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In this module we will start our discussion with Virtual Memory. In the previous modules

we had studied caches which provides fast access to a processes code and data.  In a

similar way we will now study a technique which allows the main memory to be used as

a cache for the secondary storage. And this mechanism is jointly managed by both the

OS, and the CPU hardware.

So,  virtual  memory  allows  active  portions  of  multiple  processes  to  be  concurrently

resident  in  the  main  memory.  So,  as  we  know  that  multiple  processes  must  exists

together in the main memory for being executed. So, when a program is being executed

it must exist on in the main memory.
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Now virtual memory allows the main memory to be shared between multiple programs.

Before execution each process gets a range of virtual memory locations to address its

data and code. So, as we are talking this is virtual memory it does not exist in practice.

So, when we are combining when the program is being compiled it assumes that it has a

range of memory locations at its disposal. So, this it is virtual or logical address space of

the program and this can be as big as the entire addressable space of the processor; for

example, in a 32 bit processor, where address buses are of length 32 bits. So, the range of

memory addresses that the CPU can address goes from 0 to 2 to the power 32 minus 1.

So, each process in the in the in the virtual memory managed system can access as big a

memory  as  2  to  the  power  32  minus  1.  So,  therefore,  the  each program or  process

generates  virtual  addresses,  now  addresses  seen  by  the  memory  unit  or  physical

addresses.

So, the virtual addresses that are generated by the CPU must be mapped to physical

addresses. So, I generate a virtual address there will be a mapping process, the memory

management unit will map this virtual address into a physical address; that means, where

this data that I have asked that I have accessed will actually reside in main memory.

So, that mapping will be done to that physical address and this physical address will be

floated into the memory address register of the system, and from this memory address

register this address will be floated onto the memory unit to access the data. 



Now this  translation  from virtual  addresses  of  virtual  addresses  of  a  process  to  the

physical address is done together by the CPU, and OS. And what do you get additionally

that this translation process also enforces to protection of a programs physical address

base from other programs. 

So,  now why this  is  possible  we are  saying that  each  process  can  address  a  virtual

address space can provide its code the code and data corresponding to a process can be

within  its  virtual  address  space  will  be  within  its  virtual  address  space,  this  virtual

address space will be of the size from 0 to 2 to the power 32 minus 1 let us say. Let us

assume for a 32 bit computer. And then this virtual address will be mapped to a physical

address in main memory. Now this mapping process will  be 2 valid  locations in the

physical memory where data and code corresponding to this program exists.

And this mapping process or this translation process from virtual to physical address

does this mapping correctly that is that is this mapping from virtual address to physical

address will be done only to those physical addresses which belong to this program. And

it will not allow access to other portions of the physical memory where data and code

corresponding to other programs reside.

So, this enforces a protection of a programs physical address space from other programs.

So, why is this needed? Because we said that multiple programs together exist in main

memory.  Now  one  program  should  not  encroach  into  the  address  space  of  another

program, this protection is enforced by the translation process. 

It also isolates the operating system which is which is a separate program from other user

processes. Because the operating system is protected, it conducts and nicely executes all

conducts all the processes happening in the entire system. So, that has to be protected

from user programs OS runs, in kernel mode it has to be protected from user programs.

And the translation process also ensures that user programs do not encroach into the code

space of the OS in main memory.

Now, the translation process also allows a single user program to exceed the size of the

main memory because virtual address space and physical address spaces do not have a

one to one mapping meaning that virtual address spaces can be very big as big as the size

of as I said 2 to the power 32 in a 32 bit computer.



And let us say in my physical address in ram is only say 256 MB, which is much smaller.

Now the entire code the virtual entire code and data of the process will remain in the

secondary storage. And portions of the portions which are active at a given time which is

defined by something called a working set we will discuss later. We will only be resident

those portions which are active at a given time if those portions of the program which are

active at a given time will actually be resident in the main memory. So, the entire virtual

entire code and data of the process lead not be resident in the main memory together.

So, the virtual address space of a program can be much larger or arbitrarily large and has

no relation with the size of the main memory. the virtual address space can be larger or

smaller compared to the main memory that we have.
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Now how do we do this mapping from virtual to physical addresses? So, both the virtual

and  physical  both  the  virtual  and  physical  memory;  so  the  virtual  memory  and  the

physical memory are broken into blocks of the same size and this block. So the blocks

are of the same size. As for caches we divided into blocks and lines for virtual memories.

And physical  memories  we divide  virtual  memory  into  blocks  called  pages  and  the

physical memory into blocks of the same size called page frames.

Now, the virtual memory translation miss is called a page fault;  that means, I during

translation I have a my CPU asked for data corresponding to a virtual address. 



Now how do I  get  that  data  I  do the  mapping  so that  I  find  out  the  corresponding

physical memory location in which this virtual data corresponding to this virtual address

reside? Now when I am trying to do this mapping I am saying that the that the page the

corresponding page in physical memory corresponding to the virtual page that I need is

not there in physical memory currently.

Now that has to be brought from secondary memory or disk, now this constitutes a page

fault when the page that I required the virtual page that I required is not there in main

memory in a page frame of the main memory. I have a page fault here in this figure, we

see that we have virtual addresses on one side these are the virtual addresses each of

them is a virtual page these are pages.

Now the white pages, these I have a mapping for them in the physical memory. So, I

have a mapping for them in the physical memory. So, corresponding to this page I have

this content of this page is in the physical memory this page frame this for this virtual

page I have the content in this page frame.

However for this  page I  do not have I  do not have a corresponding mapping in  the

physical memory; that means, this page is currently not resident in a physical memory

page frame. So, what happens this when I access this virtual page I have a page fault, and

I have to bring this page from the disk to physical memory and only then can the data or

the code that I need corresponding to this page can be accessed.

So, I have to service the page fault and only then can the data corresponding to the page

which is not president in main memory be accessed. So, and the other point is that pages

can be shared by multiple virtual addresses.

So, the same physical memory page can be mapped can be pointed to by multiple virtual

addresses for example, in this case here this virtual page and this virtual page points to

the same physical page frame this one. Now when is this important so, there could be

code or data which is accessed or shared by multiple programs say. For example, let us

say we have dynamic; dynamic link libraries which I shared files in the system or let us

say we have a language library say our printf program.

Now, all C programs may need to use this printf there are 2 options for this. Now each

program can have a copy each process can include a copy of the printf program into its



virtual address space will have a mapping of this printf program into its virtual address

space.

So, program 1 C program 1, and C program 2 both accesses the same printf program.

Now they can the so if it is the same printf program, it is better to share the code instead

of each program having a separate copy of that printf program. So, therefore, this is done

through a mechanism called dynamic binding.

So, what happens is that for shared libraries you do not actually load the libraries as part

of the as part of the address space in your in your executable code. Instead you have you

just include a stub saying that printf is a shared library which I may need to access from

a part of the program. Now, when this shared library is first accessed during execution I

first check whether this shared library is already existent in main memory or not, if it is

existent in main memory I just include another link to this shared library code instead of

instead of having a separate copy of it.

So, although I bring for if the first time I bring this shared library into the main memory

when another program suppose tries to access the same shared library then what I will do

I will not bring the copy from the secondary memory to storage I will not bring another

copy of the print function of the shared library from secondary memory to storage. I will

reuse the same code that I already have in main memory. I will just link I will just link

from the other program that the printf code exists in this part of the main memory instead

of instead of copying having another copy of the of the of this shared library.

So, how will I achieve this? I will achieve this by having multiple virtual pages to point

to the same physical page frame. So, let us say this physical page frame here contains the

code for the shared library, contains the code for the shared library.

So, now this shared library can be accessed by now and let us say this virtual page is

corresponding  to  program  1,  and  this  virtual  page  is  corresponding  to  program  2.

Therefore, when both these pages point to the same we shared library code the this can

be done by what by having these 2 pages point to the same page frame here in main

memory. So, physical pages therefore, can be shared by having multiple virtual addresses

point to the same physical address, virtual to physical page mapping simplifies loading

by providing relocation. 
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As we have seen in a virtually managed memory system the; a location in the virtual

memory is with respect to the start of the virtual page location. Now these virtual pages

can be located anywhere in physical memory. 

So, therefore,  if I have provided a address and I know the start  of the page in main

memory I can locate it. So, therefore, it simplifies loading of the program so the program

can be loaded anywhere into the physical  memory there is  no restriction,  the virtual

pages need not even be contiguous.

So, the virtual pages have can be mapped by themselves in without relation to other

pages at any portion of the physical memory. Logically speaking there are restrictions

which we will not go to at this point in time; however, we can assume here that any

virtual page can be mapped to any physical page frame. So, allows virtual pages to be

mapped to different memory page frames. So, this is relocation.

So, my in my virtual address space my code was contiguous one after another virtual

page one followed by virtual page 2 followed by virtual page 3. However, virtual page 1

can reside in let us say page frame number 10, and virtual page 3 can reside in page

frame number 1. There is no there is no issue that because this virtual page frame was

because  virtual  page  number  3  was  after  virtual  page  number  through  virtual  page

number 2 because virtual page number 3 was after virtual page number 2. It need not be



that  in  the physical  page frame also it  will  reside in  physical  page frame number 2,

followed by physical page frame number 3, it need not be so. 

So, virtual page number 3 can reside very well reside in physical page number 1, and

virtual page number 2 can very well reside in physical page number 10 no problems. So,

programs therefore, can be loaded anywhere in physical memory. And this translation

also eliminates the need to find a contiguous block of memory to allocate a program.

So, if we did not have such a paged memory system where I have the same page size I

have broken both the physical memory, and the virtual memory into pages of the same

size. If I did not have a system like that then what would I have to do when I have to

place a process in main memory I have to find out appropriate amount of contiguous

block of memory for this process in main memory. Otherwise I cannot place this entire

process in main memory.

Now, I need to only find whether I have a free I have free page frames for a given virtual

page which is being accessed by the CPU I have a virtual page which is being accessed

by the CPU. If it is currently not there in the main in a main memory page frame I just

need to find or replace a page frame in the main memory find a find a given page frame

corresponding to this virtual page which I need place my data from the secondary storage

into this page frame, and then access the data after that.

(Refer Slide Time: 18:46)



So, virtual  to  physical  address translation  a logical  address generated  by the CPU is

broken into a virtual page number and a page offset. So, here I said that my if in let us

say I have a 32 bit address space, 32 bit address bus. So and I have a 32 bit virtual

address space, so, my virtual addresses will be of length 32 bits in this figure we see that

the virtual address or also called the logical address is broken into 2 parts the virtual page

number and the page offset.

So, the higher order 31 to 12 these 20 bits I am using for the virtual page number and

these 11 to 0, these 12 bits I am using for the page offset the number of bits in the page

offset determines the page size. So, here because I have used 12 bits in the page offset

the number the maximum number of bytes or words in my page can be 2 to the power

12. So, I have 4 KB pages in this organization now the page offset is translated as it is

because the so this portion this part of the address tells me which byte within this page

do I require and this is translated as it is in the main memory, this does not change.

The  virtual  page  number  this  part  now  goes  through  a  translation  goes  through  a

translation process and for that I generate  a physical  page number. So,  my CPU has

generated virtual address my CPU is let us say my CPU has asked for a data from a

virtual address which is given by this 32 bits. Then these 32 bits is broken into 2 parts the

lower order 12 bits here forms the page offset. And it tells me which byte this address

these bits the values of these bits tells me which byte within my page do I need to access

at this current time. The higher order bits from the 12 to 31 these bits tell me the virtual

page number.

So, how many page, how many virtual pages can I have I can have 2 to the power 20

pages. Because this 12 to 31 means I have 20 bits for the virtual page number, so the

number of virtual pages can be 2 to the power 20. Now each of these virtual pages can

potentially be translated to a physical page number. Now for this virtual page number I

will have a corresponding physical page number we see that the number of bits in this

virtual address and this physical address are different. So, this virtual address has 20 bits.

However, the physical address we see it is from 12 to 29 so, it has 18 bits. So, I so, the

number of physical memory page frames here is only 2 to the power 18. But the number

of virtual pages that I can have for this process is 2 to the power 20 ok. Now this one is

the physical address so this whole thing will be floated after translation will be floated



onto the memory address register. So, the page offset part these bits will be will be just

placed as it is in the physical memory address.

This physical page number these bits will go through a translation and this 20 bit address

will be transformed to a corresponding 18 bit address after the translation and after the

translation we will together add up this physical page number and this page offset to get

the entire physical page, physical address.

This is the frame address and this is the byte within the page frame that I require, this is

the byte within the page from that I require and this is the frame address. So, in this

figure the virtual address space is of 2 to the power 32. Because my I have 2 to the power

32 I have 2 to the power 32 different addressable locations in the virtual memory. The

physical address space is of 2 to the power thirty from 0 to 29.

So, the size of the physical memory is 1 GB, the size of the virtual memory is 4 GB, the

page size is 2 to the power 12 which is 4 KB, 2 to the power 10 is 1 KB.

So, 10 bits 1 KB and 2 bit small so 4 KB’s the number of virtual pages as we discussed is

2 to the power 20 and the number of physical pages is 2 to the power 2 to the power a

number of physical pages is 2 to the power 18. So, more virtual pages than physical

pages is the basis of the illusion of an essentially unbounded amount of virtual memory.

Now the virtual memory can be as big as the address bus that I have. if I have a 60, 64 bit

address bus is in the 64 bit computer, then the number of the virtual address space can be

as large as 2 to the power 64. 

So, essentially I have unbounded amount of memory. However, the translation process

guarantees that all these virtual pages, or virtual addresses will be correctly mapped to

proper locations in the physical memory.
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Now page as I told that if for a corresponding virtual and corresponding virtual page

number the physical page is not there is there is not a proper translation of the virtual

page to a physical page, I have a page fault. What does that mean I have loaded a virtual

address, for that I have a virtual page number, the translation told me that corresponding

to  that  virtual  page  number  this  virtual  page  does  not  currently  reside  in  physical

memory.

So, I have to access the data corresponding data or code corresponding to this page I

have to first  bring this  page from the secondary storage to a page frame in physical

memory and then I will get a proper translation and after that can I access data in that

physical page frame.

So, when I when I do not have the data in the physical page corresponding to a virtual

address I have a page fault. Now page faults can be the page fault penalty for virtual

memories is very high. Why because the access times on the secondary storage is very

high. Now to access a, whereas let us say for accessing the main memory I will only take

around say 50 to 70 nanoseconds for accessing the accessing the secondary storage I may

take millions of nanoseconds.

For example it  could be as big as 5 million nanoseconds let  us say. So therefore,  to

access the secondary storage to a service a page fault I need to the secondary storage to

fetch a page from the disk and this takes millions of clock cycles. The main memory



latency is about a million times quicker the main memory latency is about a million

times quicker than a disk.

So, this amounts to a huge miss penalty. So, therefore, a lot of effort has gone into trying

to reduce misses. So, what are the kinds of efforts that has gone into now the first one is

that the page size that we decide like we have to decide what should be the size of a

block of cache.

Similarly we have to decide what should be the size of a page. Now page sizes should be

large enough to amortize the high cost of accessing the secondary storage. So, once I

access the secondary storage I need to need to bring a lot of data together to maximize

locality of reference as much as possible. So, if I bring all a big sized page from the

secondary storage if the probability is that for further accesses the data.

If  the  data  is  clustered  around  the  address  that  I  currently  fetched  then  subsequent

accesses will not result in page faults if the page size is big. Also the other part is that

when  for  magnetic  disks  for  example,  secondary  storage  the  access  times  for  a  for

numerous for numerous accesses is much larger than if I have bigger contiguous access

of the data bigger contiguous access of a significant amount of data. 

If I have that is much better than having multiples multiple numerous accesses to smaller

amounts of data due to the organization of the secondary storage. So, therefore, or both

these aspects some lead to the conclusion that the page sizes should be large. Typically

today page sizes are of the order of 4 KB’s to 16 KB’s.  The trend newer trends for

desktops and servers are that it is going to be still higher to even say 32 KB’s or 64 KB’s.

So, each page will be off size say since 32 KB’s or 64 KB’s why to in order to reduce the

number of times I need to go to the secondary storage to access the to access data.

So, once I go to the secondary storage I want to bring a lot of data together. So, that

further accesses for further accesses of data I the probability that I have to go to the

secondary storages minimize the probability of a page fault is minimized. 

However, for embedded systems page sizes are typically lower of the order of 1 KB. This

is  this  is  one reason for  this  is  that  it  could be that  embedded systems are resource

constrained. So, their memories are lower and bigger the page sizes bigger becomes the

internal fragmentation of the last page. Suppose for example, I have a page sizes of 4



KB, and I 4 KB and I have say and I have a process whose virtual address space whose

virtual address space is of size 18 KB.

So, I will require 5 pages 4 KB, 5 pages right, but the last, but in the last KB 2 k in the in

the last page 2 KB of space will be wasted. Because I required only 18 KB, 2 KB of

space will  be wasted this  amounts  to internal  fragmentation,  and in many embedded

systems may not afford such internal fragmentation.

And  also  because  for  embedded  systems  the  processes  that  are  executing  and  their

memory accesses are much more predictable I can have more efficient ways of managing

memory in embedded systems. Because the exact processes that will be run are typically

known this is not so for desktop and servers arbitrary processes can come at any point in

time and execute. So, in resource constrained embedded systems page sizes are typically

lower. Organizations that reduced page fault rates are also attractive.  So CPU system

organizations that reduce page fault rates are also attractive in virtual memory managed

systems. 

So,  virtual  memories  are  typically  use  fully  associative  placement  of  pages  in  main

memory. Now for caches we saw that the principle; there were 2 principal problems of

having fully  associative  caches.  One was that  I  needed more  expensive  hardware  to

search for the tags to search for a tag match which has to be done in parallel ok. Because

a particular physical memory block can reside in any cache line. So, I have to check for

the tags of all the cache lines to find out where my data exists. So, this made it on this

made is it very expensive for cache memories.

The other way the other problem was that when I needed a replacement how to find

which page to replace the to find let us say the LRU page, the least recently sorry which

block  to  replace  to  find  the  least  recently  used  block  I  will  need  a  very  expensive

hardware to keep track of which page is least recently used at a given time.

So, we used typical use set associative mapping for caches. Now for physical for virtual

memories on the other hand associative placement is more beneficial. Why is it more

beneficial? Because the access times to the secondary storage is very large. Now so what

I want to minimize page faults I need I want the virtual page to I want a virtual page to I

want to be able to map a virtual page to any place within the physical memory to any



page frame within the physical memory wherever possible. Because that minimizes my

misses page faults. Now this is much lower.

Now what is the drawback of this approach the search of where a virtual page exists in

the  physical  memory  becomes  higher,  but  this  search  is  much  lower  in  cost  in

comparison to the cost of a page fault.

Hence  the  fully  associative  placement  of  pages  in  memory  are  preferred  for  virtual

memories and page faults are handled by the OS code, and not hardware. Now why is

this so, because so this is being done in software. So, again this will be more costly as

compared to hardware; however, because page faults are very expensive compared to

that this the compared to that handling page faults in software is much lower in cost.

In addition to this when I handle page faults in software smart replacement algorithms

can be used to reduce cache misses. We will look at different replacement algorithms and

how such replacement algorithms helps reduce cache sorry not cache misses page faults.

So, smart replacement algorithms can be used to reduce page faults and we will see how

the replacement algorithms allow help reduce page faults.

And  obviously,  the  last  point  here  says  that  right  back  caches  are  sorry  right  back

mechanism is  used  for  in  virtual  memories  and not  right  through which  means  that

suppose when I write on 2 a physical memory I do not write to the to the corresponding

location in virtual memory or the few or the secondary storage. I use a write back scheme

because  if  I  go  on  each  time  I  write  into  physical  memory  if  I  have  to  write  into

secondary storage it will be hugely costly as we understand. So, right through is cannot

be used right back is used.

So, whenever the page needs to be replaced modified pages will be replaced and if the

page has is dirty or modified is written to when it is being replaced it will be placed into

the secondary storage. And we will not use write through because as we understand write

through will be very costly. And write through for each write into the physical memory I

must also write into the secondary storage which is not possible affordable at all.

Now, we looked in more details as to how virtual address to physical address translation

is done. This translation is done through a data structure called page tables.
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So,  page  table  stores  placement  information  it  has  an  array  of  page  table  in  entries

indexed by virtual page number. So, for each process I will have a page table this page

table will have these are virtual page which have we will have entries for each virtual

page. So, virtual page number is 0 1 2 3 4. So, these are virtual pages.

Corresponding  to  each  virtual  page  the  page  table  will  contain  the  corresponding

physical page frame number physical page frame number ok. So, page tables store the

placement information it is an array of page table entries it is an array of page table

entries indexed by virtual page number.

So, the index is the virtual page number and it contains what the physical page number.

So,  page  table  registers  in  CPU stores  in  CPU points  to  the  page  table  in  physical

memory. So, when I have a contact switch what do I do during a context which a new

process is executed on the processor. With during that contact switch for each process I

will also have a page table which maps what it us virtual pages to its physical pages this

physical this page table is also resident in main memory.

Now the page  table  register  is  a  hardware register  which during  a  contact  switch  is

populated with the address of the starting address in which is populated with the starting

address of the page table in physical memory. So, again page table is an array of page

table entries it is a data structured which is there per process every process has its own



page  table.  Page  table  maps  the  virtual  pages  corresponding  to  that  process  to

corresponding physical pages ok.

Page table in page table is an array which is indexed by virtual page number and the page

table register is a hardware register which contains the address of the start of the page

table. So, the address of the start of the page table in physical memory is kept in the page

table register. So, the data corresponding to this process and also the data code of this

process is in physical memory and the page table of this process which maps virtual page

numbers to physical page number this is also kept in the physical memory.

So, and there is a distinct or its own each process has its own page table. So, during a

contact switch what do I do? I populate this hardware page table register with the address

with the starting address of my page table of this processes page table which has come to

the processor subsequent to the context switch the starting address of this page table is

put into the page table register. If a page is present in memory PTE, stores the physical

page number, and it can stores other bits such as reference bits, dirty bits etcetera. 

So, we will talk about all this later reference bits are used to understand whether this

page was referenced within a given time in the past. So, I have different time epochs and

within a given time interval if within a particular specified time interval. If my page was

accessed particular time interval from the current time to the past within a given time in

the past interval if my page was accessed right referenced bit will 1. Otherwise may

referenced it will be 0. Why that is used will come later the dirty or modified bit is used

to understand the dirty  or  modified  bit  is  used to  understand whether  this  page was

written to or not.

Why is this required as I said this virtual memories are right back. So, if I find that the

dirty bit is on and I want to replace this page, then what do I need to do I have to if this

page is dirty then I have to write it back into the secondary storage. So, we will look at

these later in more details if a page is not present in memory this will be a page fault the

page table entry can refer to location in swap space.

So, I have to go to the swap space in disk on the disk and bring back this page. So, the

swap space is something called as we know in Linux you must have heard the term swap

partition this swap partition is basically the swap space with that we are talking about.

Why this is there in the swap space typically contains the portions the data portions of



each process which are dynamically changing. The code part which will never change

the code of the process is never going the code of the processes is never going to change

that is typically kept in the other part of the secondary memory along with the process.

The data which will be frequently changed is put in a in a special partition in a special

small marked area within the secondary storage which will be which we called the swap

space on the disk.

(Refer Slide Time: 44:07)

So, as I said each process has its own page table, and this maps its virtual address into

the physical memory. So, here if this is the page table of process 1, this is the page table

of process 2. And we see that the pages the pages are mapped to corresponding page

frames in the physical memory. And the physical memory is nicely shared between these

process 1 and process 2.

A few of the page frames contain data corresponding to process 1, other page frames

contain data corresponding to process 2 ok. This is this figure shows how nicely this

physical memory is being shared by 2 processes through their own page tables.
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Now we will see how this translation occurs. So, now this is with respect to a single

process. So, I have a single page table register there is a single page table register this

page table register contains what it contains the start or starting address of my page table

in physical memory ok.

So, now what happens the CPU when this contact switch was done? This page table

register was populated with the address of the starting address of my page table. So, now

I can access my page table I can access this page table. Now the CPU the program is

running the CPU has generated an address for a let  us say for a given data and that

address is a virtual address. So, this is my virtual address.

Now this virtual address will be mapped the offset part will be directly will be directly

used, in the physical address as well the offset part of the virtual address will be directly

used in the physical address as well without no modification. Now I have this 20 bit

virtual page number let us say now for each entry in this for each entry 2 to the power

20. There are 2 to the power 20 different virtual pages for each virtual page I will have

an entry in the page table. 

So, what will be the length of my page table my page table will have 2 to the power 20

entries page table will have 2 to the power 20 entries ok, we will have 2 to the power 20

entries. Now let us say corresponding to this virtual page number these 20 bits, this is the

index, and this is the physical page number from the valid bit I have found that what I



have found that this mapping is valid which means that corresponding to this virtual page

number this physical page number is actually valid.

The  data  corresponding to  this  virtual  number  actually  resides  in  this  physical  page

number. If this valid bit was off it means that this page number corresponding to this

virtual page number this physical page is not there in physical memory. So, I will have a

page fault if this is off I will have a page fault. Now if this is on let us say this is on then

what happens for this virtual page number I will get the physical address physical page

number this physical page number is of 18 bits.

And I get the higher order 18 bits of my physical address and I also get the page offset I

add this  up together  and get my 30 bit  physical  address.  So,  the page table  of each

process is also stored in main memory. A hardware register called page table register is

used to locate start of the page table for a process. The valid bit for each entry indicates

whether the mapping is legal if the bit is off the page is not present in memory main

memory although a page table entry needs only 19 bits here.

Why do we need only 19 bits here? I have 18 bits are required for my physical page

number and 1 valid bit. So, in this case I required only 19 bits; however, I typically round

it to 32 bits for ease of indexing. So, I typically round it to the next power of 2 for ease of

indexing because I  work with bits  I  can break addresses and I  can do many things.

However, although I waste a number of bits in my page table entries I still round it up to

32 bits. These extra bits; however, are in many times used for many for to keep many a

types of additional information for example, protection information.

So for example,  for a  given particular  virtual  page I  know whether  this  virtual  page

contains a programs code, or the programs data. If it is a programs code I can keep an

additional bit to say that this part is read only I should not be able to I should not be able

to modify this part of my this part of my data. So, if this is a code then I should not

modify the corresponding content in my main memory if corresponding to this virtual

page so that information I can keep.

So, even if the CPU tries to modify the data I will say that this is an invalid operation

based on protection bits. Similarly I can keep read, write, execute bits different other

protection bits, corresponding to using these free bits that I have that are unused. So,



additional information can be used for in these bits on a per page basis for each page I

can keep separate protection bits. So, I can use it in this way.

With this we come to the end of this lecture.


