the

corresponding page table entry in memory and I bring it back into the TLB and then

reference the TLB again and get the data from physical memory. Otherwise I can induce

a page fault. 

If the data that I am looking for the corresponding to the virtual page number there is this

physical  page  number  translation  this  virtual  page  number  to  physical  page  number



translation is not there in the page table in the memory itself; which means that the page

is not there in the memory I incur a page fault. 

And therefore, then I need to find out a free page frame in the memory, bring the page

from the disc into main memory and then populate the page table accordingly and half

subsequently I need to bring that page table into the translation look aside buffer and

then subsequently when I access I get a hit in the TLB and I get the page number from

the TLB itself and you and access the physical memory.

So, if there is a page fault; that means, that the page is not there in the memory. The CPU

raises an exception; that means, it  traps the OS; it traps to the OS it generates a trap

instruction and the OS is invoked I go to the supervisor mode as the OS is invoked to

service  the  fault  in  the  way  as  we  said  we  will  see  it  in  more  depth  in  the  in  the

subsequent slides. 

How a if there is no page fault; that means, I load the translation from where; from the in

memory page table, from the in memory page table I bring the page table entry from the

in memory page table into the TLB and reference the TLB again; I reference the TLB

again. Now, I get a hit in the TLB and access physical memory. 

(Refer Slide Time: 15:48)

So, a few more details with the translation look aside buffer. Typical values for the TLB

are as follows. Typical for a TLB: the size of a TLB are of the order of let us say 16 to



512 page table entry. So, page table entries and each such page table entry could be 4 to 8

bytes. So, therefore, TLBs are typically small in size. The block size for a TLB is 1 to 2

page table entries and if a page table entry is let us say 4 bytes; so, 2 page table entries;

therefore, mean just 8 bytes. 

The hit time of a TLB is very fast typically of the order of 0.5 to 1 cycle. A miss penalty

would result in what? Would result in going to the lower level of memory and therefore, I

it  will  be  around  10  to  100  cycles.  Why, why  this  big  difference?  Firstly,  because

different architectures can support different and different access times and a miss penalty

for  corresponding to  TLB miss,  I  may get  the  data  either  in  the  data  cache  for  the

corresponding TLB entry or I may not have the data corresponding to the TLB entry in

the data cache. In that case the TLB entry must be brought from the memory itself. 

So, therefore, there can be two possible cases when I have a miss and I want to get the

page table entry into the TLB. And typical miss rates for a TLB are of the order of 0.01

to 0.1 1 percent. So, therefore, the locality of reference for corresponding to TLB entry is

typically very high and so, smaller TLBs suffice. So, it is around ninety 99.9 percent to

99.99 percent is the hit rate. 

The associativity  of a  TLB: TLBs are very often implemented  in a  fully  associative

fashion; which means that all the entries of the TLB; So, which means that because the

TLB is small, I have the option because the TLB is small what happens is that; when it is

fully associative the page table entry can be brought in to any entry of the TLB when it is

fully associative. 

I do not restrict the page table a page table entry to go into certain specific locations in

the TLB. The entire page table all entries in the page table can hold any all entries in the

TLB can hold any page table entry when it is fully associative. 

The drawback is that I when it is fully associative all the entries of the TLB must be

searched in parallel for the tag. So, therefore, the search time and also the replacement

time  we  will  as  we  will  see  later  becomes  high  and  therefore,  the  cost  of  a  fully

associative TLB is high. 



And this is affordable for small  TLBs; however, when the sizes of TLB is grow, we

nowadays we have a higher sizes of TLBs; smaller associativitys are preferred as we

understand why.

Replacement strategies how do we replace TLB entries? When I do not find when there

is a miss in the TLB, I need to replace. So, least recently used TLB entry if I want to

replace this is typically expensive to implement for large TLBs with high associativity.

Why?  Because  when  the  TLB  sizes  are  large  finding  the  least  recently  used  in

implementing the least  recently used in hardware finding which is the least presently

used at any time which entry, keeping that account is expensive. 

How do we keep account at any time which entry is least recently used? So, therefore, I

need to maintain some kind of a clock or a queue corresponding to each TLB entry and

that has to be implemented in hardware. So, that at any point in time I can keep track of

the least recently used TLB entry.

And when the associativity becomes higher, this search or keeping this maintaining this

becomes  higher. Because the number of places  within,  for  example,  when it  is  fully

associative any entry in the TLB can be least recently used. So, I may need to search the

entire TLB. In a set associative one, I only need to search within the set. So therefore;

when the  associativity  is  high and when the  associativity  is  high,  it  is  expensive  to

implement for large TLBs; LRU is expensive to implement for large TLBs, especially

and when the associativity is high.

So, what is the solution? It is a bypass. What is the solution? The bypass is that we use

random replacement. I just find out a TLB and replace it randomly. I do not go for the

least  recently  used.  For a TLB we typically  implement  write back instead of a right

through. 

So, why do we write? We copy the reference and dirty bits back into the TLB entry on

replacement. We said that when there is a TLB hit, what happens is that I may set the

reference  bit,  I  may  set  the  reference  bit  to  indicate  that  this  page  table  entry  was

reference. I may also said the dirty bit to indicate that and that this page table this page

table entry was written to this page was written to ok.



Now, when I am replacing this TLB entry I must write back the reference and dirty bits

the  values  of  the  reference  and dirty  bits  into  the  corresponding page  table  entry in

memory. And I and I do not dos this and I am using a write back means that, I do not do

this writing when I am basically changing the reference or dirty bits at a given page table

entry access. That becomes very expensive because I have to write it back to the next

level to the page table entry in memory if I want to write through and this becomes very

costly. 

And as we said that the page table miss rates are expected to be small as we saw it is of

the order of 0.01 percent to 0.1 percent. So, page table miss rates are small. So, right

back is very good in this case and it saves a lot of time and the implementation is much

more efficient when we use a write back scheme instead of a right through and that is I

write only during replacement and I do not write and I do not write on every reference to

the page table entry, every reference to the page table.

(Refer Slide Time: 23:09)

So, now we will take a deeper look into page faults. So, during a page fault when I do

not have the required data in memory, I incur a page fault. So, at that time the page table

entry corresponding to corresponding the page table entry corresponding to the page that

I  want  to  access  shows that  it  is  invalid.  That  is  the  valid  bit  is  0;  that  means,  the

corresponding physical page number is not mapped to the page table entry.



In that case what happens is that; firstly, I need to decide whether this translation that I

want  to  do is  for  an invalid  reference  or  for  a  valid  reference.  If  it  is  for  a  invalid

reference,  that means,  that  this  particular  virtual  address is  not present  in my virtual

address space itself. 

This  can  happen for  scattered  virtual  address  spaces  for  of  a  process.  If  this  virtual

address is not part of the is not part of the address space of the process itself, then this is

an invalid reference and we immediately abort. Otherwise we see that the valid bit is 0

and therefore, the page is just not in memory. So, therefore, it has to be brought from the

disc or the secondary memory.

So, then what happens? In I have to find a physical page frame; I need to find a physical

page frame. So, if you see the sequences that are happening here I try to reference in

number 1, I try to reference and I see that the corresponding mapping is not there; it is it

is not there. Therefore, I will have to trap the OS; I will have to trap the operating system

to indicate that this is a page fault. 

You know the operating system we will first find out what kind of trap has it received.

So, it will then find that this is a page fault type of a trap. And therefore, then what the

OS will do? It will find a physical page frame in the physical memory, it will find a

physical page frame in the physical memory and then maybe through replacement of an

existing page in physical memory which will not bother right now will do will see bit

later. Then it will swap page into this frame via schedule disc operation.

So, now, when I have found a free page frame in physical memory I will need to bring

the page that I require from the backing store or the secondary memory into the physical

memory. And I said that how do we get that? In a in a in a class earlier class we said that

in addition to the mapping of a virtual memory corresponding to virtual memory and a

physical memory, physical page number the I also the page table additionally logically

maybe in a different physical table. 

It also contains where in the backing store I have this page I have this page; that means,

corresponding to a virtual page number the page table in addition to keeping the physical

page number, it also keeps the address of where in the secondary memory this page is

resident.



So, when I get a trap the OS finds out firstly, the physical frame where which is free and

where I can give get the page into the physical memory where I can bring it and then it

finds out where in the in the secondary memory the page is corresponding to this virtual

page number. 

Then it gets the page from the secondary memory through scheduled disc operation. So,

this schedule disc operation means that for the disc I have a queue of a of requests I have

a queue of requests who want to access pages from the disc and I have to incur I have to

go through this queue and get it from the secondary memory and I have to incur seek

time and less latency time of the disc. And then through this disc operation I will swap in

this page into the physical memory.

After I have brought in this page I know the page number. So, therefore I have to reset

the tables, I have to reset the tables to indicate that the page is now in memory. So, I have

to I have to update the page table entry corresponding to this page, corresponding to this

virtual  page,  I  will  update  the page  table  entry and write  where what  is  the current

physical page number corresponding to this virtual page number. I will also set the valid

bit  to  indicate  that  the that  the  virtual  this  virtual  page is  currently  now in physical

memory ok, I will said the word to valid bit. 

Then I will restart the instruction that caused the page fault. So, I will then restart the

instruction. So, in a particular memory access I had a page fault, then I service the page

fault, then I will restart the memory and then in the subsequent memory reference I will

get the data that I sought for in the physical memory.



(Refer Slide Time: 29:00)

Now, we will take an example of a practical architecture which the TLB of a practical

architecture ok. So, we will take a look at the intensity FastMATH architecture and in

this architecture we have a 4 KB pages and 32 bit virtual address space. 

So, if we see here in this virtual page number we see that it has a 20 bit virtual page

number and 12 bit page off offset; which means that see these page size is 4 KB 12 bits.

Why? Because right for 2 to the power 2 into 10 KB. So, basically I have to using 12 bits

I have I have a page offset of 12 bits and so, the page size is 4 KB. 

And because I have a 32 bit address space, the virtual page number is 20 bits. Now, here

we see that the physical page number, the physical page number here because this one is

also of 20 bits, this one is also of 20 bits; the physical page number and the physical the

physical address space is also of the same size as the virtual address space. The physical

page physical address is also 32 bits ok.

So, the TLB is fully associative; as we as we told what it means it is fully associative and

it has 16 entries in the TLB. So, the TLB is fully associative having 16 entries and this

TLB is shared for instructions and data. So, it is a translation look aside buffer for both

instructions and data. Each TLB entry is 64 bits wide. So, this one is 64 bits wide and it

contains the 20 bit virtual address. So, this part is 20 bits; it contains the sorry 20 bit

virtual page number. So, this one is 20 bits; it contains the 20 bit physical page number.



So, this one is again 20 bits; it contains the valid bit, dirty bits and other bookkeeping

bits. So, the total address so, the total size of one page table entry is 64 bits.

The we if you note the cache is split; cache has a split tag and data part. So, basically

what happens? When there is a TLB hit, when there is a TLB hit I get the corresponding

let  us  say  the  TLB I  the  virtual  page  number  matched  in  this  entry  and  I  got  the

corresponding physical page number; the 20 bit physical page number and therefore, I

generated the physical address here. After generating the physical address I divide the

physical address into 3 parts, I split it. One is the physical address tag part, the cache

index part and the block offset part; So to access what? To access the cache ok.

Now, here now subsequently after  dividing this  physical  address into splitting it  into

three parts; the tag part, the cache index part and the block offset part I will access the

cache. And this cache is implemented again as a split tag and data. So, what happens

here? The tag part if you see here, the tag part is the physical tag part is matched with the

tag part of the of the cache. The tag part of the cache is here, I match it with the tag part

of the physical address, I match it with the tag part of the physical address here, I match

it and then if the valid bit is on I get a cache hit ok.

Now, at the same time because I have now split the data part of the cache what do I do?

Why do have I done that? I now am by splitting it I now am able to concatenate the

cache index part and the block offset part as a 12 bit value and this 12 bit using these 12

bits I directly access the data date data word that I require; I directly access the word. So,

if I did not concatenate this, so, I what would I have to do? I would have to access the

given block and within that block I have to do because the block offset is contains 4

bytes; which means that I have 16 words within each block. 

Now, I have to I had to compare this the 16 words; I had to compare because each I had

to compare these 16 words and using a 16 cross 1 multiplexer to find out which data

word I actually need. Now, what happens? I have the tag part; I have the tag part and the

block offset part. 

So, basically I have got the exact data word. I do not have to do this, I do not have to go

into the block and then using a 16 cross 1 MUX and the block offset, I do not have using

the using the block offset as the select line, I do not have to use the 16 cross 1 MUX with

block off offset as the select line to and to know which exact word within this block



should I access. I do not have to do this. I do not have to use a 16 cross 1 MUX with the

block offset as the select line to know which word within the block do should, I correctly

access. 

Instead I have concatenated the cache index part and the block offset part to generate a

12 bit value and I directly access the data I directly access this data RAM part of the

cache and get the required word and I know that the required word is correct because I

have a cache hit here ok. So, the desired word in a block: the cache has a split tag and a

data RAM. The desired word in a block can be searched without a 16 cross 1 MUX by

addressing the data RAM with the cache index concatenated with block offset ok.

Now, in this architecture a TLP miss is handled in software. So, how do I handle this? If I

have a TLB miss what do I do? I take the virtual page number and I save it you know

hardware register. Then I trap the OS and say that I have a TLB miss. So based on this,

the OS generates special instructions to go into the to find the page table entry using the

page table base register and the virtual page number part; virtual page number part and

the page table base register combination. It gets into the page table entry and brings the

required page table entry.

Now, the page in a TLB miss requires only 13 cycles in this system when we when we

consider when we assume that the code and the page table entry are in the instruction and

instruction cache and data cache respectively. So, this TLB miss has an overhead of only

13 cycles when the code and the TLB entry are in the instruction cache and in the data

cache. 



(Refer Slide Time: 37:19)

Now, we  will  continue  our  discussion  and  take  an  example  here  to  understand  to

illustrate as to how the memory hierarchy works in unison together. How they cooperate

among each other and what happens when they work all together? So, memory hierarchy

in operation, the example goes like this.

In a memory hierarchy organized with a physically indexed physically tagged cache and

physical  memory  along  with  the  TLB for  fast  accesses.  So,  what  I  have?  I  have  a

physically indexed physically tagged cache; meaning that the cache is addressed by the

physical address by the physical address. 

It is not using virtual addresses to address the cache. As opposed to other we will see

over a technique in the next class, two techniques in the next class; where part of the full

or part of the virtual address is used to address the cache. Now, in this hierarchy this does

not happen. So, I generate the physical address and then from the physical address I

address the cash.

So, it is a physically indexed physically tagged cache. So, I index the cache using the

part of the physical address and I tag the cache using part of the physical address. So, in

a  I  have  a  memory  organized  with  a  physically  index  physically  tagged  cache  and

physical memory along with. So, I have a cache and I also have a physical memory along

with a TLB for a fast accesses. So, a memory reference can encounter three different, in

this system a memory reference can encounter three different types of hits or misses. It



can encounter a TLB hit or miss, it can encounter a page table hit or miss or and a cache

hit or miss.

So, consider all the combinations of these three events. So, you have 8 possibilities, you

have 8 possibilities. For example, one combination is that a memory reference resulted in

a TLB miss, but a page hit and a so, I have a TLB miss, but I have a page hit and a cache

hit. For each possibility we need to say whether this event can actually occur? Whether

this event can actually occur? 

Whether it is possible in practice that these that that are given three even that they get

that an event of a combination of hit and a hit or miss will actually occur. And if so,

under what circumstances can it occur? For example, can we have a hit in the TLB, a hit

in the page table and a hit in the cache? Yes we can.

But obviously, when I have a hit in the TLB what happens? When I have a hit in the

TLB, so this is possible, this is possible. But, but we will never look in the page table,

page table. Because I have a TLB hit because I have a TLB hit we will never look in the

page table ok. So, and then I have when I have got it in the page table, when I have got it

in the page table I have a cache hit. Then this is possible. So, the page table hit I got and

then I got the physical page number and after I got the physical page number, I got the

data subsequently in cache.

Now, I have a TLB hit and a page table hit and a cache miss this is also possible; DO.

But  what  happens?  This  is  possible,  but  obviously,  I  will  not  check  the  page  table

because I have already got a hit in the cache. So, I will not go get into memory and look

actually, look into the page table because I have a hit in the TLB. Now when I have a

miss in the TLB, yes I can have a miss in the TLB a possible, possible. So, I can have a

miss in the TLB and then I will I will go into the page table lower level of hierarchy and

find out whether the page table entry is there or not.

And if I have a I then basically here it says that I have a page table hit. If I have a page

table hit then basically it is in memory and if it is in memory it may or may not reside in

cache. In this case I am saying that it is a hit in the cache. So, it is in the hit in the page

table. Therefore, the data is in memory and it is a hit in the cache, so the data is also in

the cache. 



So, this is possible. The next case I have a miss in the, I have a miss in the page I have a

miss in the TLB. I have a hit in the page table and I have a miss in the cache. Yes, this is

also possible as we said I have a miss in the page table. So, I go to get into the next level,

get the page table entry. I will find that the page; for the page table entry the day the

actual page actually resides in physical memory.

However, when I generate the when I generate the physical address breaking into a tag,

cache index,  block offset,  etcetera  for accessing the cache;  I  see that  the data  is  not

present in cache. So, therefore, I have to incur a memory reference physical memory

access and get the data from physical memory, I will not get it from the cache directly. It

is also possible that I will have a miss in the TLB, subsequently, I will l look into the

page table and I see that the data is not in the page table. 

So therefore, I will basically the data does not reside in the in the main memory and I

will also have a miss in the cache. So, this is also possible. This is also possible. So, I

will obviously, because there is a page table miss I will also have a miss in the cache. it

cannot be that my page it is there it is not there in the main memory or data is not there in

the main memory, but the data is there in the cache; this cannot happen.

Now, let us see the next case. I have a hit in the page table, but I have a miss in I have a

hit in the TLB, but I have a miss in the page table. Is this possible? This is not possible

because if I have a hit in the TLB, TLB acts as a cache for the page table. So, if I have a

hit in the TLB, the data must also be there in the page table and the entry must also be

there in the page table. So, it is not possible that I have so, I have hit in the pay TLB, but

I have a miss in the page table. 

Similarly, this also this is also impossible. It cannot be that I have a hit in the TLB and a

miss in the page table. I have a miss in the page I have a miss in the TLB, I have a miss

in  the  page  table  and  but  I  have  a  hit  in  the  cache.  Is  this  possible?  This  is  also

impossible. Why? Because; I have a miss in the page TLB fine; So, therefore, I have a

miss in the page table; this part is fine. 

However, I have a miss in the page table means that I the data I have a page fault. I have

a miss in the page table means I have a page fault. So, the page is not resident in main

memory.  So,  when  a  when  a  particular  page  is  not  resident  in  main  memory,  the



corresponding block cannot reside in the cache. So, this is impossible. So, we will end

this lecture with a small example.

(Refer Slide Time: 45:43)

If an instruction takes time m if there is no page fault and time n if there is a page fault,

what is the effective instruction time if page faults occur every j instructions? So, we see

that time m time m when page hit, I have a page hit and time n when I have a page fault

ok. So now, I am saying that in a group of j instructions I have one miss and the all other

are hits. So, in this system page faults occur once every j instruction. 

So, for j minus 1 instructions, I have the time required is m and for 1 instruction the time

required is n. So, every j instructions what happens is that for j minus 1 instructions, I

take m time and for one other instruction I take n time ok. So, therefore the effective

instruction time; So, what is the average instruction time? Then the average instruction

time is given by this. So, this is basically m plus m plus what m plus n minus m by j. So,

this is the effective instruction time. 

With this we come to the end of this lecture. 


