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Unit  1  part  2:  We ended part  1  of  unit  1  by saying that  we have  different  memory

technologies which vary in terms of their access times and cost per GB. For example, we

said that SRAMs are very fast and its speed is about one 0.5 to 2.5 nanoseconds, its

access time; that means, it is on an average about one-tenth as fast as the processor ok.

However, the cost per GB of this type of memories is also very huge. The cost per GB is

about 2000 dollars to 5000 dollars.

Then we have DRAMs which are about 150 to 100 times slower than SRAMs; that

means, to bring a certain amount of data a data unit a word from DRAM the processor

will  require  about  hundreds of  processor cycles  to  do so.  The speed of  a  DRAM is

typically in the range of 50 to 70 nanoseconds; that is the access time is in the range of

50 to 70 nanoseconds. But, it is also about hundred times cheaper than SDRAMs. So, the

typical cost of DRAM units range in between 20 dollars to 75 dollars per GB.



Magnetic  disks  or  hard  disks  are  far  more  cheaper;  about  1000  times  cheaper  than

DRAMs being only about 0.2 to 2 dollars per GB. However, it is also about 1000 times

100 times, 100-2000 times slower than DRAM units. Its access times ranges in between

5 to 20 milliseconds. So, to bring a data word from the hard disk, the processor required

tens of thousands of processor cycles.
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So, to achieve the best performance what would we desire? We would desire a very large

capacity memory which can hold all our programs and data and which works at the pace

of the processor. That means, if a processor requires a memory word in one cycle it is

available in the processor from memory in the next cycle itself. However, in practice we

saw the cost and performance parameters and it is difficult to achieve. So, to achieve the

greatest performance memory should be able to keep pace with the processor. It is not

desirable to wait for instruction slash operands when the processor executes instructions.

And hence we would like to use the fastest available memory technology. We also need a

large capacity memory to hold all our required information.

However, the cost of memory must be reasonable with respect  to other components.

Hence we understand that we have a design trade off. So, although the faster memories

the mem although SRAMs are very fast in terms of access time, they are also very costly.

The solution  is  to  have memory hierarchy where smaller  more  expensive  and faster

memories are supplemented by larger, cheaper and slower memories.
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Therefore, we have registers in the processor we typically have a few dozens of these

registers and registers operate at the same speed as that of the processor. However, they

are very expensive and we cannot have a large number of registers in the processor. Next

in the hierarchy is cache. As I told it is about one tenth as fast as the processor speed;

however, it  is also very costly. Then we have the main memory which is a which is

slower than cache memory about hundreds of times slower than the processor speed and;

however, its cost is cheaper than that of the cache. We have magnetic disks which are

much cheaper than the main memory. However, its access times are also much slower

and so on.

So, as we go down the hierarchy we have decreasing cost per GB, increasing capacity

because it is cheaper we can have more capacity, more amount of that memory. We, but

we also have increasing access times as we go down the hierarchy memories become

slower. And we have decreasing frequency of access based on and this phenomenon that

we have that we are able to have decreasing frequency of access towards in memories

which are down the hierarchy is based on the principle of the locality of reference.



(Refer Slide Time: 06:00)

Principle of the locality of reference is based on the fact that programs tend to access

data and instructions and data in clusters, in the vicinity in the near vicinity at a of a

given memory location. So, programs access a small portion of memory at a given time.

Why? Because programs typically contain a large number of loops and subroutines, and

within a loop order subroutine a small set of instructions are repeatedly accessed. These

instructions again tend to access data in clusters. So, there are two distinct principles in

the locality  of reference.  Temporal locality  which says that  items access recently are

likely to be accessed again. For example, the instructions within a loop.

So, if the instructions within in one iteration of the loop will be again accessed in the

next iteration of the loop. And special locality in items near those access recently are

likely to be accessed soon; for example, sequential access of data from an array. So, if

you have a big array we tend to access data one by one from the array in sequence. So,

how do how does this locality how does this principle of the locality of reference helps to

maintain this hierarchical memory organization.
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So, principle of locality makes hierarchical organization of memory possible. So, how

can  we do that?  For  example,  we can  store  everything  we stored  everything  in  the

magnetic disk. And then we copy recently accessed and nearby data in a small DRAM

memory or the main memory. So, the main memory uses this technology of DRAM from

the disk.

So,  we  have  the  magnetic  disk  which  stores  everything  and  whatever  we  require

currently we access, we access it and store it in a DRAM or the main memory. Then

whatever is still  more recently accessed data and instructions are stored in an SRAM

memory which is cache from the DRAM.
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Cache memory: So now we begin our discussion on cache memory. So, cache memory

as  we said is  based on the SRAM memory technology. It  is  a  small  amount  of fast

memory which sits between the main memory and the CPU and it may be located within

the CPU chip or a separate modules which are plugged in on the motherboard. So, when

the processor attempts to read a memory word from the main memory, it what does it do?

It places the address of the memory word from where on the address bus. Then what is

done? A check is made to determine if the word is in cache. If the word is in cache we

have a cache hit otherwise we suffered a catch miss. What is the hit time? The time to

access a memory word in memory word in case of a hit is the hit time. So, fraction of

memory accesses resulting in hits is called the hit ratio or the hit rate and is defined as

number of cache hits over a certain given number of accesses on the memory.

Miss ratio or miss rate is; obviously, 1 minus the hit ratio. In case of a cache miss a block

of memory consisting of a fixed number of words is read into the cache and then the

word is delivered to the processor. A block of memory is fetched instead of only the

requested memory word to take advantage of the locality of reference. Future references

may access other words in the block ok. A block of data is fetched instead of only the

requested memory word to take advantage of the locality of reference because future

references  may access other words in the block.  And in that  case when those future

references are made we will have a cache hit. Miss penalty the time to replace a cache

block and delivered requested word to the processor is known as miss penalty.
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So, here in the figure on the left we see that CPU asks for a word from memory and if

that word is present in cache, we send it back to the CPU and this is word transfer. If this

word is not present in cache we have a cache miss and then we fetch a block from main

memory and this  block contains  the desired word also.  So,  between cache and main

memory we have block transfer whereas, between CPU and cache we have word transfer.

The figure on the right shows that we may have different levels of cache not only a

single level of cache.

So, we have CPU followed by followed by a small a small very fast cache, followed by a

level 2 cache which is lower than level one cache, but is also higher in capacity. We also

may have level 3 cache which is higher in capacity than level 2 cache, but is also slower

and then finally, we have the main memory.
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Let us assume that we have an n bit address bus. Therefore, we have a main memory

consisting of 2 to the power n addressable words. For the purpose of mapping the main

memory is considered to consist  of M equals to 2 to the power n by K fixed length

blocks of K words each. So, we have a main memory which consists of 2 to the power n

words or bytes and a block consisting of K words or bytes each. And each so the number

of  blocks  we have in  main memory is  given by 2 to  the power n by K.  The cache

contains capital M blocks called lines. Each line contains K words same as the same as

the block size plus a few tag bits and a valid bit.

The length of a line not including the tag and valid bit is the line size. The number of

lines in cache is much less than the main memory block size; that is small m is much

much less than capital  M. The tag identifies which particular  main memory block is

currently in a line; so therefore, right. The valid bit indicates whether the line has been

modified since being loaded in cache.
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Since, small m is much much less than capital M; that is the number of lines in cache is

much much less than the number of blocks in the main memory we need a mechanism

for mapping main memory blocks to cache lines. Therefore, we have a mapping function.

The simplest mapping function is called direct mapping. In this each main memory block

may be mapped to a single unique cache line and the mapping function is given by i

equals to j modular m; where i is the cache line number, j is the main memory block

number and m is the number of cache lines.

So, in this example that we the figure that we have at the bottom the cache has 8 lines

and the main memory has 16 blocks. And we see that blocks 0 and block number 16,

block number 0 and blocks number 16 maps both map to cache line number 0. Similarly,

block number 15 as well as block number similarly block number 7 and block number 15

both map to line number 7.
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For the purposes of cache access, when we want to read the cache, each main memory

address may be viewed as consisting of s plus w bits ok. So, we have a main memory

consisting of s plus w bits. So, here this is s and this is w. Each main memory address

may be viewed as consisting of s plus w bits. In which the w LSBs, the least significant

bits identify a unique word within or byte within a main memory block. The block size is

equal to the line size and we and is and is two to the power w bytes ok. Because the w

LSBs, there are w LSBs, we have 2 to the power w addressable bytes within a block or

line. The s MSBs equals to is the block id, the most significant s bits are the block id. So,

it identifies one of 2 to the power s main memory blocks. Given the size of cache equals

to m equals to 2 to the power r. So, we have let the number of lines in cache equals to m

and this m it is equals to 2 to the power r; r determines the, determines a line number or

the cache index number ok.

So, r bits are used to determine the line number or cache index number. So, s minus r bits

or the MSBs s minus r MSBs of the main memory address gives the size of the tag field.

And thus the main memory address has 3 parts; the tag field which is the s minus r

MSBs, the next r bits identify a line in cache and the least significant w bits identify a

word in the main memory.
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So, this figure shows the organization of a direct mapped cache. We see that the memory

address consists of s plus w bits. The tag is s minus r bits long. The cache line index, the

cache index the cache is indexed by an r length r bit length quantity and the each word

within a particular block or line is identified by the by this word offset here by this word

offset ok.

So, to identify whether a particular a particular line is in cache or not what do we do? We

first match the; we first come to the line. We come to the line which is identified by

identified by these r bits and then we compare the tag field. This is the tag field within

the  cache,  we  compare  the  tag  field  with  the  s  minus  r  main  memory  bits.  If  this

comparison says is if this comparison is 1, we have a match and a hit in cache. When we

have a hit in cache, we read the word we read the corresponding word in the cache and

we retrieve it ok.

So, the corresponding word is identified by these least significant w bits. And so, this

identifies which word within this block or line which word within this line is in cache ok.

Now if there is a miss; that means, the tag in the in the particular cache line in the tag in

that particular cache line does not match with the main memory address tag; that is these

s minus r when we have a mismatch here, we have a cache miss and then we go to the

main memory. We go to the main memory and find the particular block in main memory

containing the word and then retrieve it into the cache.
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Now we take an example of a very simple example of a direct mapped cache. For this

cache we only have 8 blocks or 8 lines in the cache. We have 1 word per block so every

word is a block. We have a direct mapped cache and the initial state is all blank. So, we

see that all the valid bits are N; that means, nothing has been accessed, the tag field is

empty, data is empty and there is nothing in the cache basically. And we have let us say

we have the sequence of memory accesses 22, 26, 16, 3, 16, 18.

(Refer Slide Time: 20:36)



So, when the first  address 22 is  accessed,  the corresponding binary address of 22 is

10110. We have 8 lines in cache. So, the least 3 significant bits identify the cache line,

the 2 most significant bits become the tag bits. We have a miss in cache because the

cache is initially empty. We would retrieve the, we retrieve the cache we retrieve it from

the main memory and put it at line put it at line 110 and the tag is 10 as we see. So, when

the  next  address  26  is  accessed,  we  again  have  a  miss.  The  corresponding  binary

addresses is the corresponding binary address is 010. So, we put it at line 010 with the

tag 11 which is the most 2 significant bits right and we take it from memory and put it in

this cache line.

 Next 3 memory accesses we access first we access 16. So, the line index is 000, the tag

field is 10, we have a miss in cache right we have a miss in cache and we put it back into

the memory. Next we access 3. So, the line number is 011, we again have a miss in cache

and the tag is 00. Next we access 16 again.
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Now, 16 is already there in the cache, 16 is already there in the cache. We have a hit, we

have a hit right after that when we access 18 we see that the line is 010. So, when we

have 010 we already had 010 which is 26, 26 previously in this position we had we had

010; that means, the tag was 11, there was a mismatch in the tag. And therefore, there

was  a  miss.  There  was  a  mismatch  in  the  tag  and therefore,  there  was  a  miss.  We



replaced the cache block 26 with 18 and put it back into the cache with the new tag and

word.
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We come to a second example: given, a 16 KB direct mapped cache, having 4-word

blocks with word size being 32 bits. A byte addressable main memory having 32 bit

addresses we need to find the total actual number of bits in the cache. The first important

thing to remember here is that line size is given by the number of words in each cache

line. However, the number of bits in each line is given by the word itself along with the

number of bits represented by the tag as well as the valid bit.
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So firstly, the number of words in the cache is given by in the in this in the in the 16 KB

cache is 4K. Why? Because each word is 32 bits, so we have a 4 byte word and we have

a 16 KB cache. So, we have 4K words in the cache. Line size equals to 4 words. So, each

line contains 4 words; that means 2 to the power 2 words. So, w in this case is given by

is 4 bits long. So, number of lines in the cache is given by the number of words divided

by the number the number of words divided by the number of words in each line. So,

total number of words divided by the number of words in each line, therefore, it is equal

to 2 to the power twelve divided by 2 equals to the power 10. So, in our case we need 10

bits to address each line in the cache.

Number of blocks in main memory is given by 32. So, at the total number of blocks in

main memory this total number of words in main memory is 2 to the power 32. Each

block each block contains 2 to the power 4, 2 to the power 4 bytes. So, the number of

blocks in main memory is equal to the total number of bytes divided by the number of

bytes in each block and that is equals to 2 to the power 32 divided by 2 to the power 4

equals 2 to the power 28. So, therefore, we have s equals 2 to the power s is given by 2 to

the power sorry 28 bits because we have 2 to the power 28 blocks in main memory.

Therefore, the number of tag, so the number of tag bits in each line is s minus r equals to

28 minus 10 equals to 18 ok.
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Now, each line therefore,  contains 4 into 32 bits of data.  So, we have 4 words each

containing 32 bits. So, we have 4 in to 32 bits of data plus we have 18 tag bits plus 1

valid bit. So, we have one 47 bits of data in each line. So, the total number of bits in the 2

to the power 10 available lines is given by 2 to the power 10 into 147 equals to 147K bits

equals to 18.4 kilobytes. Hence for this cache the total actual number of bits in cache

which is 18.4KB is about 1.5 times as many bits needed for data storage which is 16

kilobytes.
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 Now we take a third example: Consider a cache with 64 blocks and a block size of 16

bytes. To what line number does byte address 1200 map? So, the main memory block

number in which byte 1200 belongs is given by 1200 divided by 16. Why? We have 16

bytes in each block and the block id is 1200. So, to which block number will this is will

this byte 1200 belong it is given by 1200 divided by 16 which is 75.

Now, therefore, the cache line number is given by 75 modulo 64. Why because we have

64 lines in the cache. So, blocks have been mistakenly said we have 64 lines in the cache

and therefore, the cache line number is given by 75 modulo 64 which is 11. So, this 75th

block  of  the  main  memory  or  this  11th  line  in  the  cache  will  contain  all  addresses

between 1200 and between 1200 and 1215. The line in the cache may so, the 75th block

rather of the main memory will contain 1200 to 1215 addresses.
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As a fourth and last example we take the example of a real word processor which uses

direct  mapped cache.  So,  we take  the example  of  in  Intrinsity  FastMATH processor

which is  a fast  embedded processor based on MIPS architecture.  The direct  mapped

cache organization of this of this processor is shown in the figure here. So, the cache uses

separate 16 KB instruction and data caches there is the mem the organization has 16 KB

instruction and data caches separate. We have 32 bits per word. So, therefore, we have 4

byte words. We have 4Kwords in the cache and we have 16 word lines. So, each line

contains 16 words. So, line size is 64 bytes. So, 16 words, each containing 4 bytes is 64



bytes and 64 bytes or 512 bits. We have a 8 bit wide line index. So, therefore, we have

256 lines in the cache. We have a 18 bit wide tag field. So, 2 to the power 18 possible

blocks can map to each cache line ok.

So, we have 2 to the power 18 possible blocks that can map to each cache line. What are

the  steps  to  further  read  request  on  this?  We send  the  address  to  cache,  either  the

instruction cache or the data cache. Addresses are sent from the PC for the instruction

cache and from the ALU for the data cache. On a hit, that means, the tag bits and valid

bits match the tag bits and the valid bits match. On a hit when we have the tag bits and

the valid bits matching, the data is made available on the data lines. We have 16 words

per line; that means, a line offset 16 words per line.

So, we need to identify which word in the line is required. So, what we have? We have a

line offset which is used to select which word in the line is desired by the memory. So,

this line offset is used as a selector in a 16 cross 1 mux and we have a 4 bit line access

because we have 16 words in the line. And based on this selection mechanism from the

mux we get the required data.
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With this we come to the end of this unit the summary. In summary what we studied in

the unit is as follows. A main memory cell is capable of storing 1-bit of information. A

number of memory cells are organized in the form of a matrix to form the memory chip,

Register, cache memory and main memory are referred to as internal or inboard memory.



These are semiconductor memories. They may be volatile, for example, for caches and

RAMs or non-volatile  in case of ROM. Magnetic disk removable media etcetera are

external memories. They are non-volatile.
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Instruction slash data in localized area of a program tends to exhibit clustered access

patterns at any given time. This phenomenon is referred to as the locality of reference.

The total execution time can be significantly reduced by using a fast cache. So, the total

execution time of a program can be significantly reduced by using a fast cache memory

to hold active segments of a program which is called the working set in OS parlance.

So, basically, because the memory is slower than the processor, we can to make things

faster the processor has to wait for data to come from the memory to make things faster

we can put a fast cache, which will hold active segments of the memory. We can only

hold the active segment or not the whole program because this fast cache memory is very

expensive and we cannot have a very large cache. Also when the when the size of the

memory tends to grow the access times also tend to grow.

When a read request is received from the CPU, the contents of a block of main memory

are transferred to the cache which includes the desired word. When and we were and we

bring a block instead of a single word from the main memory to take advantage of the

locality of reference. Due to which subsequent accesses may be near the vicinity of this

memory word and therefore, subsequent accesses may result in hits. When any of the



words in  this  block is  referenced  by the  program subsequently  its  contents  are  read

directly from the cache and this is called cache hit.
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On the  other  hand,  if  the  word specified  is  not  present  in  a  cache,  a  cache  miss  is

encountered and the corresponding block is loaded from the main into the cache. The

correspondence between the main memory blocks and those of the cache is specified by

means of a mapping function. This mapping function is used to transfer the block from

main memory to cache memory. Direct mapping is the simplest. In this each memory

block can only be mapped to a unique line in the cache. There are other more complex

forms of mapping as fully associative mapping and set associative mapping which we

will study later.

With this we end the unit 1 of the module memory system.


