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Lecture – 28
Paging and Segmentation

In this lecture, we continue our discussion with virtual memories. In the last lecture we

said  that  a  process  generates  virtual  addresses  in  order  to  access  memory, a  process

generates virtual addresses. 

Therefore,  the CPU generates  virtual  addresses  and to  get  the  required  data  the this

virtual address must be converted to a physical memory address and from that physical

memory address the data must be obtained.

(Refer Slide Time: 01:03)

So, we had said that yes. So, this is the virtual address that the CPU generates. This

virtual address is divided into two parts: one is the page offset; the other is the virtual

page  number.  The  page  offset  is  directly  translated  and translates  translated  as  it  is

without any modification for the physical pay for the physical page offset. 

This was because the page size in the virtual memory and the page size for the main

memory was same is same. The virtual page number is then floated to the page table of



the process. So,  each process has a page table and this  page table  is  indexed by the

virtual page number. So, this is for virtual page number 0, 1, 2. So, this virtual address

this virtual address gives the index into the page table entry and in this page table entry if

the valid bit is 1, I get the physical page frame number and from this physical page frame

number I add the. 

So, when I get the physical page frame number and the valid bit is 1 then I add the

physical page frame number to the page offset  that is directly offset from the virtual

address and I generate the complete physical address. This physic this physical address is

then floated into the memory address register. And therefore, from the I get the address

from in memory from which the data must be accessed.

So, the valid bit what does it tells us? It tells us whether the mapping is legal. If this bit is

off what does it mean, if this bit is off the page is not present in the physical memory. So,

if the valid bit is 0 0; say suppose this valid bit is 0, this means that this physical page

number that this page table entry contains is invalid. This is not valid if this is 0 and

therefore,  it  means that there this,  the physical  this  page is not there in the physical

memory and must be brought from the secondary storage.

(Refer Slide Time: 03:44)

So, therefore, the page table maps each virtual memory page to either of either a page in

main memory or a page on disk. The page table maps each virtual memory page to either

a page in main memory or a page on disk. If the valid bit is on, the page table supplies



the corresponding physical page frame number. For example, the valid bit is on for this

entry and it supplies the physical page frame number from which by which this physical

memory  can  be  accessed  and  this  physical  memory  page  frame  can  be  accessed.

Otherwise that is if the valid bit is off, the page table supplies the disk address. So, the

page table  must  also contain not  only the physical  page frame number, it  must  also

contain the disk address of the page.

Now, when is this used? For example, even the valid bit is 0 the, this particular page is

not present in physical memory. So, this page must be brought from the disk. So, the

page  table  must  also  contain  the  disk  address  of  all  pages  in  virtual  memory.  So,

otherwise the page table supplies disk address at  which the page is present.  Thus, in

addition to physical page frame addresses the page table must also contain disk addresses

of all virtual memory pages. 

That is why although logically same we maintain two distinct, two we distinct two data

structures; which both are page tables both are indexed by the virtual addresses, but one

for mapping the virtual addresses to secondary storage page addresses and the other for

mapping the virtual addresses to the physical memory page frames.

So, we have we have two data structures two page table data structures data structures.

One for mapping page frames and the second for mapping disk addresses ok. The other

for  mapping  disk  addresses.  So,  one  page  table  will  tell  me  where  in  the  physical

memory this particular virtual page is going to is residing. It may be that this page is not

there in physical memory. 

Therefore, it is there or not in physical memory it must be there in the secondary storage.

So, therefore, for all virtual pages, for all pages in virtual memory corresponding to a

process I have a data structure which matches which maps what for corresponding to

each of these virtual pages where they are stored in the secondary storage. So, either I

have it in physical the pages either in physical memory or in the disk storage. 



(Refer Slide Time: 07:20)

Now, we come to a discussion; we will now do a discussion on the structure of a page

table. Page table sizes can be huge; it can be very big. Let us consider a 32 bit computer.

So, which has it has a 32 bit logical address space; 32 bit computers it  is a modern

computer. 

The page size is 4 KB, so therefore 2 to the power 12. Page table would contain the page

table if the page size is 4 KB, the page table will contain how many? The page table will

contain 1 million entries. Why? The address is 32 bits out of which 12 bits I am using for

the page offset; that is why the page size is 2 two to the power 12.

And the rest 32 minus 2 to the power 32 minus 12, these 20 bits I am using for the, for

page this 32 bits I am in using for what? The number of entries in the page table so, how

many entries will we have in the page table? We will have 1 million entries. Why? 2 to

the power 10 into 2 to the power 10 ok; So, I will have 2 to the power 20; so, 2 to the

power 20 page table entries.

Now, each page table entries 4 bytes; so, typically page table entries are 32 bits as we

discussed. So, therefore, we will have 4 MB of physical memory that will be required for

one page table. Now, we have a separate page table for each process. We are seeing that

for one process we will require 4 MB of physical and we said that these page tables are

resident where these page tables are resident in the physical memory. Yes, these page



tables are resident in the physical memory. So, for one process we will consume 4 MB of

space just for storing the page table.

Now, if we have now considered the situation where we have 00 s of programs running

in; so, we have 00 s of processes running in parallel in the in the system. So, what will be

the size of the page tables then? So, 00 programs we are running each consuming 4 MB

so, 00 into 4 MB; So, the size in main memory, the amount of main memory consumed

for only the page tables is going to be very huge because the size of the page table can be

huge. A few techniques are applied in an effort to control the size of the page table.

The one of the simplest technique is as is as follows. So, we use a page table length

register, we use a  page table  length register  in  order  to  tell  precisely  currently  what

amount of virtual memory space is a process currently taking. So, the page table register

which we were discussing previously we will now call it the page table base register and

this  will  as  previously  will  contain  the  base  address  of  the  page  table  in  physical

memory. Along with  that  we will  now have a  page  table  length  register  which  will

indicate the size of the page table.

Now, the virtual memory of a process can grow with time. So, initially as more and more

data as it calls more procedures as it requires for more dynamically allocated memory, so

the size of the virtual memory will grow. So, initially the virtual memory of the process

will be smaller and then as time passes and it requires more amount of data, it requires

more amount of dynamic memory it the process the its virtual address space will grow.

So,  initially  the page table  length register  will  point  to the actual  size of  the  virtual

address space of the process when it is starting.

So, then what will happen? When virtual page number becomes larger than this PTLR; a

page table length register entries must be added to the page table and accordingly the

value of the PTLR has to be adjusted. So, therefore, in general the virtual address space

of a process will look as look like as follows. 

So, I have a code segment and I have a static data segment and I have a dynamic. This

whole part is data; this part is code this is the code segment. So, this remains unchanged,

this static data segment also remains unchanged; I do not require, but the dynamic data

segment  it  primarily  has two parts:  one is  the stack segment  which is  used which is



allocated as new procedures or functions are called by the program and is and the other is

the heap segment from which I allocate dine when I allocate dynamic memory.

So, when I use malloc, calloc I allocated from the heap part of the virtual address space

of a process. Now, as more and more data is allocated more and more functions are

called, this data portion of the process of the virtual address space of the process is going

to increase. So, the number of virtual pages required by the program is going to increase

and therefore, the value of the more entries are then needed to be added to the page table

of the process and the value of the PTLR has to be also increased.

However, by using this page table length register the advantage is that it allows the page

table to grow as process consumes more space. Otherwise what we would have to do? I

would have to keep I would have to keeps the page table would otherwise contain space

for the entire virtual address space that is possibly addressable by the process. So, if I

have a 32 bit computer and I say that 2 to the power 32 is the total logical address space

that is addressable by the process then I have to maintain a page table for this entire

virtual address space of 2 to the power 32 bytes.

Now, when I have this page table length register I can grow and shrink the page table of

the process according to what amount of space the process is actually needing at a given

point in time. Thus the page table in this case with the use of a length register will only

be  as  large  will  only  be  large,  if  the  process  is  using  many  virtual  address  pages.

However, the scheme restricts the address space to grow only in one direction ok. What

is  the problem that  we are saying? The problem that  we are trying to  indicate  is  as

follows.

As we said this is the code segment and this entire part is the data segment. This is the

static part of the data segment which contains the variables, the global variables in the

process and I have a stack segment which grows downwards or the heap segment let us

say go grows downwards and I have a stack segment which grows upwards. 

So, the stack segment grows when more and more I have to allocate activation records

for  new  for  newly  called  functions  for  nested  functions  as  I  call  more  and  more

functions; I will add activation records and the stack for the process will grow. This data

corresponding to a local function is kept into the stack ok; corresponding to a called



function is kept into the stack. From the heap as I told you I allocate dynamic memory

using malloc.

Now, this grows this side and this grows this, this grows on the other side. So, from one

side I increase the stack and from the other side I increase the heap. Now, when I have a

single page table length register, this obviously, allows this obviously, allows the page

table to grow in one direction, but here is the problem. 

We are seeing that in typical in typical virtual memory that the virtual memory virtual

address space structure of a process that we have it needs to grow in two directions and

not only in one direction; To how to solve the problem? The problem can be solved by

having let us say I divide this address space into two parts.

So, I keep the let us say that I said that the virtual memory previously had what? The

virtual memory had a virtual this was the page offset part; page offset part and this was

the virtual page number ok, virtual page number. Now, this virtual page number we will

keep the most significant bit to indicate to 0 it can be 0 or 1 and it will be divided into

two parts. So, by using this one I divide the virtual address space into two parts. Now,

out when I divide the virtual address space into two parts and I name it say segment 1

and this one segment 1 and this one as segment 2.

And I use a separate page table for each segment. I use a separate page table for each

segment. So, therefore, this bit will tell me whether to look for page table whether to

look into the page table of segment 1 or to look into the page table of segment 2? Now,

depending on which segment I am using. So, and each of these page tables will have its

own length register. So, the situation if we if we if you want to say it again is something

like this.



(Refer Slide Time: 18:28)

So, we have this virtual address space. This virtual address space is divided into two

parts and this division is based on the most significant bit in the virtual page number part

of the virtual address and this I will called segment 1, this I will call segment 2 and I will

have  a  separate  page  table  for  segment  1  and I  will  have  a  separate  page  table  for

segment 2. 

Now, whether  I  will  use  page  table  1  or  page  table  2  will  be  given  by  this  most

significant bit. Each of this page table will have a separate length register. So, each of

these page tables they can then grow separately ok. So, this problem of this restriction

that the page table can grow only in one direction is solved by having two page tables for

the process for corresponding to its two segments.



(Refer Slide Time: 19:28)

Now, the even if we have two segments the problem is that if the virtual memory or the

virtual address space of the process is scattered; it has different types of modules and

each module is in a different part of the address space the usage is not that good. Even

we have a length register which restricts the use, if the virtual address space is scattered

we understand that that the length register has to be big, but a let the length register has a

certain value. 

But within that length register many of the virtual many of the virtual pages basically do

not map to actual logical addresses that is used by the process. So, the virtual pages that

are used by the process is scattered. If it is scattered even if we have two page tables and

two page, page table length registers it the usage the page table will still be large and the

usage is not as efficient.

To handle this problem we sometimes use paging with segmentation. This segmentation

is a little different from the segmentation we just discussed in the previous slide. So, this

also provides two levels of mapping but this segmentation is a bit more flexible. Each

process has a segment table and several page tables one page tables for each segment. 

This is also it is very similar to what we discussed last in the last slide. What is different

comes now. We use segments to contain logically related things.  Now for code,  data

stack  different  modules  different  modules  sorry  different  modules  we  use  separate

segments. So, for each for each of the different modules that are required each of the



libraries that are required by this process we will use a separate segment and the segment

size can vary but are they are generally large. Each of these segments again have again

have a length register a segments can have different lengths. It will have it and each of

these segments will be paged.

So, we use pages to describe components of the segments. A length register for each

segment specifies the current size of the segment as we just said. This makes segments

easy to manage and can and can swap memory between segments. We can also allow

swapping of memory between segments. 

We will possibly see this technique later in our in a later lecture. So, the virtual address

now consists of what a segment number. So, previously the virtual a virtual address was

divided into two parts  one page offset  and one virtual  page number. Now it  will  be

divided into three parts. It will first have a segment number.

The segment  number will  be used to index the segment table  whose entry gives the

starting address of the page table for that segment. So, whose entry gives the starting

address of the page table for that segment. So, I have divided my so I have divided my

process into a number of segments and each such segment now has a separate page table.

So, a segment number will tell me will point to the starting address of the page table

corresponding to that segment. A page number now, the in that page table I will go I will

index that page table using the page number. So, I get into a segment, I go to the start of

the page table corresponding to that segment, then I use the page number part of the

virtual address to index which index a page into the page table. 

So,  it  is  used  to  index  that  page  table  to  obtain  the  corresponding  frame  number

corresponding frame number. Now, when I get into the page table, the page table entry

tells me which physical page frame um where which physical page frame contains my

data corresponding to the virtual page number that I have. Now, then the offset tells me

as before where within that physical page frame is my required data.
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So,  therefore,  the  virtual  address  now consists  of  three  parts:  segment  number  page

number and page offset. I go I take the segment number and then from the segment table

pointer this will tell me the start of my segment table in main memory and I index into

this segment table using the segment number and I get to the particular segment that is

from which I need the data; So, which module if the if the segment indicates a module. 

So, I go to the appropriate segment and in that module ok. So, I get the segment or that

module. So, in that segment what do I do from that segment I go to what do I get? I get

the  starting  address  of  the  page  table;  I  get  the  starting  address  of  the  page  table

corresponding to that segment I get the starting address of the page table. And the index

into that page table index where within that page table I have to go is given by my page

number part of the virtual address. When I get this two, I add this two up and I get to the

page table entry.

When I get to the page table entry from here I get the physical page frame number. When

I get the physical page frame number I added to the offset part which directly comes

from here from the virtual address and I add I add the frame part and the offset part to get

the  total  physical  address  and from that  physical  address  I  basically  go to  the  main

memory and get my data. I get the page frame and from that page frame I get the data

required data.



(Refer Slide Time: 26:03)

The next approach that is used to reduce page table sizes is by using hierarchical page

tables. So firstly, what did we use? We used a page table length register. The which was

without segmentation and then we said that typically the virtual address space has a stack

part and a heap part to address and the page table length register only allows the page

table to go grow in one direction. 

So, we addressed that by having two segments; one containing possibly in the stack, the

other containing the heap and each of these two segments has two page tables and the so,

by directions two possible directions of increase for the process um becomes available.

So, then what happens? We came to the segmentation. So, instead of having just two

segments  I  divided  into  multiple  segments.  So,  therefore  the  even  if  the  processes

address  space is  very scattered,  so the modules  tend to be clustered  in  their  address

spaces. 

So, I have separate page tables for each of these modules or segments and therefore, the

overall size of the page table reduces. And then the segment table can be in the main

memory and we understand that the page tables can also be page the page the page table

can actually at a given time can be in the in the in the secondary storage as well.

So, within a given segment I go and I access a page table that page table may not be

there in main memory at a given time. Then I bring that page table from a corresponding



to that segment from secondary storage to main memory and I then I access and then I

access what the main memory page frame. So, this also becomes available with the use

of  paging  with  segmentation.  Then  we  come  to  a  hierarchical  page  tables.  So,

hierarchical page tables the simple so the here we do not go into segmentation, we do not

have segmentation here and but we have multiple page table levels; hierarchical page

tables or multiple page tables multiple multi level page tables. We have multilevel page

tables.

So, we break the logical address space into multiple page tables. The simplest scheme in

this is a two levels page table. So, what happens in a two levels page table? So, as I told

you the page table is also paged similar to the paging with segmentation, the second and

third level page tables may or may not be in main memory. 

So, it this allows the page table to be paged and therefore bit better sharing of the main

memory is possible. The page number is split into two; the page number is now split into

two parts. One is p1; the other is p2; p1 indexes the outer page table; p1 indexes the outer

page table or directory in main memory whose entries point to a page containing the

page table entries which itself is indexed by p2. 

So, what happens? The logical address space is now divided into two parts; p1 p2 and

this is the offset part. So, from p1 I go to the outer page table ok. So, the page table the

my page table base register tells me the position in memory of the start of the outer page

table.

Now, based on that one adding that up adding this base with the p1 that I have I get into

where in the outer page table is the start in memory of the second page table p2. So, start

in main memory for the second page table p2 is obtained in the entry for the outer page

table. From here I from here I use this one from I now add this p2; I add this p2 with this

value that I get and I get this one and I get this one where in p2 contains my page frame

number. When I get the page frame number I added to the data and I go into the main

memory.

So, here is the outer page table. The outer page table points to a number of inner page

tables ok. So, this is this one points to the page table 1, this one points to another page

table ok; it points to a number of page tables and each inner page table then contains the

frame number. So, this one tells me the this one tells me frame number 1, this one tells



me frame number 500 and I go to the frame number and I added to the data and get the

data required from the physical memory. I get the physical page frame number here, I

access the page and I get the physical data.

(Refer Slide Time: 31:35)

Now,  two-level  paging  is  not  always  sufficient.  So,  even  two-levels  paging  is  not

sufficient for 64 bit computers. So, what do we do? And why is that so? Let us say if a

page is of size 4 KB as we had previously, then in 64 bit computers the page table will

have 2 to the power 52 entries ok. So, 2 to the power 64 minus 2 to the power minus 12,

2 to the power 64 minus 12 equals to 2 to the power 52.

So, therefore the page table will now have 2 to the power 52 entries. The inner page

tables contain 2 to the power 10. Let us say if the inner page table contains 2 to the

power say 10 10 4 byte entries, then the outer page table has 2 to the power 42 entries.

So, if the inner page table contains 2 to the power 10 entries. 

So, my offset contained this 12 bits, so 2 to the power 12 12 bits. The inner page table

contains what? 2 2 to the power 10 entries; So, I use 10 bits. So, now, my outer page

table has 2 to the power 42 entries. So, this one is still 42 bits. So, it contains 2 to the

power 42 entries right.

So, even if we have a two-level page table it will have 2 to the power this the outer page

table will have 2 to the power 42 entries which is very huge. Now, one solution is to add



a second order outer page that is we use a 3 level page table ok. So, now what we have

we have? We have a offset again 12 bits, we have a inner page table in inner page which

is of 10 bits to indicate where in the inner page. Then again we have another outer page

which is 10 bits and we also have a second order outer page which is still 32 bits.

So, but the following exam, but the following example the second order page table is still

2 to the power 34 bytes in size. Why? Because I have 2 to the power 32 entries and each

such entry is 4 bytes or 2 to the power 2 bytes. So, the size of the outer second order

outer page table is 2 to the power 34 bytes which is very huge. We understand that 2 to

the power 30 means 1 GB. So, if the therefore, 2 to the power 34 will mean 16 GB.

So, 16 GB for the second outer page which is very huge, which is still very huge ok;

Even with three-level page tables it becomes very huge. But oh obviously, this scheme is

there because for larger um for larger a address spaces; logical address spaces it shows

that we may need to have multiple levels of page tables more than 2 ok.

(Refer Slide Time: 34:58)

In order to control in order to control size of another technique that is used to control the

size of a page table is by using a hashed page table. It is commonly used for address

spaces greater than 32 bits. So, this is more prevalent for 64 bit computers. The virtual

page number is now hashed into a page table ok. 



This page table contains a linked list of elements hashing to the same location. Now, this

now what we have this logical address has this offset part and this is the virtual page

number, virtual page number. Now, this virtual page number part of the virtual address or

logical address is used as a hash function; this virtual page number is used as a hash

function and it hashes into the page table.

Now, each entry in this page table contains a linked list of linked list of elements with

which are obtained through by, so, this entry is what? By hashing this pay virtual page

number by hashing this virtual page number I get to an entry and this entry contains a

linked list of elements. 

So, the virtual page number is hashed into a page table. So, this is the page table hashed

page table  or  hash table  and this  page  table  contains  what  a  linked list  of  elements

hashing to the so, all these elements hash to the same location here; all these elements

hash to the same location. And therefore, are linked together in a chain. It is a chain or a

linked list as is done for hashing. So, from the hash function I get to an and get to a

location um in this location I have a linked list of all elements that hash to this location.

Each element  contains  what  the  virtual  page number, the  value of  the  mapped page

frame. So, this is the frame number, this is the page number virtual page number, this is

the page frame number page frame number virtual page number and the third part is a

pointer to the next element ok. 

So, what do we have here? So, I have a virtual pay so, what do I have? I have hashed into

this one with the page number and then I match I match this virtual page number with the

elements. So, I when I have come to this location I go to this linked list and one by one I

find out whether this virtual page number matches with the virtual page number here.

So, for example in this case the first element does not match but the second element

matches. This one is also p this one is also p ok. So, because this has matched I take this

frame number which is r and I get the frame number r and I added to the offset part

which is d here. 

So, this r plus d gives me the physical address and using the physical address I access the

physical memory. Now, therefore using although this one is a per process; so, I have a



hash table for each process here. However, however I need to keep only as many virtual

pages as are needed by the program at a given time.

So, if I have to the I have to this place and these elements will only contain those element

will only be there which actually contains a physical page frame number here. So, if a

particular virtual page if a particular virtual page is not there in physical memory for

corresponding to a virtual page if it is not there in physical memory it will not be found

here ok. 

So, in this scheme we only keep those elements for which I have physical memory pages

mapped to the virtual addresses. If I do not have physical memory pages a map to the

virtual addresses I need not keep in this hash table.

So, although this is a per process phenomenon; that means, this hash table is kept for

each process, it is still smaller than the big page table structure that we had previously.

Now, you may ask as to why even previously we had such a big page table and why not

why is it not that I only keep those entries in the page table for which I have valid logical

addresses. 

This is because this is because this page table is indexed with the virtual page numbers.

The page nibble is indexed with the virtual page numbers and let us say if I have to

access a particular logical virtual page the searching this to a page table becomes very

easy, when I have this sorted in terms of virtual page number. 

This  hashing makes it  easy because hashing will  actually  get  it  through a through a

through a small number through a through a small number of search through a small

search I can actually get to the, get to the entry which will contain my page frame which

get to the element which will contain my page frame due to the hashing that I have.

But if I did not have this hashing to search in the page table, where my particular page

frame will reside. That is made easy by keeping an entry for each virtual page whether is

it is in the logical address space of the of the process currently or no; I keep an entry for

all  for all  at  a virtual  pages that  I  have and then that  makes  it  easy to search for a

particular page table entry. 



Because now, if I am search if I want to search for logical address numbers, a logical

page number 5; virtual page number 5, I know that it is it can be indexed by page table 5.

I can I can just go to page table 5 and I will get this entry ok.

But, but then this will not be possible if I do not have a structure like this ok. So, if I

have an added structure, now where will be the main problem? Let us say now I as I told

you the logical address space of the process can grow with time during execution. Now I

want to include a new page into the into the virtual address space of a process. 

So, how will I insert this? This is not a problem if I have all entries in the in the page

table. I just say that now this particular entry has become valid; the contents are now

valid. But previously this page this virtual page which is indexed by 2 was not part of the

virtual address space of the process.

But now, this the this page has been added to the virtual address space of the process and

now this entry is valid; this will suffice for me. So, therefore, I have to keep the entire

page  table,  if  I  do  not  use  a  mechanism like  hashing ok.  Virtual  page  numbers  are

compared  in  this  list  searching  for  a  match.  If  a  match  is  found  the  corresponding

physical frame is extracted as we discussed.

(Refer Slide Time: 43:34)

The next approach is the use of an inverted page table. Now, the in the main concept in

inverted page table is the following: Instead of having a page table for each process and



keeping track for all  possible  logical  pages that  we have,  we only keep track  of all

physical pages. We only keep track of all physical pages. Now, I have one entry for each

real physical memory and this page table is now indexed by page frame number because

I have only one page table for the entire physical memory. It is not a per process page

table anymore. So, I have one entry for each real page of memory.

So, therefore, this page table is now indexed is now indexed by page frame numbers.

And what does it contain inside? It contains the virtual address along with the pid of a

process. So, entry consists of the virtual address of the page in that real memory location.

So, this particular physical memory location is pointed to by a particular virtual address

of a particular process. 

So, that virtual address and the process id both need to be kept in the entry of this page

table. So, how now basically what has happens see, this index this index i is what? It is

the page frame number; it is not the virtual page number this is the page frame number

and this page frame number directly because of this index i is known, I can directly go to

this i and add this offset and get the physical address. And in this location what do I

have? I have the pid and the virtual address. 

So, what is the advantage? It decreases memory needed to store page table, but increases

time needed to search the page table when a page reference is made. So, we need to

discuss as to how a page reference will be made.

The CPU still floats this logical address ok. Now this combination of pid and p. So, now

the logical addresses, address again is divided into three parts because the address space

is vary. This is used for large address spaces for example, 64 bit 64 bit computers. So,

basically I will keep let us say, let us say 8 bits or say 9 bits, 10 bits for the pid. So, I can

accommodate at most a 1024; if I keep 10 bits for the pid I can accommodate 1024

different processes; which is very large.

So, this combination of pid; that means, which process and what is the page virtual page

number. So, if I keep 12 bits for this one; let us say 12 bits for my page offset and I keep

let us save 10 bits for my process id. So, if I have a 64 bit system, 64 bit logical address I

still have 64 minus 10 minus 12 which is equals to 42 bits for my virtual address which

is very huge; So, no problem with this virtual address space that I have.



So, now what will I have? Given this pid and p; I will search this page table. I will search

the entire page table in I will search the entire page table to find if I get a match for this p

and pid. I will search from here, search the entire page table I so, I know the pid and the

page number, virtual page number and the pid and I am going to search the entire page

table to get a match for pid and p. 

If I get this match, if I get this match I know wherein the page table I got this match

which is i;  where the index to the page table where I got the match.  And this  index

basically tells me the physical page frame number.

Now, I  get the physical  page frame number, I  add the offset,  I  get therefore get  the

physical address and access the physical memory ok. So, as we understand now that this

decreases memory needed to store each page table; not each page table to store each page

table,  but now we basically have a single page table but it increases time, needed to

search the table when a page reference occurs. Now, the way we use the hash table, we

can now use a hash table to limit the search to one or a few entries.

So, how do you control the search of this entire space; by using a hash table. So, using

this you using this as the hash function using this as a hash function I will I will hash into

a particular place; from where I will get the page frame and I will get into the physical

memory. So, by using a hash function I can limit the search to 1 or at most of you page

table entries. So, this is how by shifting from a per process page table to one page table

for the entire  physical  memory I  can reduce the size of I  can reduce the amount  of

memory dedicated to a whole page tables in main memory.

So, inverted page table is used in many IBM architectures in a few IBM architectures

like power, pc, etcetera. They are the, they were the first and the main proponents of this

inverter page table organization. So, with this we have understood a few ways in which

in which page tables are organized and the mechanisms by which um we try to control

the size of a page table in main memory.
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We will as a before completing we will take an example and solve a small numerical. A

computer uses a computer uses 46 bit virtual addresses, 32 bit physical addresses and

three-level  page  table  organization;  a  three-level  page  table  organization;  three-level

paged page table organization. 

The page table has the page table base register stores the base address of the first level

table T1 which occupies exactly one page; this is important. The first level page table

occupies exactly one page. Each page each entry of T1 stores base address of a page of

the second level. So, each address of T1; so, I have a T1, I have a T1 containing many

entries and this T1 holds the base address of many T2’s ok. These are T2’s; second level

page tables. So, the first level page 2 which occupies exactly one page; this occupies

exactly one page exactly one page.

So, which occupies exactly one page; each entry which occupies exactly one page fine.

Each entry of T1 stores the base address of a page of the second level page table, T2.

Each entry of T2 stores base address of a page of the third level-page table. Similarly I

have a third-level page table T3 ok. So, these are T3’s right. So, each entry of T3 stores a

page table entry. So, each entry of T3 holds a page table entry. So, this is a page table

entry and this basically goes to the physical memory. I have from this page table entry I

can find what? I can find the frame number. I can go to the physical memory.



So, each entry of T3 holds a page table entry. A page table entry is 32 bits in size; a page

table entry is 32 bits in size; that means, it is 4 bytes or 2 to the power 2 bytes so, 32 bits.

What is the size of a page on this computer? So, I want to find out the size of a page on

this computer.
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So, how do we start? Attack this problem. Let us say that let the size of a page be 2 to the

power x, the size of a page be 2 to the power x ok. Now, we have said that the computer

has 46 bit virtual addresses. So, what are the total what is the total address space size?

The total address space size, address space size of a process what is it equals to; 2 to the

power 46 ok. 

So, I said that let the size of a page be 2 to the power x. So, number so, number of pages.

So, number of pages is equal to what? Is equal to 2 to the power 46 by 2 to the power x

because the size of a page is 2 to the power x; that the at total address space is 2 to the

power 46 bytes; this one is bytes this 2 to the power x bytes. So, therefore, the number of

pages is equal to 2 to the power 46 minus x.

Now, all these pages so all these pages, so, if I have these pages; that means, I have these

many pages in the virtual address space. So, all these pages will have entries in T3. So,

combining all they ended with many T3 page tables combining all the p T3 page tables

what will be the total number of entries in that in the t T3 page tables; total combined



across all across all T3 page tables, page tables across all p T3 page tables total number

of entries, total number of entries equals to 2 to the power 46 minus x ok.

This will be the total number of entries across all page tables at the T3 level. Now, the

size of each entry as I told as we discussed is 32 bits. So, therefore, so therefore which is

4 bytes; so, therefore, what is the size of T3 page tables? Total size total size of T3 page

tables; T3 page table, total size of T3 equals to what? 2 to the power 46 minus x into 2 to

the power 4 which is equals to 2 to the power 48 minus x. This is the total size of T3

page table or this is the total size of the T3 page tables total size of the T3 page tables.

Now, this page table is paged; these page tables are paged. Now so, if this is the total size

how many entries corresponding to T3 will be there in T2? So, number of entries number

of entries in T2 is given by what? Number of entries in T2 is given by 2 to the power 48

minus x divided by 2 to the power x which is equals to 2 to the power 48 minus 2x.

Why? Because the size of a page is 2 to the power x; So, therefore, the number this is the

total size of the T3 page tables; total size of the T3 page tables in bytes ok.

Now, this  will  be paged and so,  how many pages will  be required to store this  T3?

Assuming that the size of the page remains same; this will be given by 2 to the power 48

minus x divided by 2 to the power x which is equals to 2 to the power 48 minus 2x ok.

Now, this is the total number of entries. 

So, again the size of T2 overall T2’s what is it? Assuming that each page table entry is 4

bytes; that will be again given by 2 to the power 48 ok; minus 2 x into 2 to the power 2

which is equals to 2 to the power 2 2 which is equals to what; 2 to the power 5 0, 2 to the

power 50 minus 2x.

So, 2 to the power 50 minus 2x is what? It is the total size of T2 page tables ok. If I rub

this, if I if I rub this to get of some white space if I rub this. So, basically what am I

having?
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So, 2 to the power 2 to the power 50 minus 2x; 2 to the power 50 minus 2x is what is the

number is a size of is the size of T2 page tables; is the size of T2 page tables ok; is the

size of T2 page tables. Now, this will be contained in T1; if this is contained in T1 then

number of entries in T1 will again be given by 2 to the; So, number of entries in T1 is

given by what? 2 to the power 50 minus 2x divided by 2 to the power x equals to 2 to the

power 50 minus 3x.

So, the total so, that so, the so, the total size of T1 is given by 2 to the power um. So,

total size of T1 is given by 2 to the power 50 minus 3x into 2 to the power 2 is equals to

2 to the power 52 2 to the sorry, 2 to the power 52 minus 3x. This is the total size of T1

and we said that this size is equal to exactly one page. 

We had previously said this size is equals to exactly one page. So, 2 to the power x, so 2

to the power x is equals to 2 to the power 52 minus 3x. Therefore, what do I get? We get

that 4x equals to 52 or x or x equals to 13. So, the size, so the size of a page is; so, the

size of a page is what? The size of a page is 2 to the power 13 which is equals to 8 KB.

So, my answer is 8 KB ok. 

With this with this we come to the end of this lecture. 


