
Computer Organization and Architecture A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Unit – 2
Control Unit
Lecture - 16

Control Signals and Timing Sequence

Hello, and welcome to the second unit on control signals and timing sequence, which is

the second unit on the module on control block of the CPU. So, in the last unit, basically

we chose the first unit on the control unit module, we have discussed that basically how

for a given set of instructions, what are the microinstructions involved in executing that

macro instruction, and what are the basic kind of control signals required to do it. And

we  got  a  very  broad  idea  that  how  these  macro  instructions  are  broken  down into

microinstructions and they are executed.

Basically  in  today’s  module,  now  we  will  see  basically  for  given  is  each  of  the

microinstructions, what are the control signals required, exactly which block of the CPU

generate  those  signals,  and  what  are  the  timing  sequence  for  that.  And  we  will  be

understanding  that  in  a  more  depth  or  a  more  what  do I  say that  more  in  a  digital

fundamental manner in which digital design fundamentals using timing diagrams which

signals are generated by which blocks, what are the inputs to the registers in that manner.

So, in fact, today we will see how microinstructions are basically executed, what are the

control signals in terms of digital design, and what are the timing involved, you will

understand the timing sequence using timing diagrams.



(Refer Slide Time: 01:44)

So, if you look at it today, we are in the second unit of this module, which is on control

signals and the timing.

(Refer Slide Time: 01:46)

So, as we are going in a pedagogical manner, so for a pedagogical form, so let us first

look at  the unit  summary. So, basically  we already discussed that  the control unit  is

responsible  mainly  for  generating  the  signals  for  data  flow within the CPU, there is

internal to the CPU data transfer, data transfer between the CPU and the memory or the

IO devices.  So,  basically  in  this  unit,  we will  be  covering  what  type  of  signals  are



required to do that and mainly we will be taking a very simple architecture that is a

single bus architecture.

Also we will see that how basically the different functions of the arithmetic and logic

block like whether it to be added, to subtract to, go for a chip, how signals are generated

at  by the instruction  register, and how ALU is controlled  by that.  Then we will  see

basically we will also see in a black box manner that what is the control unit, what are

the inputs it takes from, it take basically input from the flag registers, it will also take

inputs from the opcode that is from the instruction register. If you take an instruction

which is  noted in the instruction register  basically  the Opcode decides  that  what the

functionality now the CPU or the control unit has to do. So, basically the control unit

will take some inputs from the flags.

It also because for example if you have a jump instruction, so you need to know what are

the previous values of the flags. So, it has to read the values of the flags. Then you will

also see basically that of the main heart of the control unit to function is the input from

the operations that are required to be performed by the opcode of the instructions. And

also we need some other of inputs to do some functionalities like the control signals

which will be coming from the may be the memory, but because it when you are sending

a data to the memory or receiving the data from the memory. There is a handshaking

signal involved which will actually the signals will be coming from the memory block to

the actually your bus.

So, basically if you look at it, we will see what are the inputs and outputs of the control

unit and what the output manner, where the data comes from and the basic formats will

be looking into. Then also as I told you this was the inputs. Also we will be looking at

the outputs of the control unit  actually that generates signals which will  instruct that

where the data has to move from whether it is from one register to another or whether the

data has to go from memory to ALU or vice versa. 

So, we will see basically what are the outputs of the control units, and how it basically

determines the function will be like whether there should be an addition, whether there

should  be  a  data  transfer  between  memory  to  register,  or  from  register  to  register

etcetera. So, we will study the input output functionality and the signals involved in a

controlling that is one of the main part we will study.



(Refer Slide Time: 04:17)

Then basically we will see, what are the very important chunks of signals for that? Of

course, very important chunks of signals will be as I told you the instruction register.

Instruction  register  which  will  consist  of  the  instruction  is  the  main  heart  that  will

actually command the control unit that this is the opcode of the instruction now you have

to do this,  for example add.  So, the opcode for the add, which will  represent  in the

instruction register will ask the control unit to generates the signal, so that the ALU goes

to the addition mode. So, in fact, so the in instruction register is a main command mode

for the control unit.

Then of course, as I told you that if you have to use a jump instruction or sometimes you

have to use the values of the flags, which was said by some other old earlier instructions

may also decide on the functionality of the control unit that is for example, if you want to

jump  on  a  zero.  So,  you  have  to  also  look  at  what  are  the  results  of  the  previous

instructions. So, the flags are also very important source of signals control signals as

input to the control unit.

Of course, then there is something called the control bus because not only from the flags

and the instructional  registers  also the control  unit  will  depends on signals from the

memory from some I O devices etcetera. So, the control bus basically will take care of

all this. So, it will shift the different signals from other than the central processing unit

like memory I O devices and the control unit has to act on that. For example, if you want



to interface with a keyboard, when the keyboard is ready to send a signal or ready to then

only the memory will be reading your data from the keyboard so in fact the control bus

will take care of that.

And finally, there is a clock which is actually the whole synchronization part of the entire

control unit or the central processing unit. So, basically as we know it synchronizes all

the modules in the control unit, and in fact we assume that you know in one clock pulse

one microinstruction is occurred or I can be processed.

(Refer Slide Time: 06:06)

Then basically we say that if you want to chunk out that what are the two different basic

classification of the signals the out these were all about the input signals like instruction

register flag and control bus. So, what happens actually your control unit basically takes

signals from the clock, instruction register then your opcode that is your I mean is I mean

basically it takes signals as I told you from the clock instruction registers which is the

main flag and control bus.

Using that, it basically generates an output signals. So, output signals can be classified in

two types control signals which are inside the CPU like for example, you want to ADD

two numbers. So, the ALU has to be commanded. So, data transfer from so you can

select the specific ALU function for the current micro operation like ADD. So, on fact, it

was saying that specific ALU function. So, in that case the control unit will generate



some signals which are required only for the ALU to function. So, it is an internal control

unit signal.

Similarly, if  you want  to  transfer  some data  register  from data  from one register  to

another, so you need not send any control signal outside a control unit. So, basically this

is some kind of internal control signals. Of course, the control unit will also generate

some controls for the external parts like your memory, your IO modules. For example, as

I told you that you want to write something to the memory, you give some address and

then you give the data, but they may have to wait then the memory said that I have

already read the data, now I am free because reading the data from the memory buffer

register takes some time.

So, in that case, there will be some control signals like it has to be generated saying that

you start the read, the read signal then sometimes it has to wait till the memory has done

the operation. So, basically some of the control signals will be generated which will go to

outside the control unit like to the memory to the IO modules in that case they are drawn

through a to the control bus. 

Because when the control  signals are internal  to the CPU then or sorry in terms the

control unit or the mainly the CPU when the signals generated by the control unit and

reserved only for the CPU that you did not go to memory etcetera then they are internal.

But if you are going outside the CPU, then you have to talk to memory you have to talk

to other IO modules etcetera. So, in that case we go through a control bus. So, inputs

here. So, basically that is the input output organization in terms of our control unit.



(Refer Slide Time: 08:12)

So, what are the basic objectives of this small unit, basically you will be able to first is

the knowledge objective, you will be able to describe the different categories of input

and output signals of the control unit. That if you take a black box of the control unit,

then you have to take you will be able to tell which are the inputs and the outputs. Makes

the  comprehension  objective,  you  will  be  able  to  indicate  the  control  signals  to

synchronize the speed of the memory module and the processor that is how basically our

clock occurs on basis of the clock, how basically are the control signals are generated or

taken  as  input  by  the  controller.  So,  you will  able  to  indicate  the  use  of  clock  and

synchronization.

Finally, the synthesis objective you will be able to design timing sequence to carry out

proper micro operations at an appropriate time. That is you will be able to design micro

operations  and  in  fact,  you  will  be  able  to  design  at  the  granular  level  that  for

functionality or what signals will generate or what signals to expect as the input or output

at appropriate exact timing of the clock. That means, you will be able to represent or

design microinstructions in terms of timing diagrams so that is about the basic objectives

of this do it.



(Refer Slide Time: 09:14)

Now, as I was saying we are coming to the basic idea of the unit, we are saying the

general  model  of a controlling me. So, these are control  unit  which will  be actually

which will be your new central processing unit. It will actually do all the commands of

the arithmetic logic unit, to the registers, to the cache memory etcetera. So, basically this

is your control unit which will take care of all the points. So, the inputs as I told you is a

clock,  the  clock is  the  synchronization,  everything will  be  synchronized  in  terms  of

clock. As I told you there will be flags we have already know they the zero flag, non zero

flag, carry flag etcetera. So, they will also be input to the control units.

Now what are the why is flag so important because I told you if you have the instruction

say here call jump on z. So, in fact, say that is the instruction register will have the

instruction called jump on z. Now, the instruction register for jump on there is an off

code say for example, the opcode is 1 1 1 in this case. So, this input signal 111 to the

control  unit  will  specify  that  it  is  a  jump  control  jump  instruction,  this  is  not  an

unconditional jump is a conditional jump. 

So, this input from the instruction register that is the opcode part, because we assume

that the jump instruction jump on zero to some memory location is already loaded in the

instruction register, the opcode corresponding to that will generate the opcode which will

actually control unit, it is an input to the control unit telling it what to do. So, this is an

obvious input to the control unit that is the opcode for the current instruction. And in



fact, that is the heart that heart of the inputs to the control unit because that tells you what

to do now.

Now, the flags, now as I told you is a jump instruction. So, you want to know previously

what was my input or what exactly was the operation done whether if I have subjected to

number, whether the answer was a 0; if it is again then I will jump other I otherwise I

will  just  go  to  the  next  instruction.  So,  the  zero  flag  has  to  be  set  if  the  previous

abstraction  operation  resulted  in  zero  operation  or  any  operation  resulted  in  a  zero

operation.  So, if the zero flag is said that signal will be sent zero over here, and the

control unit will know that jump on zero is 1 1 1 that is the off code, and of course, zero

flag was set that means in fact, it was 1. Sorry I mean it said because the answer was 0,

so zero flag is set.

And accordingly whatever you want to do such signals will be generated by the CPU like

for example,  in this case you are saying there jump on 00 to 30 30. So, in fact,  the

program counter will be now loaded with say 30 30, the program counter will be loaded

with the operation 30 30. And you already know that program counter is a register which

is the internal to the CPU. 

So, in that case the control signals will be generated within the CPU. Now, the program

counter will be loaded with the value of 3030. So, the control signals generated by the

control unit will generate the signals which is internal to the central processing unit, it

will be something like it will configure the program counter in a load mode and we load

it with 30 30. So, in that case simply your next instruction will start from 30 30 memory

location.



(Refer Slide Time: 12:09)

If you take a another instruction let  us assume that is a simple ADD operation ADD

operation ADD say we call it 30 30 from the memory location you have to load 30 30.

So, in that case what happen maybe the off code of ADD is 001. So, in this case, the 001

will be fed from the instruction register three control unit. In that case flag is not required

because you are just doing for an ADD and you have to load from memory location 30

30. So, it  will  first  generate  some input signals to the CPU that the ALU has to be

configured to ADD mode fine, then you have to read some data from 30 30.

Now, it will generate some data 30 30 which will be fed to memory address register

because you have to read from memory location 30 30 which is be fed to the memory

address register. They are now all  internal  CPU instructions,  but actually  if  you also

generate a signal called read because you have to read from the memory of course, then

you have also put the memory address of 30 30 in the memory address register all those

things  are  there  like  what  memory  address  is  an  internal  register  CPU.  So,  it  is  an

internal signal you have to load memory address register with 30 30.

But you have to make the signal to the memory saying there is a read signal. So, it will

some generate some signal to the control bus, which will actually ask the memory saying

that  now we have to go to a read mode. Of course,  after  that,  what will  happen the

memory will dump the value of 30 30 in the memory buffer register. Now, what happens

now you have to wait for certain time till when the memory will load the value of 30 30



the whatever is minimal to 30 30 memory buffer register; till that time the control unit

has to wait because immediately it cannot read the memory buffer it takes some time. 

You are giving the 30 30 in memory address register, asking the memory in a read mode,

and then you have to wait for some amount of time till which the memory gives the value

whatever is present in 30 30 memory location to the memory buffer register. Once it is

done the memory will give a signal saying that I am done now you can read the memory

buffer register, so that will be a control signal which will be coming from the control bus

and the control unit will read it. Once this is enable then you can read the value from the

memory buffer register which will be again taken by the data bus, it will be going to the

accumulator or and then it will be added.

So, basically in this case you can see there are some signals which are for the internal use

of the CPU, and there are some thickness which is for example, memory or IO which are

for the external use. For such external use we are using the control bus; and for our

internal  use,  there  is  an  internal  bus  of  the  CPU  like  register  transfer,  transferring

considering the arithmetic logic unit etcetera, so that is basically the generic model of a

control unit.

(Refer Slide Time: 14:37)

So, as I was telling now whatever I discussed they are actually written in the text, so that

you can read it. So, they already told you clock is nothing but a synchronization module

as I told you we have not talked anything about the clock over here. But whenever all the



instructions or all these signals are generated they are all either at the positive edge or the

negative edge of the clock means everything has to be synchronized with some clock

edge. 

As I told you instruction register heart of the controlling unit, it tells exactly what to do

say like for example, it is saying load R 1, 32 that means, the whatever is present in the

location 32 has to be loaded in R 1. As I told you, so the op-code corresponding to load

will actually direct the control unit to do that. So, as I told you so it is a heart of the

control.

(Refer Slide Time: 15:22)

There is a flag and I told already explained that flag is very important because you have

to remember what happened previously. Like for example, if there is a sub instruction

and it said the sub R minus 31 may have been 0, so the zero flag has been said, but next

after that you are using a conditional instruction that you should jump if R 1 is equal to

31. That means, whether the value of 31 is equal to the whatever value is in the register R

1 if that is set then you have to say I want to jump to some other location; otherwise I

just want to do not jump I just go to the next location.

So, in this case you have to reuse, you have to read the value of flag. So, of course, the

control signal or the control unit will require the value of flag signals to take a decision.

So, they are also the inputs. And finally, as I told you there are control signals from the



control bus. They are basically which are taken externally compared to the CPU like

from a memory. 

As I told you memory is saying that I have done the right operation with memory buffer

register now you can read, so that signal will be taken from the controller. For example

you want to make the in a read mode or a write mode. So, the control signals will be

given as output in the control bus. So, this is a very important control bus for that like for

example, here is a printing operation etcetera.

(Refer Slide Time: 16:36)

Now, as we are already telling that these are all the inputs. What are the outputs? Already

I have given example that basically the output signals are of two types. Therefore, signals

can be within the processor that is CPU or they can be to the other modules like the

memory or the I O. For example, we are already say for example, there is a instruction

code load R 1, R 2. You can very easily understand that both the registers are in the CPU,

so the control unit will just make R 1 into load mode and R 2 in the output mode.

For example because registers are nothing but this is one set of flip flop which is R 1 and

then another set of flip flop which is R 2 because they are registers. The control unit will

make it in such a fashion, so that this may be Q, I am I just assuming a D flip-flop, this is

D, and this is D, and this is Q. So, it will make in such a fashion, so that the output of all

the D registers of R 2 that is W will be made connected to the input D of the R 1. So, R 1

output will be loaded into R 2 at the clocking. So, simply such connections will be done.



In  fact,  you  digital  fundamentals,  if  you  have  forgot  you  forgotten  you  should  go

understand  go  and  read  about  multifunctional  register  that  means,  a  multifunctional

register can do multiple things in can load from other register, it can load from input, it

can freeze its import, it can go for increment, it can go for shifting. So, you have a multi

function register basically this is a register if it is D, there is a multiplexer over here

which actually do lot of interconnections and then you can set it in the functionality you

require. This is the digital design fundamentals, if you have forgot you can just go and

recollect it.

But in fact, for this load what happens you will connect the multiplexer in such a fashion,

so that the output of R 2 that is q will be connected to d of R 1, so you will note R 1 to

sorry R 2 to R 1. So, in that case in a simple load operation, so the control limit will

generate these signals for the multiplexers of R 1 and R 2. So, as registers are internal to

the CPU, there is nothing no signal to be given to the output in the control bus.

Like for example, if you say that at R 1, 32, in this case, for example, if is a specific

instruction say as I assume that needs an immediate operation that 32 is basically nothing

but you have to ADD R 1 with the absolute value 32 and ADD it. So, in this case also

again if 32 is a memory operation then it will be an external signal, but if I assume 32 be

an immediate operand then you have to ADD R 1 and 32. So, you need not generate any

signal to these control bus only what will happen ADD will be ADD opcode immediate

will  configure  the  ALU to  be  in  the  read  mode  and  then  32 will  be  loaded  to  the

accumulator and you will ADD it.

So, basically for such type of operation like load data transfer within the register, some

immediate mode of addressing, you need not generate any signal from the control unit to

the control bus. Like that example for example, if you say that load R 1, 32 in this case if

as I told you if 32 is not an immediate operand, it is a memory location. So, in this case,

you have to make a control signal read that in the control box you have to say that I want

to read then you have to put 32 in the memory address register, but memory address

register is an internal register, so that will that load command or load signal is an internal

load. But we read which is commanding the memory to be in read mode is an external

signal, so that has to go to the control bus. But when memory address register is loaded

with 32 that is an internal one, but this is redesign external come out to the control bus.



Then after  some time what will  happen the memory will  load the value whatever  is

available in 32 memory buffer registered in that case again the control unit has to read

via the control bus that when the memory has said that I am ready you can read from the

memory buffer unit, so that will be an input. Similarly, if you have connection IO bus;

obviously control signals has to be there from the IO bus for synchronization. 

As I told you for example, if I am using this mouse then when I am making a mouse

click then your control signal will be read from the control bus by the CPU, it will find

out that the mouse click is there then we will  it  will  give command for display. So,

whenever the IO devices involved, memory devices involved, which is out of the CPU

then the control  bus comes into picture  which is  taking signals in  and out  from the

control unit.

(Refer Slide Time: 20:34)

Now, very important thing that is we are going to look at what is the basic architecture of

a single unit bus. So, let me zoom it. So, if you look at it, it is basically again let me

escape. So, if you look at in a broad picture, so this is a single bus. So, in one part of the

bus this side, you can have your, you can assume that there will be an internal bus, there

will be some control buses etcetera, there will be your memory, there will be your IO.

So, all these devices will be there and it is an internal and of course, there can be some

control bus and several other buses which we are at present we are not talking about. So,

internal control bus mean this is this part is basically nothing but your CPU.



And this part is your memory, these parts use your IO devices, this part is your memory

devices and in fact this is a control bus to for the synchronization. Now, what we will do

now initially we look into details on the internals if you bus because for the external

devices when you will be covering entire modules on IO, they will be entire module on

memory, so we will be handling that in details.

So, for example, for the time being let us just look at the details of the internal bus. So,

there are some registers R 1 to R 32, R 64 four how many registers you have. So, if you

want to take from any input from the register from the internal bus, then what actually

have to do you have to make R in enable that is R in equal to 1. If R in is equal to 1,

whatever data is available in the internal processor bus will be fed to R 1. If it is R 1 R 2

we have just drawn it in a single R i, but in fact in the 32 you have to replicate this part in

32 ways. But one very important thing is that so like for example, if I want to get the

value of output of R i to this processor bus, I have to make R i out equal to 1.

(Refer Slide Time: 22:17)

So, what happens see if for example, I have got the value 32 in the bus. Now, what I

want to do I want to read this 32 into R 1, and R 2 and R 3. So, what you have to do R in

one for R 1 has to be made 1, R in 1 for R 2 has to be made 1, and R in 2 for R 3 has to

be made 1. So, in this case all the registers will be enabled in a read mode. So, 32 will go

to R 1, R 2 and R 3 this is fine. 



But be very, very careful that R I out cannot be more than one for any block which is

giving output with resistor. For example, if I say that somehow I make R i out that is R 1

out equal to 1, and R 2 out equal to 1. What will happen the data from register R 1 will

also go to the output and somehow in this case some R 1 will also go to the output R 2

will also go to the output, there will be a contention so that we cannot have.

So, while giving any output to the control unit sorry what output to the internal CPU bus,

we have to be very, very careful that only one register or one ALU or one memory buffer

register etcetera is loading into the internal bus. Multiple parties cannot output at a single

go in the internal CPU bus that is very, very important. Now, who takes care the control

unit, because the control unit will generate the signals R 1 in 1 1, R 2 out equal to 1

something like that. 

Because whether resistor R 1 is going to read or whether this one or whether register R 1

is going to give the output will all depend on the control signals R in and R out, which

will be ended by the control unit. So, contrary very judiciously takes care that, no two

guys, no two registers or not ALU and register not memory buffer or resistor together our

dumps at the same time in the internal bus that is out signal of any register to registers or

one register or a memory buffer register can be one at a time. So, these are all registers

organized in this manner; these are I forgot to draw this.

Now again if I zoom this next part of it. So, you can see that is basically second part is an

ALU. So, either you can get the value from Y, so that is means whatever this is an input

from the control bus sorry it is from the internal bus where you can get the data values.

So, either you can get the data value Y in, so it is a multiplexer in the ALU. So, you can

get one as I told you ALU basically does all the mathematical and logical operation. So,

there are two operands for this. So, one operand basically comes from this CPU bus, and

the operand basically Y is the register, so sometimes you may have to hold the value

temporary.



(Refer Slide Time: 24:51)

Like,  for  example,  if  I  say  that  I  want  to  make  ADD,  I  want  to  go  for  say  ADD

accumulator and 32 immediate. So, in this case, what is going to happen very interesting

simple, so 32 value that is what is seeing that ADD 32 if you see, so it can be fed over

here by this line direct connection because of the controller will set in such a fashion, so

the value of 32 will be loaded over here. The control signals also will make the ALU to

be ADD mode for example, when I am going for going to execute this command ADD

accumulator 32 immediate. 

So, it will be converted to ADD mode by the signal for the signals of the control unit 32

will be loaded in the bus, so you will have the value of 32 over here. But previous value

of activate  one has to be added to this.  So, in fact,  actually  the accumulator  will  be

loaded in the previous cycle value of accumulator will be loaded to Y or in some sense

you can also think that in my case Y is an accumulator. So, basically sometimes this is

what is the idea.

So, in the first go, the value of accumulator will be or if the accumulator has if you have

to note some particular value the accumulator. In first case, you will be loading the value

of  the  accumulator  from  memory  or  some  block  to  Y,  I  am  assuming  A as  an

accumulator. And in the second unit clock, you will actually ADD this accumulator with

32, but now you can see a marks over here, because sometimes we require to ADD some

constants also like program counter. Program counter will be program counter plus 1. So,



in this case, I have kept the value 4, because I am assuming in this figure that assuming

that the number of instruction length is 4, basically I can also say that the sorry I can

make this constant as one.

So, why I am making this constant as one; basically sometimes when I have to increment

the PC. So, in this case what happens I will make the control unit will make marks set as

this  part that is so for example,  if  this was about the ADD, so if I go for a. So, for

example, if I say that I want to go for a PC increment mode. So, in the PC increment

mode, what is going to happen, you have to go for an increment of the PC. So, in this

case I will this is the flow from the accumulator, so in this case I will not go by this path.

So, what I will try to do is that is the constant. So, the multiplexer will be set in such a

fashion by the control unit that this signal will enable this to go to the ALU.

And in fact, so this one will be added. Now, the value of PC, so you are going to add it to

1, and then the PC will be say for example, one because this is the chunk of registers. So,

for the time being assume it to be the PC. So, in this case, what happened you will enable

in such a fashion that this is enable will be 1. So, in this part, now the value of PC will be

there. So, the PC will be connected over here. So, now, it is not 32, it is the value of

program counter, and program counter will be program counter plus 1. So, now, after that

you can dump the value output here, and you can again feed it back. So, again let me

clean the whole picture.

So, now, again what let me do it  in steps? So, what is the first step, the first step is

basically for ADD, actually I go by this configuration that the configuration is this, but

now for PC to be incremented, let us assume this is to be PC.



(Refer Slide Time: 27:58)

So, first we are going to go for PC equal to PC plus 1. So, what you are going to do, for

adding basically we are for adding two numbers or some other operation, we are going to

take this path, but actually for the PC because it is to be incremented by a constant. So,

what we are going we are going to take this path. So, the mux is set in such a fashion. So,

this one this one or constant one in case if the size of the instruction is one, it may be 4, 8

or 2, but in size of the instruction that value will be fed over here, accumulator in plus

mode. So, in this case, we are adding a value of 1, but now it should not be the value 32.

So, it is not the case you should have the value of the PC fed over here. So, what I will

do assuming that this is the PC I will make this PC out equal to one. So, the value of the

PC will be in this bus. So, now, the value of PC is fed over here. And addition is that and

then what happens this is the Z in plus will be made one or in other words this is the path

to control the output of the ALU to the bus. So, now, it is added is PC equal to PC plus 1

is added, and it is now waiting over here. Now, we are it is PC equal to PC plus 1. Now,

after some time what you will do you will actually now it is having the value of PC equal

to PC plus 1, because now the output is fed over here.



(Refer Slide Time: 29:17)

Now, after that what you will do now you will make this as 1, because now PC equal to

PC plus 1. So, now, it will be loading the value of PC and PC will be incremented. So, in

this fashion basically we require a multiplexer for that. So, these are basically if you

want  to  understand  what  happens  basically  in  this  case,  so  this  is  basically  the

architecture single bus. So, we have some registers which have input and output control

that is register can be fed in, register can be fed out from the control bus. 

Similarly, this is an ALU, ALU is also the facility you can load, and also you can write

out  the  value  of  the  ALU  to  the  control  bus.  And  we  are  having  multiplexing

arrangement. So, in one (Refer Time: 29:51) of the multiplexing arrangement, you can

take  some  operand  from  the  control  bus;  and  the  other  operand  is  a  constant  like

increment, increment by one, but some other constant value. So, this is in a nutshell a

very broad idea of a single bus CPU.

So, now we will tell you whatever I have discussed is given in the text, so I am saying

that  for  each register  including the program counter, memory buffer  register  etcetera

there are two signals R in and R out. Basically if R in is 1, the register is going to read

from the bus; if R out equal to one then is going to write into the bus, but you have to be

very very careful that we should not basically enable two R outs at a time then they will

be contention. But there can be multiple R ins.



(Refer Slide Time: 30:35)

For example, if you are saying that move R 1 and R 2 then what will happen basically is

R 2, R 1 is feeding to R 2. So, what is the control unit is going to generate the control

unit is going to generate that R out equal to 1, because R out is going to give the value to

the bus, and R in R 2 register is reading. So, R 2 in should be equal to 1. So, R 2 in is

equal to 1, and R 1 out equal to 1. So, R out R 1 is giving the value the bus, and R is

reading. So, of course, other thing has to be made 0, because R 1 out is equal to in this

first case. So, R 1 out is equal to 1. So, R 1 R 1 in has to be made 0 that is the case. For

example, R 2 is reading, so basically R 2 in is 1 and R 2 out has to be basically set to 0

that is what is very simple logic.



(Refer Slide Time: 31:22)

Now, we will take some more important basic ideas other instructions to make it more

clear. So, we are taking a instruction called move R 1, 32. So, basically what is the steps,

what happens. So, let us assume that this is your control box then what happen then this

is a register R 1. So, as I told you, you can read from the register and also the register can

be making an output this is your control bus. So, either you can read or you can write.

So, in this case, the 32 has to move, in fact, here 32 is a memory location given the

assumption.  So, now, what happens 32 is not an immediate  operand, it  is  a memory

location. So, you have to read the value whatever is available in memory location 32 to

register R 1.

So, of course, register R 1 in should be equal to 1, these we are going to read it and then

basically other steps will follow. So, what are these steps, first step is that the instruction

register should give the command or the microinstructions following that. So, what are

the microinstructions for that? For example, the value of 32 has to be first loaded into the

memory address register, why, because the memory address register is going to give the

value to the memory, and it will say that I want to read the value from 32, and it will

dump the value in memory data register or memory buffer register.

And then finally, what  is  the first  step,  you have to put the value of 32 in memory

register, memory address register make the signal read that is the first signal. Then what

happens then the memory will see the memory address register is 30, whatever value is



memory location 30 will be dump to memory data register or memory buffer register and

you have to wait for some time as I told you this signal is called WMFC. 

Control signal that causes the processor to wait for the MFC signal. And you will have to

wait for some time, when the memory says that I have right written the value what was

the memory location 32 to the memory data register or the memory buffer register it will

become 1 then you know the memory has given the data now everything is stable. Now,

the memory buffer register will dump the value to R 1.

So, these are the three microinstructions. The first microinstruction we lead to basically

loading the value of 32 in the memory address register, second thing it will read the

value in the memory data register, third microinstruction will load the value of memory

location in the R 1. So, what are the steps, let us write down the signals and the registers.

(Refer Slide Time: 33:46)

So, basically let us assume this is a control bus. So, first is the instruction register. As I

told you, it is very, very important; the instruction register is the heart. So, what it will

load, it will load the value of 32 in the memory address register. So, as I told you these

are memory address register - MAR. 

So, in this case, memory address register in will be one and instruction register out will

be equal to 1, because instruction register will  dump the value of 32 to the memory

address register. So, in fact these are the two internal signals that is R out instructional



out equal to 1, so instruction set will dump the value control bus; and memory address

register will in is equal to 1, so it will read the value of 32. Now, the 32 has gone to the

memory address register. These are the two internal control signals.

(Refer Slide Time: 34:31)

Now, next what next we have let say control bus, this is your control bus which is an

external control bus. So, the control unit will generate the value of read to the memory,

because this control bus is connected to the memory, this is the memory which is an

external, but the first two signals are internal, this is an external signal. Now, let us go to

the second signal. So, in the second signal what happens it is saying that now after some

amount of time, the data will come to the memory data register.



(Refer Slide Time: 35:05)

We know that you know already the memory address has been set so some data will be

coming  to  the  memory  data  register  is  an  internal  part  or  a  memory  buffer  register

whatever. So, as the data from memory location 32 is going to come over here this in

signal I have to make it one, these are internal signal. But then if you wait for some

external control bus, you have to wait for some of the signal which is coming from the

memory  that  is  called  wait  for  MFC this  signal  is  MFC we are  waiting  for  MFC.

Whenever MFC is going to be one at that point of time basically already MDR is equal

to one input. So, whenever MFC is equal to 1 then you know that there is a valid data

over here, I have already made it 1.

So, whatever is the memory buffer register is coming over here, but I cannot immediately

read the value in the memory data register, from the memory data register to R 1. I have

to wait for some amount of time. Whenever MFC is 1, which is an external signal then

again the third the micro cycle instruction control signals come up. Now what, so now

basically MDR is already one signal has come. So, now, what is going to happen already

memory data MDR has already read.



(Refer Slide Time: 36:07)

So, now this if this is your MDR it has already read. So, now, init initially it was in was

one because it was reading from the memory, now it has to make it out. So, my memory

data out signal is be 1, so out signal is equal to 1, because already we know that the

memory has dumped the value in the memory data register and it will read to R 1. So,

this in signal has to be 1. So, the memory data will be given over here. So, again in this

case, these are the two control signals generated, memory data register out equal to 1 and

R in equal to 1. And both our registers basically they are all internal signals. So, this is

how in a  single bus memory operation that  is  reading from 32 into R 1 works.  So,

basically what I have told you written in the text over here which you can go through.



(Refer Slide Time: 36:51)

Now, we are going to look at in timing, as I told you that will be all discussing it in terms

of timing sequence. So, let us look at the timing sequence. So, this is your clock and we

are doing everything in the positive edge or in the positive edge of the clock. So, this is

the positive edge, this is the positive edge and so forth. So, first as I told you first one

read R 1, 32. So, what you have to do, first you have to read the value of 32 from the

instruction register to the memory address register. So, what I am doing just after the first

clock edge I am making m b R equal to one and R out equal to 1.

So, what is going to happen R out that is instruction register which is containing now the

memory location 32 will be done to memory address register. So, I have made both the

control signals equal to one. So, in the next clock edge, what is going to happen that is

the  synchronization.  At  this  clock  is  what  is  going to  happen the  value  of  32  from

instruction register will go to the memory register that is at this rising clock edge, the

value of 32 will go from instruction register to memory data register, it will happen at

this clock edge.

So,  now again let  me erase this,  and let  us  study the future in  future what  happens

basically that is the first clock edge. Secondly, so already we have seen that in this clock

edge the value will be dumped. So, we have actually given the value of address is 32 is

as gone to the memory data register. So, in this clock edge has got this address of 32 is

now loaded into this memory buffer register sorry memory address register. Now, already



we know that you have to give a read signal. So, anyway I have given the read signal

over here, you could have also given the read signal over, I have given the read signal

initially. So, now, at this clock edge, these 32 is loaded in the memory address register as

well as the read signal is the one.

So, now the memory is configured that in this case in the first in this clock edge, the

instruction register has given the value of 32 to the memory address register which is this

case, read signal was already one. So, now, the memory knows very well what it has to

do and. In fact, already I have, so this is happening in this clock edge. So, by this clock

edge the memory data should come, because in this case I have sent the value 32 the

address register in this clock edge that works.

And again in this clock edge, the value of 32 will be taken in by the memory and the read

signal is also one at this place. So, in fact, now it will start dumping the value of the

memory data register the memory will start dumping the value whatever is the 32 that

will actually happen in the next clock in this clock, it should start happening. Because in

this clock edge 32 is loaded in this clock edge because everything happens in positive

clock edge.

So, if you find in the first clock edge nothing happens in the second clock edge basically

in this edge the instruction register value as gone MAR address register, and in this clock

edge 32 is loaded in that case and read instruction is also 1. So, in this memory, in this

clock edge the memory is fully configured to deliver the value of memory location 32 the

memory data register, already read signal was there. And if you see MDR in was already

set, so now, in this clock pulse if you compare the value will be after this clock pulse that

is this clock pulse the value will be fed to the memory data register because the signal is

already one.

And only after this the MFC will signal will be set as high. So, what is this MFC signal,

only after this clock pulse? The MFC signal will be high means it will say that now I

have  done  the  value  of  memory  location  32  in  the  memory  data  register  in  a  very

peaceful manner everything is stabilized. Now, you can read, so that is the signal, so that

will happen in this positive clock edge. And after that has happened that MFC has been

given as out, so what you will do this says that I have done or I have given everything

which was the memory location 32 to the memory data register.



Now, what you will do now we have to read of memory data register to the register R 1

that is you have to do this part that memory data register value will has to be dump to

register R 1. So, only after that MFC signal has become 1, you can make the memory

data register signal as out. Because before that if you see the memories data signal was a

1 over here in one that is memory data register in was a 1 that means it was reading from

the memory. 

This MFC signal is saying that the reading is over. So, now, you make memory data

register out signal equal to 1 that means now it will dump the value whatever was in the

memory data register which is taken from the memory to the bus. And then R in 1 equal

to 1 that means, whatever was in the memory data register will dump to the register R 1

and this instruction of move R 1, 32 will be over.

So, if you can recollect it look at the figure in a slightly you can think it for some time

then everything will be very clear to you. Then this was a move instruction. Now, let us

say that is a store instruction move means what we have done, we have taken the value

of memory location 32 whatever was there, we have moved to R 1.

(Refer Slide Time: 42:05)

Now, let us very quickly see that if this is the reverse one that is if there is something in

memory register R 1 sorry if there is some value in R 1, we want to dump it to memory

looking at 32; one was the read operation, next was the right operation very simple. Of

course,  first  the value of R 1 has to be written to 32. So, the register value our out



instruction register has to be made 1, because the default idea is that whatever instruction

is there will be first in the instruction register. So, therefore, any instruction in a general

thumb rule, what is there you have to first make the instruction register out that means,

the value of the instruction register have to go to the memory address register.

Because whenever there is a non immediate mode of operation, so what happens like in

this case the memory location is 32; that means, you have to do something with memory

location 32, but when is that values 32 will be there in the very initial case it will be in

the  instruction  register.  So,  generally  the  first  micro  operation  always  says  that  the

instruction register out that means, you have to get the value of the memory location

from the instruction register. And it has to go into the memory address register that is a

very (Refer Time: 43:05) standard for most of the cases. So, the value of 32 from the

instruction register will be dump to the memory instruction register.

Even if you have looked in this solution also, the same read or write from the memory

the  first  microinstruction  will  be  more  or  less  similar.  So,  the  first  microinstruction

register instruction register out will dump the value to the memory register a memory

address  register;  that  means,  instruction  register  32  value  will  be  now dump  to  the

memory address register. So, now, the memory address knows that value of 32 is there.

Now, we have to do something with 32.

Now, in this case, what happens, you have to write; in the previous, case what happened

it was a read now it is basically a write; that means, whatever is in the register R 1 has to

go to the memory. So, in now in this case what happens this is the memory, this is the 32

memory location has to be read and in fact, there is a memory data register. 

So, in the read mode from the memory, the memory register is to be read, but is the right

operation, so you have to dump the value of here. So, in this case we will just the reverse

compared to the previous analysis. So, MDR will be actually equal to in. So, now, the

memory read it has to read. So, the memory data register will be not read mode because

it will read something from the register R 1 and that has to be dumped to the memory.

So, in the previous case memory data register in was a 1 that means, what basically what

happens  again  as  I  was  telling  you  that  the  first  microinstruction  in  the  second

microinstruction more or look less look similar in case of a read write mode. Because in

any case, memory data register is to be read either it is from the memory or it is from the



CPU register. If you are going for a write-read operation, then the memory register will

read from the memory if you are going to go for a write operation to the memory is

going to read from the register. But anyway memory data register has to read some value

which is to be transferred to the memory or it has to be transferred to the register. So, in

this case, memory register, data register is equal to 1 and R out equal to 1.

(Refer Slide Time: 45:12)

So, in case what happens in the second case, so if you look at it, so this is your register

memory data register, which is in mode, and your register R 1 is in the outward. So, the

register will dump the value which will go to the memory data register, but this is a

memory write operation. If it is a memory read operation, then actually in fact this it will

not be a R 1 in fact it will be a memory, which will damp it to the value to the memory

buffer register, which will go to the memory there are the previous case.

But it now second case, what happens, memory data register is in mode and who is going

to write it the reading instruction the register R 1. So, R 1 will be out will be one. So, in

that case, it will be going in this case. And very important we have to know one point

over here, which I want to emphasize basically first microinstruction R out equal to 1

that is you are dumping the value of 32 to memory address register. Before going to the

second microinstruction, R out IR out has to be made to 0. Otherwise what is going to

happen others there will be a conflict what the instruction register as well as R 1 is write

together to the CPU bus that should not happen. Before going to the value here this has



made be made 0, but now in this case R out is 1, this one is in 0. So, basically now R out

is going to write to the memory data register. And now we are giving a signal called

write because the memory has to be in right mode.

(Refer Slide Time: 46:40)

Now, what happens so now your memory data register already has the value, which is in

the register. So, this phase is over. So, last microinstruction basically let us see what it

will do this is your instruction this is your bus now you are already memory there instead

has the value which is from R 1 and you also you have given the write command. The

write command is basically an external signal; all others are internal signals which is

generated by the control unit. Now, memory data register out is equal to one. So, now, it

will start dumping the value.

Now, of course, the memory is already in the read mode and memory data register is

writing to this will be a control bus or sorry in fact it will be the data bus which is an

external bus which will be connecting the CPU to the memory and already write signal is

there. But immediately you cannot we draw this signal memory data out has been made

one. So, the memory register is writing to the control bus, but immediately you cannot

make the memory get out equal to zero you have to wait for some amount of time. To an

external bus external control bus, the memory will tell that MFC that is going to come by

a external control bus to the CPU telling that my read is over or sorry yeah my read is



over; that means, I have already read the value of register R 1 in a memory location 32

now you can free your memory data register.

After that case only your memory register output will be made 0, in fact, initially it was

one. So, memory data register was damp in which was going to the memory after some

amount of time when this WFMC signal will be coming from the external control bus to

the CPU sorry to control unit of the CPU it will relinquish the signal and MDR out will

now become equal to basically your 0. No, now it is free and whole value of R 1 has

been dump to memory location 32.

(Refer Slide Time: 48:10)

So, again I will quickly look at the control sequence because it is more or less similar.

So, in fact, this is the positive edge of the clock. First instruction register has to be R out

will be one same procedure; in the next clock edge as memory address register is already

one. So, the value of 32 will be dumped in the address. From here, it is slightly changing

because it is a memory write operation now R out in equal to 1. So, now from this at this

clock edge basically as I have made this memory data register in one at this point at this

clock edge what is going to happen is that the value of the register R 1 will be out to the

control bus. And already memory data register in have been made 1 that means, at this

clock edge at this positive clock edge what is going to happen, the value of R 1 will be

going to the memory data register in.



Now, memory data register in will be fed with the value of register one, but where the

memory data register will write to the memory which is in the memory address register

which is the value of 32. So, R 1 out will make the value of register R 1 being dumped to

the bus which will go to memory data resistor and memory data register will write the

value that is what we are saying. There is data whatever is in the R 1 data has now

moved to memory data register which is happening in this clock edge. And this memory

register will be writing into the memory. So, the memory write signal has been made

one.

Now, at this clock edge, basically as I told you at this clock edge, the data of R 1 has

been moved to the memory in register write signal has been enabled.  So, now, I am

making the MDR equal to 1 that means, now the memory data register is going to write

to the memory. So, I am making the memory register from input mode to output mode

which I am making it 1. So, in fact, if this clock is if you compare this is the rising clock

edge after this signal after the MDR signal equal to out, this is the clock edge. At this

clock edge, your memory will read the value from the memory to the register, because

memory data register out signal equal to one and we are in a write mode. So, at this clock

edge, this is the positive clock edge your memory is going to read the data from the

memory data register.

But again immediately we cannot make MDR out equal to 0, we have to wait for some

amount of time when the MFC signal will be seen memory has been written. So, after

this clock edge basically you can again I have not shown this, but again you can in this

point you can make this signal down over here. This signal can be made down at this

point, because there is no point of keeping me that you over here. So, simply the memory

has been.

So, that brings us to the end of this unit we have taken a single bus architecture and we

have taken some very simple instructions which are macro instructions. We have broken

down into the microinstructions, and we have seen what are the basic microinstructions

or  what  are  the  control  signals  generated,  and  how  data  transfers  operates  happens

between one register to another register, one memory to anther memory and via register.

And also we have seen that if you read to a memory, if you write to the memory what are

basically controls signal involve.



So. in fact,  in a nutshell,  today we have got some idea using a very concrete digital

fundamentals how basically a control unit works in terms of signals. So, before we close

down as we are all discuss about some of the questions and try to understand how the

objectives are satisfied. So, let us take some few examples like provide a generic model

of the control unit.

(Refer Slide Time: 51:22)

Explain the groups of input output of these signals and give some examples, of course,

which will satisfy your knowledge objective like different categories of input and output

signals  as  a  comprehension.  You  should  be  able  to  design  it  as  of  sorry  the

comprehensive objective will be able to indicate the control signals to synchronize the

speed etcetera. So, if you are going if you are able to answer the first question that what

are the different signals these two objects are satisfied. If I ask you to draw a CPU with a

single bus organization, of course, this will again satisfy the next two objectives.

Then  in  this  question  to  we  have  some  parts  we  are  saying  that  how registers  are

connected to the CPU and how basically signals move over there, and then we say that

how they are synchronized in time. So, if you are able to design a single bus CPU, then

we explain how data is moving from register to register, register to memory, and how

they are all  synchronizing  with time as we have said that  everything happens at  the

positive edge of a clock. So, even if I have changed these signals like R in out, memory

buffer is going to in, but they will all take effect in the next coming edge.



So,  if  you are  able  to  design  that  of  course,  you are  going to  satisfy  this  synthesis

objective that we design the timing sequence generator to carry out the proper micro

operations at a proper time. So, in fact, if the four questions you are able to answer, you

are going to you are actually meeting all the objectives. With this, we come to this end of

this unit; and from next unit onwards, we will be looking more into the depth of how

control signals are generated if there is multiple buses, what are the changes expected

and so forth.

Thank you.


