
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology, Guwahati

Control Unit
Lecture – 16

Instruction Cycle and Micro-operations

Welcome to the next module on control unit. So, in the course in the last module we have

basically it see that what is the basic architecture of a computing system? Like we have a

control unit, then we on the other side we have the memory, we may have some

peripherals and then on very theoretical level we have seen what are the component

inside like a memory block, then we have also seen what are the registers in the control

unit, then we have seen an ALU, how they are connected and also we have seen in a very

theoretical notion and have a code get exsiccated.

But you might have thought that such a complicated situation that you instruction is

taken, then just the next instruction taken after that it is decoded, fetched and so many

(Refer Time: 01:05) steps happen.

And they also happen in the hardware where everything in terms of bits. So, then means;

that means, there should be lot of control signals or there should be lot of control

integrities which happens, because which helps for a code to execute in such a integrated

environment that is on a basic computing system.

So, the last module was on the basic architecture of that system. In the next module that

is in the control unit what we are going to see we are going to look at basically how

those, how those units.

Like for example, your registers, your memory, your CPU, your busses, how they are

basically interconnected and what are the signals and what are the exact signal flows that

is require and how the signals are generated. So, that a code executes in a current

fashion. So, in this mod module we will be mainly concentrating on how a control unit is

generated? What are the required signals? How the signals are generated? And how the

sequence of signals actually maintains a proper flow of the core distribution? So, that is

the basic idea of this module.

(Refer Slide Time: 02:08)

So, in this module basically we will be making mainly looking at the instruction cycle

and the micro operation inside that then you will be making mainly looking at control

signals and timing sequence and so, forth. You can re go through all the different units in

this module. So, this will give you a feel that basically this module focuses on how what

are the instructions? How they are dividing to micro instructions? And how

automatically some control signals are generated, which actually are required for the

control flow of the data in the register or CPU busses etcetera and how basically what are

different ways are actually generating the sequence in the control unit.

So, a code executes in a code and interrupts and if you have for example: jump

instruction. So, how basically a code executes and what are the required control signals

for this generation and how actually timing is organize and what is the timing issues

etcetera, which will be learning in different units of the module. So, the details of the

modules are available in this slide.

(Refer Slide Time: 03:08)

So, as we are going by a pedagogical aspect. So, let us discuss on the module summery.

That what is going to be covered in this module so? In fact, as we already discussed in

the last module that a basically a computing element has CPU, ALU, special purpose

registers instruction registers etcetera.

And basically there are several ways to interconnect it that, whether you have a single

bus architecture, whether you have double bus architecture, whether you have three bus

architecture whether you have some local memory for a local CPU etcetera.

So, we will study in this module how basically different ways of connecting the

components like as I told you two bus three bus and three bus organization. So, we will

have a look at this look at the idea of such interconnects of such units like register CPU

etcetera and then we will see for different such configurations how are signal generated?

And how actually the flow of code moves?

Because it is very obvious that if you have three bus system the execution of code will be

faster compare to a single bus system, because in if your single bus system is there then

there is to be lot of multiplexing because there is a one resource which is a bus and it is

only depended on of all data transfers.

But for example, if you have a three bus system then actually some bus can be dedicated

for register to registered flow some bus can be used for memory to registered flow and so

forth. So, therefore, the control signals will also be different in the latter case compare to

the formal case if the three bus system the code execution will be faster because we have

now three busses to solve the problem and so forth. So, we will be looking at how

control signals are generated and in different processor organizing; organization

configurations.

(Refer Slide Time: 04:40)

Then basically as I told you whatever your code moves and how a code sequence a code

is sequenced or if I say that you fetch a code or fetch a instruction or you fetch a data that

mean some signals has to be generated. Like we have already seen that if you are looking

for a memory, you should generate whether it is a read write signal, we have to generate

some values for the memory buffer register and when the memory buffer register has

already all the all the data is already given to the memory buffer register from the

memory, you should generate a signal saying that the data is now ready and it has been

sent to the buffer you can read it.

For example you want to write something to the memory, then you write it into the

memory buffer register and then you have to wait for some time all this handshaking

signals. For example, if there are 0 flag. So, the 0 flag is set; that means, the control

signal will be generated. So, all such different signals how they are generated and how

they actually involved in the flow of code or flow of code exhibition in the control unit

will be studied.

Then we will actually see different functional arithmetic logic units in terms of different

control signals. In other words here in this module if you compare to the previous

module means look at the same thing, but is the last module we assume that data is

fetched, then if there is a control instruction and the flag registers are set accordingly

program counter will change, but here we will deal with how the check actually what are

the control signals that result in the check and how those control signals are generated?

Like for example, as I told you if there is some flags. So, flags are set and reset they

generate some control signals. How those control signals will be utilized and how this

how you can design a circuit, which will read the control signals from the ware and

modify the program counter.

Now, we will be looking in a much more hardware related issues then a superficial level

which will last look in the last model. Like for example, the output of the control units

determine the signals which actually (Refer Time: 06:38) to another function module.

Like for example, these are peripheral device. So, the peripheral device will interrupt

your system.

So, if it is interrupted what type of control signals will be generated? So, all the in an

action we look at different type of control signals how they are generated and we look it

for different architectures like single bus multiple double bus and three bus architecture.

(Refer Slide Time: 07:01)

Then basically another very important thing is that whenever how they whenever we will

be talking about the control signals, we have to first understand that like a very simple

instruction, which we have already seen in the last module. Like ADD a comma B or

ADD a comma 30 30 x that is memory location. So, the in fact, this something call a

macro instruction, but a macro instruction will also involve some kind of macro

structures. Like when we say ADD a comma 30 30 x; that means, first there should be

micro instruction which will be involve in to read the data from the memory location 30

30 to the memory to the accumulator or in this case register a or whatever may be

instruction like.

So, in fact, that will involve some kind of micro operation or micro instruction like first

we have to give the address of 30 30 to the memory address register, then you have to

wait for certain amount of time then the memory will generate a signal the data has been

given to the memory buffer register 30 30. So, that is a control signal which has to be

rate memory saying that data from 30 30 location has been given to the memory buffer

register. Now your instruction register or your accumulator will read the data from the

memory buffer register.

So, these small small steps like then; obviously, after instruction is executed you have to

increment the value of P C. So, a larger instruction like ADD a comma 30 30 involve

several micro instructions. As I told you increment in P C writing the value of the

address in the memory address register, reading from the memory buffer register after the

signal the memory gives a signal that I have written the data.

So, all this small small instruction we call as micro instructions and we assume that each

micro instruction can be operated at one unit of time. So, basically in this module the

substantial part will cover that a given a macro instruction or otherwise an instruction;

like load, ADD, subtract, multiply, what are the micro instructions involved in it how the

how what are the different micro instructions for a macro instruction?

How they are sequenced? How they can be optimized? And how basically we can write

for a given code? How can we write it in terms of micro instructions or how basically in

fact, you might have observed that I was telling you that for each micro instruction some

kind of control signals are generated? Then we will see that basically for a given code

what are the micro instructions and then we will start the basically how how we can

generate those micro instructions?

(Refer Slide Time: 09:27)

So, micro instructions basically there are two approaches one is called the hardware

approach and one is called the micro programmed approach; which basically generate

the control signals depending on your micro instructions.

So, in this module we will be looking at depth in both the ways. So, in a hardware

control based micro instruction or control signal generation means; we will have a final

state machine, which is a hard coded machine, which is implemented in the hardware

and based on your micro instructions or the micro instructions corresponded to the main

instruction, the your flow will move in this sequential machine, because we know that it

is a sequential operation. So, a sequential state machine will move and it is state will

generate the control signals. And we called it as a hardware business, because it is fixed

to the hardware and you cannot do any changes there.

But of course, a more flexible version of this is called micro program environment. So,

in micro program environment, you can assume that basically the same thing like a

normal code involve, but in this case your micro instructions would not be hardwired like

a hardwired control, but you will have a another simplified set of codes for each macro

code. In fact, for a given instruction which I am for the timing calling micro instructions,

it will involve some kind of micro instruction.

So, micro instructions will be very similar to a normal set of instructions and, but instead

of a program counter, which is involve for the macro instructions here there will be

something called the MPC. Who is called the micro program control instructions

construction unit?

Main memory it will be a separate memory for this micro instructions or in other words

in case of micro programmed based unit you can assume, it that for each macro

instructions there is a simple code corresponding to the micro instructions and it will also

execution sequence like the macro instructions, but instead of large instructions like

ADD A comma B here we will have small small instructions like; load memory address

register from the instructions register.

Load the value from the memory to the memory buffer register and read the signal; that

means, now the instructions are at the micro level, which can be executed at each at each

time unit, but you can think in like macro ins macro instruction 1 2 3 4 each macro

instruction will lead to some micro instructions. It will also be stored in a micro program

memory it is also have moment like 1 2 3 4 and instead of the program counter here we

will have the micro program environment. So, it is more flexible. So, more details will

come up when will with the absolute exact modules will reach through.

(Refer Slide Time: 11:45)

So, now if you look at it, what are the objectives of this module? So, the objective of the

module first it is a comprehensive objective you will be able to describe about the control

steps and control signals needed to execute an instruction this is one of the most

important part of this module. That will given a instruction sometimes I will call it macro

instruction to different is differentiated from the micro instructions. So, if I give you an

instruction like I said that note accumulator 30 30. So, you will be able to tell me what

are the exact control steps and what is the exact control sequences required to do it; then

this is a synthesis objective. So, synthesis objective says that design issues of control

steps of the basic instructions like read memory for execution with reference to a give an

organization.

That means you will able to design a system or a computer control unit system, with

given to a given organization; that means, if it is a single bus or multiple bus, then you

will be able to design the control steps require you can also design the micro instructions

and the control signals required to be generated you it can be a micro program control it

can be hardware control.

So, you will be able to design such a system based on a given organization. Of course,

you will be also able to design that is an synthesis objective design instruction for control

operations like branch function called etcetera. So, in fact, I mean the 2 design here we

have separated out the 2 in I mean synthesis objectives.

One is for the normal arithmetic data transfer operations and another set for branch

instruction interrupt instruction and call return instructions.

Then of course, 2 important things you will be able to design this control signal based on

hardware based control unit and micro program based control unit that is the hardware

business as well as software business. And the last instruction is again a design

instruction. So, you design issues for implementation of the micro program as well as

your hardware control unit you will be able to design both, compare among them both

and find out which is the more optimized implementation at any point of time.

So, this is actually the module main module objectives.

(Refer Slide Time: 13:49)

Now, look at the module learning strategy. So, basically unit 1 and unit 2 will be basics

of this module, where we will study instruction cycle and the micro operation of an unit.

Basically in first unit we will be learning that what is an instruction cycle that we know

fetch decode execute sometimes you have an interrupt and so forth and one of the micro

instructions available for them.

And the second one basically will deal with time in sequence that exactly, what is the

time cycle and more integrated details of the control signals will be set it over there.

So, first unit will tell what are the signals? The second unit will tell what are the exactly

timing sequences in terms of timing diagrams? Unit 3 will describe the control signals I

mean timing sequence re required for complete execution of a continuous instruction. In

1 or 2 will be building the basics and in third set unit we will take a large code and will

take an organization like a single bus multiple bus and we will see how it goes?

Instruction 4 and 5 will take different addressing mode and we will study the same

things. Like we have already seen different type of instruction modes are available oh

sorry different type of addressing modes are available like direct indirect base

displacement.

So, we will see how the control signal generation changes when are whenever there are

different types of addressing modes. Instruction 6 will describe about the hardware

control unit. So, now, in the instruction 6 we will deal with, but if you are given a set of

instruction, if you want to make a hardware control unit how to design that? Inst unit 7

we will tell you about the different type of bus architecture, basically as I was studying

that study with in depth of different type of single bus multiple bus and we will study for

all of them how we controlled set instructions? And last 2 units will basically deal on

deal with how to design micro program control units for different bus organizations.

Basically that is what the idea is? So, initially we will start with very basic instruction set

what are the micro instruction for that, then we will look at the timing sequence then we

will see if for different set of instruction or different addressing mode how they change,

then we will give you an idea of hardware control based design and then we will also

give you an idea for how to design a micro programmed control unit for generating

different type of signals. And control signals in a control unit and also we look at

different architecture terms of different bus system bus single and multiple.

So, basically I am not going to read out this slide you can look at it we are describing

here basically what are the, what are different in different units?

(Refer Slide Time: 16:19)

And from which book you can study this basically we are referring Willium Stallings,

book a Hamachers book. So, exactly which unit which topic and which module you have

to read like for example, in unit one which chapter you have to read or all the detail

down in this slides basically.

(Refer Slide Time: 16:36)

So, I am just keeping this slide for a few minutes.

(Refer Slide Time: 16:38)

You can look through it also you can go from for this NPTEL based course, which is a

web course on a computer organization architecture you can go through this in this way

you go to the module on CPU design.

So, basically this gives an overview o on a very pedagogical sense that what is the

objective of the module on control unit, what is the basic? Summary of the unit, what an

module and unit what we are going to expect out of that and what are the objectives you

are going to meet after this module is complete?.

Now we are going to go for the first unit. So, as we have told you that in the first unit is a

very basic unit in this case we will just look at different macro instructions. In fact,

instructions again I am turning them into macro instructions because I want to

differentiate the micro instructions.

So, in this case we will see a instruction cycle, which are already saying fetch, decode,

execute store and sometimes there may be an interrupt and what are the micro

instructions involve for reach of the instruction that is what is the first unit on. That is we

are going to see basically given a macro instruction, how it can be divided into micro

instruction and other as already told you micro instructions basically are the atomic

instructions, which execute in a single clock unit and which totally comprise the generic

instruction. So, this is the first module that is instruction cycle and micro operation.

(Refer Slide Time: 17:59)

So, in this unit at the pedagogical sense what we are mainly going to look at this unit. So,

as I told you machine instructions are generally complex and require multiple clock

cycles to complete machine. That is as I told you if you have a indirect machine

instruction, that is ADD indirect a 30 30; that means, the location of the variable, which

has to be added with treat a is not available at 30 30 at memory location 30 30, you have

to we will find another address and you have to go to that address there with they will get

the actual value which has to be added with a so, the indirect mode of address.

So, if I have something like ADD a 30 immediate. So, of course, you can understand that

the immediate mode of instruction or immediate addressing mode will be extremely fast

compared to the indirect. So, it says that all the instructions are of different complexity

and they will take multiple clocks to execute. So, basically what happened? So, each

instruction basically has to be divided into some kind of atomic instructions or micro

instructions then can be implemented in a clock cycle. That is what will be the main

emphasis of this unit in, which case we will take different instructions and we will tell

you basically what are the micro instructions available for that?

The operation the operations involved in the 4 cycles can be carried out using 1 or 4

micro operations in some predefined frequency. Like basically I mean generally 4 cycles

as I already told you fetch decode execute and store. So, basically what happens fetch we

already know that. So, first is the fetch the contents of the memory and load them to a

CPU register, store the word of a data from a CPU register to a given memory location,

that is your load store instruction transfer the data from CPU register to another CPU

perform arithmetic operation and store the result in a CPU register. So, you can see that

the different types of these are data transfer operation and actually there is one arithmetic

operation.

So, if you think about most of the instructions can be pre define in such kind of a thing

you pre load from memory location, store to a memory location, transfer data in between

different register of the CPU and are you perform the arithmetic and logic operation and

we first store it in register and then we can write in this CPU.

So, basically this 4 are in a nutshell in a very broad terms can be classified as different

type of data movements in a control unit. So, if I can generate some micro instructions

for this given broad flavor of data movement, that will actually give you a very good idea

that how a macro instruction can be divided into micro instructions.

Because as I told you memory to memory operation directly, we do not support we has

take a data from the memory to a register, then we can again write it back after doing

some logical operation. So, in more or less this 4 type give you a basic idea and for this

type of four basic ideas; we will try to see what are the different types of micro

instructions.

(Refer Slide Time: 20:51)

So, as I told you in a very very simple Nutshell nowadays process are more complicated

you can have different type I mean clock sequence means some of the micro instruction

will take 2 clocks some will take 1 clock. So, all this complications are there, but for the

time being we are taking a very simple controller design because it is the u g first level

course or architecture.

So, we will assume that micro operations are such operation which can be plan in 1 clock

wise more or less even in which sophistication architecture also generally one micro

instruction means one unit of time, but some variations happen. So, that is what is the

idea, we will take a simple control design, which is this one which is simple thing?

However, there will be micro operation involving data movement of data in or out of the

registers that you are interfere with in another we will see that basically what id idea is

there in that case what it says what we will study in this case there is something called

optimization.

Like for example, one micro instruction you are reading some data from the memory to a

register, but as the same time your CPU is bring some computation and writing register

to another register to say and you want to at the same time you want to read something

from a memory location to register X. So, they are non-conflicting instructions.

So, you can actually mass this 2 instruction at 1 time unit; that means, there all micro

instruction they will take one, but you need not sequence them because they are non

interfary. So, if you give directly separate time units to all this then you require more

number of micro instructions to operate the macro instruction. So, what we can do is that

we can optimize and try to put in parallel or in one time unit some of the micro

instructions which do not require a, which can which do not require a separation in time

there, but if for example, as we will see there is some dependence on the first micro

instruction on the other then we cannot put in a single time unit.

So, basically also one important idea is that we assume that all the micro instruction take

single unit of time that is fine, but depending on the instructions if they are non-

depended instructions we can put them in one time which is actually. So, that which is

actually called clock grouping the term is called clock grouping that you put 2

instructions, which are non-depended one another you put in the same time unit. So,

there is optimization in time.

So, we actually call it as a crop clock grouping so, groping. So, we will also see that

given a macro instructions one of the micro instructions and we assume that is micro

instructions take 1 unit of time, then we will see if there is a non-dependent micro

instruction, then we will try to put in time unit 1 time unit and we will see what are the

minimum number of time units require to execute a macro instruction, which is actually

called crop clock grouping and it actually optimizes on the time.

(Refer Slide Time: 23:28)

So, what are the unit objectives in this unit objectives the first objective is a

comprehension objective, which you will be able to discuss the concept of instruction

cycles, macro operations of an instructions sorry the micro operations involved in a

macro operation, that is the first objective of this unit. That given any macro instruction

you will be able to tell what are the micro instructions of that.

Also specify the different phases involved in an instruction and the micro operation

needed out to carry those stages like, as I told you that if I say that load X or load

accumulate 30 30 there are certain state like for example, the instruction has to be taken

from the memory to the instruction register by a memory buffer register, then 30 30 will

be loaded from the instruction register to the memory address register, then the memory

address, then the memory will give the data from the 30 30 memory location to the

memory buffer register which will be again read back to the accumulator. So, there are

different stages.

So, we will discuss the different stages you will be able to specify the different stages

require to execute a macro instruction instead of micro instructions and finally, is a

design objective given any instruction set you will be able to design the micro instruction

require to opt execute the macro operation.

(Refer Slide Time: 24:37)

So, again now we are coming to the module. So, what is a micro instruction machine

instructions are generally complex and require multiple cycles to complete? So, machine

instructions are also termed as macro instructions in this context. So, as I was telling

from the very beginning that if you are taking a large instruction like say I was really say

ADD accumulator and let me specifically then I called 30 30. So, in this case as I told

you is a macro instruction. So, ADD a is a accumulator from 30 30 memory location.

So, you can assume that if it is a direct instruction time take will be certain if 30 30 is not

a memory location, but if it a immediate data then it will be extremely fast and if 30 30

ADD this ADD is a indirect instruction; that means, first you have to go the memory

location 30 30, there is another instruction over here you have to go to another part of the

memory and there you will get the data.

So, memory instructions are very complex depending on the addressing mode and what

it operates on etcetera. So, basically we divided into granular level which is called the ma

micro instruction and each micro instruction can execute in a single time unit taking

multiple micro instructions you go for a macro instruction.

That is what in is told in the second point, that basically it says that each machine

instruction has implemented in terms of micro instructions, data flows and controls, that

can be executed in a single clock pulse. That is if I want to get a data from a memory to

the memory buffer register we generally assume that the clock duration is such, because

generally in a simple terms memory itself writes are done in a single clock pulse. So, we

mean we actually mean design or clock in such a fashion or we limit our speed in such a

fashion that most of the micro instructions execute in a single clock pulse.

That is I mean if you are not able to do it that fast you have to actually relax the clock

period. So, in that case the frequency of the person will come down if a very fast

memory, your very fast interfaces multiple buses then many of the micro instructions can

be executed in less amount of time. If that can be done then you can reduce the time

period and you can say there is a poster is a faster ok. And in other words micro

operations are detailed lower level atomic instructions, which can be executed in a single

clock and are generally used to implement complex machine instructions; that means,

you join the micro instruction and make a macro instruction or whenever you are design

a macro instruction you have to go for in between you have to go in delay in the leaf

level there will be micro instructions.

So, micro instructions I told you different classes register transfer, arithmetic micro

operations logic and shift basically that I told you that is a data transfer and basically

your logic transfer, where mainly you can mainly look at the broad classes.

(Refer Slide Time: 27:13)

So, what is there you have a this is a very nice figure, which actually shows you gives a

description that what is a micro operation is a program, which will have lot of codes like;

load, store ,add multiple etcetera. So, it has around n instruction.

So, each instruction as you can see can be divided into fetch decode, indirect and

execute. I mean some time indirect may not be there for different addressing modes then

fetch; that means, some instruction has to be fetch from the memory to the instruction

register.

So, it will involve some micro operations then interrupt it will involve some kind of

micro instructions like a fetch. So, what will be the different type of micro instructions, if

you can think in such a manner fetch means first the program counter will have the

address of the memory from where the data will be loaded.

Data will come from the memory to memory buffer register from the memory buffer

register it will go the accumulator certain steps are there, and then basically program

counter will be implemented. So, these are some of the micro instruction which is

required in fetch, decode means what your there will be a hardware, which will actually

read this off code from the instruction and generate certain signals in this module will be

mainly looking at how signals are generated for instruction. Like for example, if the off

code is 0 0 1 may be 0 0 1 stands for load. So, the hardware will generate the signals

corresponding to the load after reading this off code of the instruction.

So, that is again will be the decode part. So, again after reading the load part again you

have to something some you have to take instruction from the instruction register you

have to take the instruction, look at the other part of the instruction that will have the

data address like 30 30. So, you have to take that and then that will again go to memory

buffer register sorry memory address register again the data will be fetch.

So, lot of small integrated atomic details are required when a instruction is fetch the

instruction is executed like instruction has some stage, like fetch, decode, indirect,

execute, or interrupt and each stage also has different atomic level. So, there are now

actually the micro instructions and this one will take 1 unit of time this will take 1 unit

(Refer Time: 29:17) take time and so forth.

So, again the number of micro instructions for a given instruction depends on the

instruction time. So, for a simple instruction the number of micro instructions will be

less; for a complex instruction the number of micro instruction will be larger, but this

micro instruction is taking place at a single clock period of time. So, it is a very nice and

a synchronized way of handling the system.

(Refer Slide Time: 29:38)

Now, we will take different examples of micro operations and see how it repairs. So, for

example, we are going to take a “Fetch” sub cycle. So, we are going to take fetch

decoding indirect execute interrupt. So, many subs are there we will take one at a time.

So, let us take fetch; that means, memory is there and this is what is the instruction these

has to be fetch to the instruction register that is what is the fetch; that means, the program

counter basically already has given the value in the memory address register; the

memory address register. Now it has the memory address register has to be given the

value of the C P.

Now the program counter value is already telling that this is the address of the memory

where the instruction is there it will sell it to the instruction, but not directly basically as

you already know that there is something called memory buffer register. So, memory will

give the data from this in from this location the memory buffer register memory buffer

register is in the instruction register and you have to increment the PC.

So, these are some of the micro stage of operations which are require to do it. So, what

are the first time units what will happen? The program counter will load the memory

address register. That is program counter P C value is there it is telling that that is your

memory address register. The program counter is telling that this is the location from

where I need the instruction. Then this part is done then what we will you do now these

memory will put this data to the memory buffer register, that is the second stage second

unit of time that the memory will put the data in the memory buffer register.

Now what now you have to increment the value of program counter, because ne next

recession has to be fetch in next cycle and then the memory buffer register will write to a

instruction register.

So, you can see that I have having 4 basically micro instructions and they involved in the

fetch instruction. So, all these program counter value to memory address register,

memory buffer; memory to the memory buffer register program counter incrementing,

memory buffer register to the incrementing to the instruction register, they all take some

single unit of clock and these 4 steps or micro instructions generate correspond to the

mac correspond to the fetch sub cycle of the macro instruction, which may be something

like ADD A comma B. Because all instructions will have this 4 sub cycles or 4 or 5

cycles; like fetch, decode, execute, in between you have a you have an indirect and

towards the memory indirect.

So, if you look at this table. So, many instruction micro instructions will be level for an

instruction at present we have look what the micro instruction for the fetch part are.

(Refer Slide Time: 32:10)

Now, the concept of clock grouping is coming. So, is macro instruction involve the

sequence of micro instructions, in if you want to keep it very simple just you take a flat

implementation, means whatever in the macro instruction then it is there what are the

stages you have fetch decoding indirect execute interrupt divided into the micro

instructions and take asthmatic out of time?

But you will find out then we always not require to sequentialized it, because some of the

2 instructions micro process can done at a time, in that case you can save unit of time.

So, if you can parallelized that that is actually called clock grouping, like in this.

(Refer Slide Time: 32:45)

So, in this fetch right so, P C is equal to you are keeping the value of the memory address

register can I actually merge this 2 in a single time take not possible, because in the first

unit the value of the program counter will go to the memory address register, you give

some time give one unit of time for that, then the memory address register will be Z, now

the memory will know that I have to supply the data which is actually the instruction

from the address, which is given in the memory address register.

So, if I merge this 2 together there will be a lot of hotspot, because I you tell me that I

have to deliver from this address and deliver it now. How can I do that I require some

time to read the address, go to the relevant location, bring the data and give it to you. So,

I cannot merge t 1 and t 2 at a single point of time, but if you look at it I am giving some

because this job is over, you have told me what is the address?.

Now I go and bring the data from that memory location already you have given me from

where I have to face the data. Then the job of the program counter is over, because

program counter is telling me the address from where I have to give from the giv from

the gat the data from.

So, you have told me the address and now I have I am going to get the data from the

memory. Now the program counter is free. So, better you can implement the program

counter. So, it is very officious I can merge step 2 and 3 together, because after reading

the value of the program counter to the memory address register my job is done I am free

at hand.

So, if you are free at hand then actually I can use the P C that indecent and increment by

one. So, memory at taking the data from the memory to the memory buffer register and

program counter increment these 2 micro instructions you can do it in time steps 2,

because they are 2 non-dependent micro instructions. Of course, this then the last is

memory buffer register will be writing it to the instruction register of course, P C you can

be merge with t 2 P C increment can also be merge with t 4. So, any way you can merge.

Of course again I cannot merge step 2 and step 4, because step 2 actually tells that I am

bring the data from the location. Before the data is bought to the memory buffer register

you cannot directly transfer to the I R. So, these 2 are memory in interdependent

instructions and 2 and 4 interdependent register instruction. So, there cannot be merge,

but this one is a independent instruction even this 2 are dependent. So, you can either

merge it with this or you can merge with this.

So, basically 3 time steps or micro instructions are required for 4 micro instructions are

require, but in 3 time steps you can complete the fetch stage, that is what is fetch is got a

clock grouping that I am grouping. So, either I am grouping basically this 2 guys

together or I can must this 2 guys together. So, 4 micro instructions, but I can do it in 3

time steps.

(Refer Slide Time: 35:27)

So what is clock grouping proper sequence should be maintain you cannot alter the

sequence that is I am getting the data; before I put the registers in address that cannot be

done. Proper sequence should be follows; ideally there should not be any conflict that is

there cannot be any biasness I mean. So, there can be any what we call ways condition

kind or a actually conflict of a interest kind of a thing that I want to read from that

register at the same time you cannot write to the register. Those instructions are called

conflicting instruction, because they are using a common resource either for read and

write.

So, you cannot do at the same time and program counter is always involved in an

increment. So, you try to feed the program counter at some place after the data is being

rate or after the instruction has being rate, then the program counter is free you can try to

increment the program counter and try to feed it in some place where there is no conflict.

That is how basically the ideas of clock grouping is very simple sequence you cannot

change you cannot have any conflict, like if I want to read from register R 1, you cannot

put a micro instruction at that same level in which there is an updating. Similarly we

have given an example and, but program counter is bit free because whenever the

program counter has given the data to the memory address register to fetch the

instruction it is free you can use it and put it in panel.

(Refer Slide Time: 36:42)

Again we will now see this stage we have already discuss discussing for the fetch.

So, first stage is program counter value the memory address register, memory buffer

register will take the value from the memory, you can merge this 2 and the memory

buffer register will write to the instruction. This is very simple that is for example, if

have an instruction say ADD accumulator, 30 immediate. For such a instruction this is

very simple, first you will fetch it then actually may be from this program counter I give

the value in the memory address register. So, in that memory address let us say that this

instruction is there. So, this will be incremented and then the instruction register will

have this part.

Now, you want to actually execute this. Then exactly what happens basically depending

on with 30 is an immediate or 30 is a memory location the number of instructions in the

decode face will change, that is we are going to look at it.

(Refer Slide Time: 37:40)

So, in the third stage it says that the memory buffer register will lie to the instruction

register. So, if it an immediate data more or less our job is done, because now your

instruction register basically has the memory buffer register which is having the data

called ADD accumulator 30 H which is a may be immediate.

In case of immediate you did not do anything, because when the memory buffer register

has dump the value in an instruction register, you have already face that may be this

ADD in ADD immediate off code correspond immediate. So, you can directly take and

there is no feather micro instructions require, but assume that in this it is a indirect or it

can be a direct, but it is a non-immediate mode of addressing, then is this case what

happens?

(Refer Slide Time: 38:28)

Say it is let us take ADD accumulator 30 30 H. So, it is a direct addressing mode. So, we

are doing that take the value from the memory location 30 30 H, you go to the memory

location called 30 30 whatever data is there you ADD it to a accumulator and store it.

So, in this case what happens this one will come to the accumulator. So, this whole thing

is now. So, this instruction of the value of 30 30 is now in the instruction register , but

now happen you have to now again give this value of 30 30 to again to the memory

address register, because this is same some location may called say 6. See program

counter value was 6. So, program memory location 6 had this instruction. So, it is now in

the instruction register but now again you have to now load the memory address register

with this 30 30.

Then again we have to read the value of memory location 30 30 to the memory buffer

register and only that can that will again bought to the instruction register and then again

you can ADD, it then these are 2 stage process. Immediate means you can directly

whatever is in the memory buffer register like we have seen ADD, accumulator 30 you

can directly take in the buffer register go to the instruction register ADD it and you are

done. There is no feather no step require, but if it an indirect mode or a direct mode and

non-immediate. That is data is not available in the instruction itself then you have to go

for multiple stages. Like instruction register address you have to again fill in to the

memory address register that is this 30 30 again I have to feed it to the memory address

register, next memory buffer register memory will right to that.

For example in 30 30 we have the value called 6; that means, we are going to ADD the

value 6 2 A as store it back to the accumulator, that is memory location 30 30 let us

assume that has the value 6. So, in step 3 basically you are going to read the value of

ADD A 30 30 X in the instruction register.

Now instruction register will know that again I have to go for it is a indirect. So, it is a

basically direct addressing, but a non-immediate addressing. So, it will again load the

value of 30 30 in the buffer register. So, memory buffer register memory address register

will have the vale now 30 30 and now the memory buffer sorry the memory address

register will take the value of 30 30 from the instruction register, memory ad buffer

register will take the value from the memory location 30 30 and put it to the memory

buffer register.

And then this memory buffer register, which is having the value of 6 now will be loaded

to the instruction register. So, now, the instruction register will have A ADD A 6. So, it

will load it to the accumulator after adding. So, in fact, now some more instructions are

required like in this case this will be require which you will solve the problem, but again

if you see none of the instructions can be put in one time taken. Because in this case you

are reading in time t 3 you are reading the instruction resister address that is 30 30 in the

memory buffer register. You have to give some time then only the memory address

register will be read and you are going to give the value in the memory buffer register.

After sometime the memory buffer register address that is the data from there address

that is 6 will be rate to the instruction register. So, in fact, you cannot paralyze because

this one is dependent on this and this one is dependent on this. So, you cannot save any

time step in that. So, only time which you we save is that in time step 2 we have merge

the memory buffer register writing from the memory and we have added program

counter.

So, what we have seen. So, if it is a simple immediate mode of addressing then we

require 3 steps 1 2 and 3, that is step 1, this can be consider step 2 and this can be

consider step 3 and if it is a none immediate mode; that means, may be a direct mode for

indirect mode may be several other steps will be require, because more complicate your

instruction is more number of micro instructions will be required. So, is that in case of

direct we need another 3. So, total number of stages time steps will be 5.

(Refer Slide Time: 42:25)

So, when was telling you is that we are writing in this slide that what are the dependent

dependency like for example memory, memory, memory to memory buffer register and

instruction register to the memory. We cannot put these 2 micro instructions together,

because the memory will memory value will go to the memory buffer register after

sometime from memory buffer register it will go to instruction register, you cannot

merge this 2. So, you have to have a proper sequence.

So, what we have see if you are not going for any clock grouping when the number of

time units require to go for a fetch immediate instruction will be 4. And if you optimize it

one will be saved that the increment of the P C will be save then you require 3. Similarly

this is a non-immediate mode like a direct mode of instruction. So, these are the 5 or 6,

because we are optimizing the program counter increment which can be feet with any

other stage.

(Refer Slide Time: 43:17)

Before we end some other micro operations for different other stages of instruction I am

showing our here say for example, this is for the interrupt cycle. So, if there is a interrupt

instruction is there what are the micro instructions. So, in the beginning we all know the

micro instruction when is interrupt you have to save the value of program counter and

whenever the interrupt service routine have been done, you have to again come back and

pop up the dairy of program counter and register from when we have left.

So; obviously, we have to store the value of program counter value somewhere. So, you

write the value of program counter in the memory buffer register, please note that we are

not writing the program counter in the memory address register. Program counter writing

in the memory address register means you are fetching some instruction. Here we writing

the value of program counter to the memory buffer register, because we are saving the

value of P C. So, saving the value of P C means the value of P C I am writing to memory

buffer register from memory buffer register it will basically go to a place where it will be

seen.

Now, where I have to save it in the memory that will be actually the address to save the P

C contain, that is actually a stack address where we save the value of program counter,

sometime program register, before the interrupt service would we started. So, you

actually in the; what you do? So, you can see that first stage I write the value of the

program counter the memory buffer register, second stage I write in the memory address

register to save the value of the program counter.

So, now basically already in the first stage we have saved the value of your program

counter in the memory buffer register. Now I give the address where you have to save the

value of the program counter in the memory, but I thing first stage P C is now free we

have already save the value of PC in memory buffer register and after that you are going

give the address in the memory address register where the value of M V R has to be save

indirect to the P C will be save, but in the first stage only P C S saved.

So, in time 2 you can put P C to the starting address of the interrupt service routine you

would not require a t 3 over here t 1 you save the P C in memory buffer register step 2

you write the address in the memory buffer register sorry memory address register,

where you want to store the value of P C at the same time you need you increment the

value of P C, because P C is free.

So, in this case you jump to the interest of service routine and then in the time step 3 in

memory buffer register will write the value to the memory, whose address was give in

the memory buffer reg memory address register. So, in step 3 actually you are physically

saving the value of the program counter. So, instead of 3 you 4 you can save in it 3 time

units.

Basically we have merged because of clock grouping which would merge the memory

address register write it and the program counter increment, because already we have

save the value of program counter. Another simple this was all about basically load,

store, fetch and some type of interrupt type of part of the macro routine, but now let us

take a very simple instruction like ADD R, X basically that is you want to ADD the value

of R some memory location and memory location is X content of X you want to ADD

with r and save with it register R.

So, basically what are the micro instruction involve for this fetch already we have seen

may be it has been fetch etcetera then what is the case? So, basically this is already in the

instruction register, because we assume that it has been fetch.

(Refer Slide Time: 46:30)

So, in the from the instruction register you have to get the value of X address X means

the value of X that is 30 30 in the example we are looking at it. So, memory address

register will be fetch with the value of address of X.

Now, the memory buffer register after some amount of time we load the value that is of

30 30 assuming that is X the value in the memory location X, which we are calling as 30

30 in example that value in that location will load to the memory buffer register in time 2

and with time 3 basically, which is the logic operation the accumulator sorry the

arithmetic and logic unit will be involve it will ADD the value of memory buffer register

with the register R and it will be save it in R. So, this ADD R X will be done in 3 micro

instructions.

And of course, you can find out the lot of interdependence, because neither you can

paralyze. Means you cannot put memory this first instruction with second and second

with 3. So, so they are all interdependent instruction. So, three instructions are require

for that.

(Refer Slide Time: 47:27)

So, basically in this unit what we have seen in this unit basically we have got an idea?

That there are macro instructions and each macro instructions must be implemented in

terms of some lower level instructions, which are we calling as micro instructions. And

how micro instructions basically together are responsible for a implementing a macro

instruction and each macro instructions are so finite or so, atomic we need not break it

down into farther level.

Basically each micro instruction involve kind of some kind of control signals which will

actually make the (Refer Time: 47:59), that we are going to see in the future in is to be

coming, but macro instructions micro instruction module at the unit level or the atomic

level together make the macro instruction and a code executes. For a each micro

instruction we will see that there are some kind of signals, which are generated, we will

see in the future units how to generate the signals and how basically they involve in real

hardware to execute, like if I say ADD, how the corresponding micro instruction? What

are the signal it generate to exactly make it ADD the 2 operates by the CPU ok.

So, before we end basically let us look at the some of the questions, like first question is

what are the micro instruction explain the principle of program instruction in terms of

micro instructions and micro operation. And second instruct if you look at it this and

these are the objective, like discuses the concept of instruction cycle and micro

instruction operation. So, directly if you are able to answer this question this instruction

this object is satisfy. What is the concept of clock grouping like specify the different

phases of involve in micro instruction to carry out those phases design the sequence of

micro instruction to compete instruction execution.

So, if you are able to specify and design of course, you will be able to optimize it in

terms of clock grouping give the micro instructions involve in fetch instructions, give the

micro instruction involve in the interrupt cycle and execute cycle. So, this questions

basically we have this question for assignment, when will be solving this questions

basically you are easily going to satisfy this objectives. Like the first one is basic concept

of micro instructions, third and fourth questions basically tells you about different phases

of the instructions and basically what are the micro involved in it.

So, basically these questions actually satisfy these objectives. So, after solving I mean

after discussing this unit you should be able to solve this questions and hence satisfy the

objective. And whenever you are going to try to optimize this sequence then the concept

of clock grouping is coming.

So, basically with this we come to end of the first unit, from the second unit onwards

basically we will be more specifically looking into the control signals, which are

generated by each of the micro instructions, which exactly or accurately result in the

flow of the code.

Thank you.

