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Associative and Multi-Level Caches

In this lecture we continue our discussion on cache memory organization.

(Refer Slide Time: 00:30)

We start by discussing the effect of line size on cache miss rates. So, larger the size of

cache lines,  higher becomes a spatial  locality  and therefore,  lower becomes the miss

rates. We discussed about spatial locality. In the last lecture what is spatial locality, the

words that have been discussed that have been accessed recently the words nearby them

are highly probable to be accessed in the near future. So, when cache lines becomes

larger. So, there is a higher probability that words that are nearby will be accessed. So,

we get more words which are nearby and therefore, cache miss rates reduce; however,

when the cache lines grow from say 8 kb to 16 kb to 32 kb and so on.

When it grows up after a certain time, miss rates eventually grow instead of reducing.

Miss rates grow when the line size becomes a significant fraction of the cache size, why

does this happen, because the number of cache lines reduced when the size of one cache



line increases, given a fixed size of cache, the number of lines in the cache reduce. So,

we have lower number of lines and therefore, higher competition among memory blocks

for these lines.

Therefore, cache performance reduce and therefore, a line is bumped out of cache before

many of its words are accessed. So, we wanted to increase cache line size, because we

wanted to get more words which are nearby words that have been accessed recently;

however, before those words which have now come within the vicinity of due to a larger

cache size, can actually be accessed, they are bumped out why, because number of lines

in cache are now much lower. So, therefore, effectively spatial locality among words of

the line reduces.

Now larger lines also means a higher miss penalty and what is the definition of a miss

penalty, it is the time required to fetch a line from the next lower level of memory, let us

say main memory and cache. For example, here it will be main memory, we can have

multiple levels of cache as well. Therefore, in general I have written it as lower level of

memory in the hierarchy and load it into cache. So, miss penalty is the time required to

fetch a line from the next lower level of memory hierarchy and load it into cache

(Refer Slide Time: 03:32)

Now this time to fetch this miss penalty has two parts to it; one the latency to fetch the

first word from the memory into the cache and the transfer time for the rest of the block

from lower level memory to the cache. Now larger cache line size, larger cache line size



means higher transfer time, because you have to transfer more data from the memory

into cache. So, improvement in miss rate also reduces with large size caches. Now along

with this higher transfer time improvement in miss rates also reduces as we said that with

significantly large size cache caches, when they become comparable to the size of the

cache line size.

Then  the  miss  rates  also,  miss  rates  also  increase  that  is  improvement  in  miss  rate

reduces. Thus cache performance reduces when line sizes are too large; however, this

higher transfer time if we can reduce. So, one aspect of due to which the performance

reduces  can  be  checked  if  the,  if  the  transfer  time  be  reduced.  So,  line  size  can  be

increased to some extent with better block transfer techniques and here we will discuss

two block transfer techniques; one is early restart that is resume execution, as soon as

requested word is returned instead of waiting for the entire block.

(Refer Slide Time: 05:00)

So, in general what happens is, that when we have requested a word from cache and that

word is not in cache. We have a cache miss and the entire block is first fetched from

main  memory or  lower level  of  memory into  cache,  and then  execution  starts  early

restart, says that that instead of doing this resume execution, as soon as the requested

word is returned instead of waiting for the entire block, it  works best for instruction

accesses, because they are largely sequential. So, if the transfer rate is 1 word per clock



cycle, the memory system may be able to deliver new instruction words to the processor

just in time.

So, what does it say, if the transfer rate of the, transfer rate from the main memory into

cache is about 1 word per cycle per clock cycle then what happens, the processor gets a

new instruction every clock cycle. So, so once we have got the word that we need sup.

So, that is the, what is the word that we needed the instruction that we wanted to execute

in case of instruction access Now the next instruction is the next word in cache in that

block.  So,  we  have  not  waited  to  get  the  next  word.  However,  once  the  processor

executes the current instruction, the next instruction is available, because it we have said

that it takes about 1 cycle to load 1 word from the memory into cache. So, therefore, we

get the of instruction words just in time as they are required.

So,  they  become,  this  early  restart  mechanism  could  be  very  effective  in  case  of

instruction accesses. However, they are less effective for data caches, because data word

requests are typically less predictable, why, because we require sequential instructions

one after other one after the other, data accesses may not be such sequential request for a

data  word  from  a  different  cache  line  before  completion  of  before  completion  of

transferred is high.

So, therefore, in case of early restart what have we said that, we said that we will get the

data word in case of data access will get the data word will not wait for the entire block

to be transferred from main memory into cache and instead one whenever we get the

required data word due to which the miss has occurred we will we will immediately start

execution.

Now if we do this, for data word there is a high probability that we will request an word

from a different cache line before completion of transfer, before completion of transfer

and this will this what will happen, if this happen, if this happens what is the problem

and  the  problem is  that,  there  is  one  transfer  which  is  currently  going on from the

memory into cache. Now for the second transfer have to startm, the first transfer has to

complete. So, there will be a lot of memory stalls. So, processor stalls, if data cache is

inaccessible due to an ongoing transfer, this is the problem.

The next mechanism of to improve transfer rates is the critical word first, this is a more

advanced technique early restarts states that we will start getting words of the block from



the start of the block. However, once we get the data word that that due to which cause

the miss, we will immediately start execution critical word first says that do not start

your transfer from the start of the block, you start the transfer from the data which caused

the miss.

So, you first get the data which caused the miss from the memory and start execution and

then transfer the rest of the block. So, transfer request data first then transfer rest of the

block starting from the address after  the requested work and wrapping around to the

beginning of the block before proceeding further or we will first quickly discuss about

how cache misses are typically handled.

(Refer Slide Time: 09:50)

So, we will talk about how to handle instruction cache misses. A very similar technique

is used for handling data cache misses. So, if instruction access results in a miss. So,

what has happened, I wanted an instruction, I floated, I floated the PC with an address

handling instruction misses. So, next we will talk about how to handle cache misses, we

will specifically talk about how to handle instructions misses, a very similar technique

will be used for handling data misses.

So, when we do not find the instruction the next instruction; that is to be executed by the

processor  in  cache  and instruction  miss  results  and then  the  instruction  register  con

content becomes invalid. So, what is the address of the instruction, then that has to be

fetched from memory, because it is not in cache, it is the content of PC minus 4, because



in the first cycle of, in the first cycle of execution PC is incremented. So, so the value of

PC is 4 plus the instruction for a 32 bit computer is 4 plus the instruction that I want from

memory. So, the address of the instruction actually is content of PC minus 4.

So, what are the steps for getting this instruction from the main memory, the value of PC

minus fold is first sent to the memory, then we instruct main memory to read and wait

pipeline stall. So, we instruct main memory to read and then the processor waits; that is

that;  that  means,  pipeline  stalls  happen.  So,  what  is  the meaning of  a  pipeline  stall,

temporarily  the  all  the  data  and  all  the  contents  are  frozen  and  the  processor  does

nothing, it  just waits  until  the data or the instruction is obtained. So, instruction,  the

processor instructs the main memory to read and then it itself waits for the main memory

to complete transfer, then in during the transfer we write into the cache entry, what do we

do?.

We put data from memory into the data portion of the entry and the remaining tag field is

then populated into the tag and in the tag part of the entry. So, write into the tag part of

the entry and we turn the valid bit on. So, once both the tag and the data has been put

into cache we get the va. We put the valid bit on and say that the content of cache is now

valid. Then we restart instruction execution at the first step of the pipeline. This will re

fetch the instruction and this time it will find it in cache. So, this is how it will handle a

miss ha handling writes is a bit more complicated than this.

(Refer Slide Time: 13:17)



So, how do we specifically handle write, we before starting as to what how to handle

writes,  we  first  talk  about  what  is  in  consisting  what,  what  is  the  meaning  of

inconsistency between cache and memory. Suppose on a store instruction we wrote the

data only into the data cache without changing memory. Thus memory and cache will

have different values after the write and this is what we term as inconsistency.

So, during a store we have written the data into cache, but this corresponding data, we

have not. This updated data which is there in cache has not been populated into the main

memory or the lower level memory. So, therefore, the lower level memory block and the

cache line data  corresponding to this  word becomes  inconsistent.  Now we have two

types of write policies; the first is write through.

In the write through it is a scheme that keeps cache and memory consistent by always

writing data to both memory and cache. So, the inconsistency that we were talking about

before does not happen here, because whenever we write into cache we also write into

memory. So, on a write miss what happens, we fetch the block from memory into cache

first, we overwrite the word that cause the miss into the cache line and we then also write

the word to main memory using the full address.

So, now, every write also effects a memory write as well, every write into the cache is

also a write into the memory why? Because we are keeping everything consistent if the

write is a miss, it is not there in cache, then the cache block is first fetched from memory

into cache, then the word which caused the miss is overwritten into that line and then that

word is also written back into the corresponding memory block.



(Refer Slide Time: 15:40)

This policy has significant overheads and therefore, results in inefficient performance,

why is that so? Every write causes data to be written into main memory. So, memory

writes as we know takes a long time, at least say 100 clock cycles. So, if the CPI without

ca without cache misses was 1.0 and if 10 percent of the instructions are stores then the

effective  CPI  becomes  1  plus  100  into  10  percent,  which  is  11.  So,  therefore,  the

performance reduction happens by a factor of 10.

So, here one is is the CPI without any write misses ok, without any writes in it, because

all write we will go into memory. So, without writes the CPI is 1 for every write I incur

100 cycles, because I go into memory and write the word also into memory. If I have 10

percent  store  instructions,  each  of  these  instructions  will  cost  me  100  cycles  and

therefore,  if  for  10  percent  instructions  the,  with  10  percent  store  instructions  the

effective CPI becomes 11 and the performance degrades by a factor of ten.

So, one solution to circumvent this problem is to use a write buffer. So, what is the write

buffer? a write buffer is basically a queue that holds the data while it is waiting to be

written into memory. So, execution can continue after writing the data into the cache and

write buffer. So, what happens here? We are not writing every write into memory and

then proceeding again. Once we have written into the write buffer we proceed with the

execution and do not wait for that word being written into memory ok.



So, after completing the write to memory the write buffer entry will be freed; however,

memory stalls  will  still  happen,  meaning that  after  a  write.  So,  during  a  write  what

happens, I am writing it into cache and also into the write buffer and once the write

buffer  is  completes  the  write  into  the  memory  that  entry  from  the  write  buffer  is

removed.  However,  if  there  are  too  many  writes  in  a  burst  from the  memory  what

happens the write buffer gets full, because write buffers are typically of the size of 2 to 4

words.

In any case if the if the rate at which the processor writes into the cache is higher than the

rate at which the transfer can be made into memory, whatever the size of the write buffer

we will still have a stall of the processor, because the write buffer will be full; however,

typically that does not happen writes are on an average scattered and therefore, it has

been seen that the write buffer sizes of about 2 to 4 words seem to be sufficient in the

typical case.

(Refer Slide Time: 19:12)

The other policy; so we talked about the write through policy in which whenever I write,

I write both into the cache and the memory or as a slight deviation we write into the

cache  as  well  as  a  write  buffer.  Write  back  works  differently,  it  handles  writes  by

updating  values  only  to  the  line  in  cache  and then  writing  the  modified  line  to  the

memory; that that is lower in the hierarchy in the main memory or maybe the, may be a



lower level of cache when the line is replaced. So, on a write we only write into the first

level cache.

We do not bother about lower level memories at all, when this cache has to be replaced,

this cache line when it has to be replaced, I see I see that the data in cache has been

modified  and  therefore,  is  inconsistent  with  the  memory,  at  that  time  I  write  back

whatever is there in the cache line into the memory first, and then replace that line. We

do not replace before we have we have we have transferred a modified line in cache into

the memory.

Now write back caches as we understand can improve cache performance why is that so,

because if I have say repeated writes into the same block, it can be call as together. If the

same word is written again and again it can be call as together ok. So, we and for many

write we finally, transferred it once together. So, this is why write back is typically better

than  write  through  caches;  however,  implementation  of  write  back  caches  are  more

difficult as we will see. So, for write through caches we require only one valid bit. The

cache line can simply be discarded during replacement.

So, why is that so. In a write through cache we are ascertain that the cache and the

memory is always consistent. So, when we need to replace a cache line with another

block of memory, then we just need to discard this cache line, because whatever is there

in the cache is that up to date information is also there in the memory. For write back

caches; however, we require 2 bits; one a valid bit and also another a dirty bit. So, the

valid bit just tells that the that the word in memory is valid is, is correct. The dirty bit

says that the cache line, the dirty bit says that whether the data after it has been brought

from memory has been modified or not.

So, if a word has been modified after it has been brought from memory, then this dirty bit

will be 1, this is required for write back caches, because I am not writing back every time

I am write into the cache. So, I am writing to the cache and I am not updating that to the

memory, but I am setting the dirty bit on. So, it requires both valid and dirty bit. Cache

line must be written to lower level memory before replacement if the dirty bit is on. For

write through caches read misses, read misses cannot result in writes ok.

Now when I have a read miss, what is what is the problem. I have a read missing cache;

that means, somebody else. So, some other cache line is now being held in the cache. So,



whatever I want the block of memory I want is not in the cache, the cache line is filled

with some other memory block. So, therefore, I need to replace this line. So, when I have

a write through cache, I just discard this line from cache, everything is consistent and I

write  whichever, and I  just  transfer  whichever  block is  necessary from memory into

cache. For write back caches, this is not possible as we have seen.

(Refer Slide Time: 23:41)

Now, for write through caches we can either have write allocate or no write allocate

policy. So, consider write misses in a write through cache. So, in a write allocate policy.

So, we are considering write misses in a write through cache.  So, in a write allocate

policy, the block is fetched from memory and then the appropriate block is overwritten.

in a no write allocate policy we do not allocate new cache line, we directly update the

appropriate portion of the block in memory.

So, what has happened here, in a write through cache we do not have a write hit; that

means, the data that I want to write into cache; that data is not present in cache that

particular cache line holds somebody else, some other memory block, so therefore,  I

need to replace. So, in a allocate policy I first replace from memory into the cache line

write and then I override. So, the block is fetched from memory and then the appropriate

block is, appropriate data is overwritten into both the cache and the memory block.

In a low write allocate policy, I do not bring in and bring in the new cache line, I directly

write the word that is to be written directly into the memory. So, I do not bring I bro, I do



not bring from memory the cache line. So, when is this advantageous a typical use case

is that, say when the OS initializes an entire page of memory. So, it has an entire page of

memory, it will fill it with zeros. So, a full block of memory is going to be filled with

zeros.

If we bring that whole memory block into cache, I have to write each word into cache

and then I have to also write each word into the memory and this is an overhead. Instead

of that in a no write allocate policy, I do not bring the cache line at all and. What do I do

is, I directly write those words directly into memory, not bringing the memory block into

cache. So, this helps save overheads. Efficiently implementing stores in write back cache

is more difficult. For a write through cache it is much simpler.

On a write miss what will happen. I will try to write my data into cache, if that cache line

is not the one into which I should be writing, the memory block is different. Then at most

what will happen, I will write in eh on a wrong word and then I will see that this is a

write miss and I would replace the cache and maybe write again. This is not a problem

because the memory is always consistent with the cache. In a write back cache as we said

the cache is not always consistent with the memory.

So, if I write without seeing anything, whether the data in the catch is modified, I have

the problem of or the risk, I have the risk of overwriting some data which has not been

actually written into memory. So, I have the risk that this write. So, I have not checked

whether the data in the cache has been modified or not. So, this word, the dirty bit for the

word is on or not. If the dirty bit for the word is on, this means that this means that this

word has not been written into memory ok. If the dirty bit for the word is on this word

has not been written into memory.

Now if I do not check that and write my data into a write back cache, I have the risk of

overwriting inconsistent data. So, therefore, in write back caches, I first need to check,

whether this is the cache miss, whether this is a write miss or not. If this is a write miss;

that means,  the cache line that I am writing into is not the one corresponding to the

memory block in which I should write, then I should first make the memory and seem.

Ah cache consistent, then replace the cache line and then write it into the proper cache

line  ok.  So, therefore,  implementing  stores  efficiently  in  a write  back cache  is  more

difficult compared to a write through cache.
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 Now we will take a few examples for measuring cache performance. We will do some

small sums to evaluate the performance of cache. To start with that, we will talk about

the components of CPU time. We will first do a simplifying assumption, saying that CPU

time  has  just  two components;  one  is  the  program execution  time  and  this  we will

assume to  include  cache  hit  time,  as  we will  say  that  cache  hit  time  is  part  of  the

processor execution processor executing, processor execution of instructions hm.

We will not take hit time separately and along with that there will be memory stall time,

memory stall cycles mainly due to cache misses. So, the CPU time required to execute a

program will be composed of two components; one is the program execution cycles that

will include cache hit time and memory stall cycles, this will include cache misses. Now

with the simplify with simplifying assumptions, we will say that memory stall time is

equal to memory accesses per program, number of memory accesses per program into

miss rate into miss penalty. So, miss rate is how many miss rate or miss ratio. So, how

many out of the total number of memory accesses what percentage results in misses in

the cache.

So, why we are saying that this is a simplifying assumption. See that we said that reads

are typically lowered in cost with respect to writes, but we have assumed here that for all

memory accesses miss penalty is same. So, in this is the simplifying assumption that we

have done and we can also.  In other  words we can also say memory stall  cycles  as



number  of  instructions  per  program into  number  of  misses  per  instruction  into  miss

penalty.

So, this is the other way of saying how much is the memory stall cycle and the total CPU

time of the program will be program execution cycles per memory stall cycle. Now if we

consider a hit  time,  if  we take hit  time into consideration,  then the average memory

access time will be given by hit time plus miss read into miss penalty. So, we will take

four examples, the first of which is as follows.

(Refer Slide Time: 31:31)

Assume the miss rate of an instruction cache is 2 percent and the miss rate of the data

cache is 4 percent. So, miss rate of the instruction cache is 2 percent and miss rate of that

on the data cache is 4 percent. Here that therefore, we are assuming that we have a split

cache and not a unified cache, we have separate instruction caches and separate, we have

separate instruction cache and separate data cache. If a processor has a CPI of 2 without

any memory stalls right.

So, for a perfect, the perfect CPI without stalls memory stalls and the processor executes

absolutely smoothly, then the CPI is 2. So, cycles per instruction is 2, I require 2 cycles

to execute one instruction, without any memory stalls and the miss penalty is 100 cycles

for all misses, determine how much faster a processor would run with a perfect cache

that never missed. So, assume the frequency of all loads and stores is 36 percent. So, we

have assumed here that loads and stored that is reads and writes have the same penalty



and the frequency of loads and stores is 36 percent out of the total number of instructions

executed.

(Refer Slide Time: 33:03)

So, we proceed by saying that let I be the total number of instructions in a program ok.

So, the number of memory stall cycles due to instruction axis misses. So, I am trying to

access instruction I will miss, how many times, we said that 2 percent the miss, the catch

is  2  percent.  So,  miss  rate  of an instruction  cache  is  2  percent.  So,  2  percent  of  all

instructions result in misses. So, I into 2 percent and for each such, each such miss the

miss penalty is 100 cycles ok. So,. So, what is the total number of memory stall cycles

due to instruction access misses I into 2 percent in 200 equals to 2.0 into i. Number of

memory stall cycles due to data access misses, we said that 36 percent are data accesses,

out of the total number of instructions.

So, I is the total number of instructions out of which 36 percent are data accesses, out of

these data accesses 4 percent are misses and the all such misses take 100 cycles. So, the

memory stall cycles due to data access misses becomes 1.44 into i. So, the total number

of  memory  stalls  composing  both  instruction  access  misses  and  data  access  misses

become 2 into I plus 1.44 into I equals to 3.44 into I.

Thus the total number of cycles per instruction including memory stalls become 2 plus

3.44 equals to 5 points or 4. So, for the perfect CPU, when there are no memory stalls

perfect processing, we have 2 and we have additional 3.44 per instruction 3.44 we have



memory stalls. So, the total number of cycles per instruction become 2 plus 3.4 equals 2

5.44. So, therefore, CPU time with stalls divided by CPU time with perfect cache is 5.44

by 2 equals to 2.72, this is what was required.

So, the question was how much faster a processor would run with a perfect cache that

never missed. So, how much faster would it run? it would run 2.72times faster than a

than a processor which misses at this rate, in as shown in this example.

(Refer Slide Time: 35:54)

Example 2 we the same instruction will now see what happens when we make the CPU

faster, we will see we will see that the effect of memory stalls become more pronounced.

So, we have now made the processor faster and the CPU has, CPI has been reduced from

1 to 2. So, reduce to 1 from 2. So, therefore, now I take only 1 cycle per instructions.

Previously I took 2 cycles per instruction. So, the total number of cycles per instruction

including memory stalls will now become 1 plus 3.44 equals to 4.44 ok.

So, there is a mistake in this slide, this 5.44 will be 4.44 in the first line. The system with

perfect cache will therefore, be 4.44 by 1 equals to 4.44 times faster now. So, previously

thus the system with perfect cache was 2.72 times faster. Now the system with perfect

cache will be 4.44 times faster. So, therefore, the effect of memory stalls have become

more so pronounced in this case. The percentage of time spent on memory stalls will rise

from 63 percent; that is 3.44 by 5.44.



So, the percentage of time spent on memory stalls. So, 3.44 out of the total of 5.44, I wait

for memory, I wait on memory stalls right. So, 63 percent of the time I wait on memory

stalls. Now when the CPU, when the CPI becomes faster, when the machine becomes

faster the CPI reduces, then the effect of memory stall becomes more pronounced. So,

now, this ratio increases to 3.44 divided by 4.44 and which is 73 percent of the total time.

So, now in the in the faster process processor I will wait 73 percent time on memory

stalls.

(Refer Slide Time: 38:15)

Now, we come to the third example,  what  we have to  do is  the following.  Find the

average memory access time of a processor, average memory access time of a processor

with 1 nanosecond clock cycle time a miss penalty of 20 cycles a miss rate of 0.05

misses per instruction and a cache access time including hit detection of 1 clock cycle.

So, we assume that read and write miss penalties are same again in this case. So, as we

said before the average memory access time which we also called AMAT in short is hit

time plus miss rate into miss penalty.

So, we said that the hit time is 1 clock cycle. My clock cycle length is 1 nano second and

my hit time is 1 clock cycle, cache access time including hit detection is 1 clock cycle

and our my miss rate is 0.05 so. So, now, out of 100 instructions, out of 100 instructions

only 5 instructions miss and each such miss causes a penalty of 20 cycles. So, the total

miss  penalty  becomes  2  cycles  which  is  2  nanoseconds.  So,  then  sorry  the  average



memory access time AMAT becomes 2 cycles or ah; that means, 2 nanoseconds, because

1 cycle is 1 nanosecond in length the last example, we will take is the following.

(Refer Slide Time: 39:59)

The memory access time is 1 nanosecond for our read operation with a hit in the cache.

So, for a read operation when I have a hit in the cache, I take 1 nanosecond memory

access time. Memory access time is 5 nanoseconds for a read operation with a miss in the

cache. Memory access time is 2 nanoseconds for the write operation with a hit in the

cache and memory access time is 10 nanoseconds for a write operation with a miss in the

cache.

Execution of a sequence of instructions involves 100 instruction fetch cycles, 60 memory

operands of memory operand read operations and 40 memory operand write operations.

So, instruction fetch cycles are how many 100, memory operand read operations are 60

and memory operand write operations are 40. The cache hit ratio is 0.9. So; that means,

90 percent of the times I have a cache hit, 10 percent of the times I have a cache miss and

in those times I have to go into the memory.

So, now, I have to find out the average memory access time in nanoseconds in executing

the sequence of instructions. So, the time taken for 100 instruction fetch cycles. So, each

instruction fetch cycle is a read write. So, for 100 instruction fetch cycles I have 100 into

0.9 into 1.  So,  one is  the,  one is  the time required to  get  the get  a memory get  an



instruction when there is a cache hit ok. So, and 5 is the time required when there is a

cache miss.

So, the total time that will be required for 100 instructions is given by 100 into 0.9 into 1

plus  0.1  into  5.  So,  1  minus  0.9  is  the  miss  rate,  for  the  cache  and this  gives  140

nanoseconds. So, one corresponds to time taken for read when there is a cache hit, 5

corresponds to time taken for read when there is a cache miss and 0.9 is the cache hit

rate. So, 1 minus 0.9 which is 0.1 is the cache miss rate.

(Refer Slide Time: 42:47)

 Now similarly time taken for 60 memory operand read operations  also becomes 60

memory operand reads, 0.9 is a hit rate cache hit rate, one is the read, one is the read

time,  1  nanosecond,  0.1  is  the  miss  rate  and  5  is  the  miss  time.  So,  total  of  84

nanoseconds  for  60  memory  operand  read  operations.  So,  100  instruction  fetch

operations. So, instruction read operations take 140 nanoseconds, 60 memory operand

read  operations  take  84  nanoseconds.  Time  taken  for  the  40  memory  operand  write

operations will be a bit different.

So, it will be 40 0.9 is the hit rate in cache, 2 is the, 2 is what 2 nanoseconds is the time

taken for a write operation when there is a hit. So, 2 nanoseconds it is the time taken for

a write operation when there is a hit in cache. So, 40 into 0.9 into 2 nanoseconds plus 40

into 0.1 into 10 nanoseconds, 10 nanoseconds is the time taken when there is a miss in

cache.



So, therefore, the total time taken for 40 memory operand write operations become 100

and 12 nanoseconds, 2 nanoseconds 2 a 2 2 2 corresponds to time taken for write when

there is a cache hit, 10 corresponds to time taken to write when there is a cache miss.

(Refer Slide Time: 44:32)

So, total memory access time taken for the 100 plus 60 plus 40. So, 200 total memory

operations. So, what is the total memory access time for these 200 memory operations;

140  plus  84  plus  100  and  12  nanoseconds  equals  to  336  nanoseconds.  So,  average

memory  access  time  in  executing  the  sequence  of  instructions  is  336  nanoseconds

divided by 200 equals to 1.68 nanoseconds. So, this is the average memory access time,

this is this is the total memory access time over 200 instructions. So, the average memory

access time becomes 336 divided by 200 and this is 1.68 nanoseconds for each memory

access time on average.

With this we come to the end of this lecture.


