
Computer Organization and Architecture A Pedagogical Aspect
Prof. Jaindra Kr. Deka

Dr. Santhosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering

Indian Institute of Technology, Guwahati

Lecture – 14

Instruction: Procedure CALL/RETURN

So, welcome to the last unit of the module on addressing mode instruction set and

instruction execution flow.

(Refer Slide Time: 00:36)

So, throughout this module in the last 7 units basically we have covered mainly different

types of instructions, their format, their operand types, what are the addressing modes

and finally, in the last unit we covered a very special type of instructions which are

actually called conditional instructions. That is which are not a very sequential flow, but

depending on some is conditions of variables like 0 flag or some other conditions like

equality, parity, etcetera we can jump to a required memory location to execute the

instruction from that part or if the condition is true we can just go ahead to the next

instruction.

And then we had seen that flags play a very very important role in control instructions

flags are some of the registered bits which are set or reset depending on the conditions of

some mathematical or logical expression. Like for example, if you add two numbers then

if the answer is 0 then a 0th flag is set then you can use a conditional instruction called

jump on 0 using that flag bit.

Now, today the last unit that is we are going to use such conditional instructions in a very

very practical application which is called the presidio return and code. So, if all of us we

have written some C or C plus plus high level language codes and we know that

functions or procedures are a very very important part and parcel of all programming

language because you can module arise your code.

But what happens is that whenever you are writing running a main code from there you

have to call to a subroutine or a function and then from that function you can call another

function and it can go on. But what are the issues there the first very simple issue is that

you have to know at which location I am going to jump. So, there can be there should be

a jump instruction. So, it can be conditional or it can be unconditional.

Conditional means if it is based on some condition if you want to call the instruction then

it will be a conditional jump for procedural call, but in most general cases which

generally just call the function from certain part of the code. In that case it will be just a

function call which would be an unconditional jump.

But then whenever you are leaving your main program then; obviously, you want after

executing the procedure you have to come back to the main program and start executing

from that point. So, you have the save the context of the program when you are (Refer

Time: 02:36) jumping to a sub routine. So, all those issues we will be covering today in

this unit.

So, this is the last unit of the module which is on procedure call and return.

(Refer Slide Time: 02:46)

So, as a pinnacle pedagogical format so what we are going to study, what is the unit

summary. So, basically as we have told that procedure is a self contained computer

program which is a part of a larger program. So, whenever a procedure is called basically

it invokes a jump to the memory location or when the first instruction of the procedure is

placed. So, it is a some form of a unconditional jump.

But sometimes you can also have a procedure whose call may be depending on some

condition. In that case you have to call the procedure based on some conditional

instruction. But in a very general sense we generally have a unconditional jump or

unconditional call to the procedure.

Then again as we are jumping to a new procedure, so we will be reusing all the temporal

registers the accumulators, the program counter, program counter actually gets changed

from the current programming location to the location of the first instruction of the

procedure, but again when you want to return back you have to again come back to the

point where I have left the main program you may also regain the values of the registers

where there are some temporary variables which I were working which I was working on

and so forth.

So, in other words the whole context of the program has to be saved in a stack. So, very

very important components of this stack are basically we call it as the program status

word which will have all the values of the flags, which will have the value of the

program counter or in other words the context of the current program has to be stored in

a stack when you are calling a procedure. And when we are returning to the returning

from the procedure all the values of the context like the value of the program counter, the

value of the registers etcetera are fed back to the corresponding registers and the program

and the program counter so that you gain the real context for what I have left in the main

program and you can start re executing.

And if they are nested procedure as we will see in an example, so procedure a will call

procedure b, procedure b will call procedure c and at every call the context of the calling

procedure will be stored in a stack and when you are returning unwinding the procedure

calls you are going to get back one context after the other from the stack that we are

going to see.

So, they are two very important concept jump and before you jump you store everything

like the return address the program status world, the value of the registers etcetera or the

temporary variables or the temporary context of the procedure or the main function

which calls another procedure are saved in a stack. And when you have returned back

after completing the called the procedure they have you regain back the values and you

can start executing.

(Refer Slide Time: 05:14)

So, this is if any two basic concepts you are going to deal in detail today and then what is

the unit objectives. There are 3 basic objectives that is knowledge, in which you are

(Refer Time: 05:24) to describe the concept of modular programming which uses a

procedure of a function. Then you will be able to comprehend and discuss the basic

requirements of CPU organization for a call function, that what are the registers required

what is a stack required etcetera.

And as the synthesis objective you will be able to design explain the design issues of

written and call instructions, that how can you design the call instructions, how can you

design return instructions, what are the issues, which are the registers involved, what are

the stack involved etcetera, what are the hardware of the CPU involved to design in call

and return instruction. So, these are the basic objectives which you are going to fulfill

after running this unit.

(Refer Slide Time: 06:00)

So, as we are all very much familiar with C programming. So, we are going to take a

very simple C program with a subroutine and see how it reflects in a assembly language.

So, if int, int a b, a equal to 5, b is equal to square of R. So, this is a function in which

you are making a square then in this case actually this b equal to a square.

So, what is the function? So, you are calling this the function. So, you are passing the

value of a then in square then square value equal to val into val, val is passed over here.

So, a is passed is the function a. So, we are going to get the value of a square because the

variable value as the value of a which was passed as a parameter and then you are

returning square of val that is the square val is nothing but value of the square of val and

that is nothing, but in this case a square and that is going to be returned to b and you are

going to get b equal to a square, very very simple C procedure.

Now, if you look at it how the subroutine would look like. So, first we are taking a value

of the memory location a into register 1, then it is a. So, now, register one has the value

of a. So, now, what you are doing? You are making a jump unconditional to a procedure

whose name is square. So, again this square here is a subroutine, but as we are discussing

yesterday as a part and parcel of every jump instruction is something called label. Label

means nothing is the name given to an instruction when and when the code is loaded into

a memory it is going to be replaced with the exact memory location of the instruction

which you are going to call. So, in this case square root is the label here and it is nothing,

but it is the pointing to (Refer Time: 07:37) instruction or it is the name of the

instruction.

So, jump is an unconditional jump subroutine it will just go over here. Square root means

the name of the instruction or it corresponds to the memory location of the instruction

when this instruction is stored. So, it is MUL R 1 into R 1. So, already have the value of

a into R 1. So, you are going to give the value of R 1. So, it is nothing, but it will be R 1

square R 1 into R 1 it will be stored into R 1. Then R 1 is going to have the value of a is

basically a square now you are going to move the value of R 1 to R 2. So, that we now

are two as the value of a square and then you are saying that I am going to return.

(Refer Slide Time: 08:13)

So, when I am executing the return statement what happens? So, when I am calling this

one you have to store all the value of the temporary variables temporary registers as well

as most importantly you have to store the value of the memory location for the jump

instruction because when I am going to return from here I have to go back here and then

I will do, what I will do is that I have come back with it from the point which I have left

increment the value of PC and you come over here in other words whenever you are

jumping from main procedure program to procedure you save the value of the program

counter of this spate at this part.

Then now this is the may be the program counter say 5. So, 5 is stored in a stack. Here

program counter may become 20 because 20 may be our way assuming that the memory

location starting address of the subroutine. So, 20 21 22 it will go on and whenever it is

going for the return instruction the value of 5 will be popped from the stack so that you

can know that now the program counter value is 5 which is the place which I had left.

Then it will become 6 and you are going to execute instruction in which is called move R

2 to b. So, in this case the value of R 2 will be moved over here and if you look at the

program carefully R 2 is nothing but it is basically R 1 square that is nothing, but a

square. So, m square will be transferred to the value a sorry the R this one this one

instruction will be transferring the value of a square to b which is actually the

requirement of the program.

So in fact, this is some background information we have given you which is required to

understand and how a subroutine is converted into an assembly language code.

(Refer Slide Time: 09:44)

Then now we are going to see basically one of the components required or what is the

hardware required in the pros in this as CPU for a procedure call. So, as I told you when

a subroutine is executed the main program is taught and the subroutine is executed when

the subroutine is completed it returns to the main program.

So, there is some, program counter will play a very very important role over here and the

value of program counter when calling a subroutine has to be stored if the subroutine

calls another subroutine in a nested manner then actually the storage of the program

status were the storage or the storage of the registers the storage of PC will be in a

recursive manner as a for recursive simple recursive function call in a stack. So, when a

calls b, b calls c c calls d. So, you put all the context in as register in a stack and

whenever you are finishing one supporting after another you are popping up the

corresponding program status word registers PC in a return procedure return manner.

So, basically that is what is being said when we move from one subroutine to another

you are saving program counter program status for register variables etcetera and when

you are popping back. So, it is when you are returning from one procedure to another in

a nested manner or returning back.

So, one after another the context will be fetched from this stack. So in fact, you require

basically a program counter memory everything is required and in addition you require a

stack which is holding all the components or the context of the programs or the

subroutines when a call is made for a month’s are put into another a stack is a very very

important component of a procedure call, if you look at the hardware terms.

(Refer Slide Time: 11:19)

So, as I told you, so program counter program status word and register variables are very

very important components which are told in a stack which defines the current context of

a code. In fact, the flag registers also saved basically because when you are running a

current set of instructions the flags are set or reset which are also used for some

conditional statement when you go to a subroutine the same program that is their flag

registers will be used, but now it will be used in the context of that procedure.

So, in that case you have again same back the value of the flag resistor and you have to

again when you come back from the procedure to the main code again you have to regain

then because they are shared resources this program status word, program counter,

variables, registers they are actually shared components of the CPU among functions and

main function and several procedures. So, you have to save the value if you are moving

from one procedure to another.

Now, where is the stack implemented? So, the group of main memory is used to

implement the stack, that is very important you can save a particular part of the main

memory to implement the step and there is a special stack pointer which will actually

locate that with the top element of the stack is. So, basically in fact, a part of the main

memory is reserved for this stack.

(Refer Slide Time: 12:31)

So, something like this is a pictorial representation. So, it says that subroutine B is nested

in subroutine A so in fact, what it says there is a main program then it will call program A

and it will call program B. So, in this case if you see when the main program is calling

procedure A then what happens the variables of main will be saved program status of

word of main will be saved the PC of main will be saved and other temporary flag

registers of the main memory will be saved and so forth.

Then actually from here you are going to go back go to the procedure A. From procedure

A procedure B will be called. So, whenever you are going to proceed your A to

procedure B of course, you have to store the same many elements as of the main program

when you are calling procedure A from procedure B.

So, you are saving the value of variables of A, program status of word of A, registers of

A, program counter of A, flags of A in this stack then you are calling B. So, now, from B

you may go to C and so forth and then afterwards what happens when you return from

that you regain the value of PC you regain the value of program status word you regain

the variables and complete the execution of it. Once it is that you will return from B to A.

Similarly now again you get back the value of PC of A where you have left from while

calling A to B then you again reached we start from the point where you have left in B.

So, before that you regain the values of variables of A, program status of A etcetera and

the PC will be loaded at a point from where you have left A to execute B after

completing execution of A you do the same thing for the main program and finally, the

whole code stops the execution. So, what I was telling you in of a nested manner in a

stack is represented in a nice pictorial manner in this slide.

(Refer Slide Time: 14:12)

So, important components of a procedural call everything program counter, instruction

decoder, arithmetic and logic units, and very important is a stack pointer and a stack. In

fact, the main memory is actually the part of implementing the stack and stack pointer is

a very very important it can be actually nothing but another variable or a register of the

stack pointer which will actually contain the address of the main memory well which is

the top of the stack.

So, the whole main memory actually is there. You are allocating a part of the main

memory first stack. So, maybe you can say that this is my stack pointer. So, there will be

a special register which will hold the value of the top of this stack because after adding

some more elements it will come over here. So, every time you recollect which is the top

of the stack.

So, whenever you want to pop some element from the stack. So, you will read the

variable or the register which is having the stack pointer you will load the value of the

stack point of the memory address register and then you can easily start popping up the

values.

(Refer Slide Time: 15:13)

Obviously as I told you and the stack is implemented in the main memory. So, main

memory is a very very important component of the function procedure card, of course

memory address register will be required because you are going to pop up the elements.

Where is the value of the memory register memory address register in the case of stack?

It is in the stack register a stack pointer. So, stack pointer is nothing, but it points to the

name, it points to the top of the top element of the stack.

So, anyone to face the element from the top element of the stack what you have to do;

you have to get the value of stack pointer to memory address register and then you can

fetch the value in the memory data register. But importantly stack I need a variable for a

register to implement the stack pointer it is nothing, but the address of the main memory

which is stored in a register and it corresponds to the address of the main memory where

the last element which was inserted in this stack is present then of course, system bus

registers everything is involved in the implementation of a procedure call.

So, this is nothing, but your whole how was CPU looks like only the CPU bus. So,

therefore, you can see there is an instruction registered, there is decoder, the instruction

register there is all the user registers program counter, memory address register, memory

data register that is the memory buffer register arithmetic logic unit you can call it as the

accumulator. So, all the components which we have talked till now are all available.

(Refer Slide Time: 16:18)

Importantly I want to point out is the stack pointer. So, stack pointer here is nothing, but

a special register which is going to hold the address of the ready main memory for the

last element that was whose in the stack is present.

So, whenever you want to pop a element from the stack what you have to do you have to

just SP will put the value in the memory address register. So, it will say that I have to pop

one element so SP will be given to the memory address register that value upon the

memory will be fetched and it will be fed back to the memory data register and from the

memory data register instead it can go to the instruction register sorry instruction register

it will go to the instruction decoding register instructions will be decoded and the code

will be executed.

So, this is overall the basic comp, CPU components which ar4e involved in a procedure

called all the components are quite similar to all other functions and for all other

instructions we have discussed till now, but stack pointer is a register which plays a very

special role over here.

(Refer Slide Time: 17:27)

Now, we have talked enough theory and this is actually a nutshell what I have told you

(Refer Time: 17:32) this is theory of a procedure code it is basically only 3 very simple

steps, you call a procedure, before calling a procedure figure everything in this stack, call

the procedure jumble an instruction where the first instruction of the procedure is there

jump to that memory location, after completing the procedure return back to the main

program form where the procedure is called and at the same time before jumping there

jumping back to the main place where we have started; where the procedure is called if

you regain back use of the programs status what the program counter variables which

you have saved before going to this one.

So, same call, come call, that call means call save, the context call the procedure go to

the procedure and complete the procedure return back to the main part of the program

from any procedure of score and before returning back we have to regain what you have

seen. So, they are very simple way of implementing a procedure. Now, it is better that

this was all from a theoretical context now we are going to look at in a very simple

example.

So, we have a processor whose memory address range is 000 to FFF. So, all these are

address bus will be one twelve bits the memory contains and as I told you. So, this is

your main memory. So, it will have 000 to say FFF and as a part of this result for this

stack. So, what is that for the stack if you see FF0 to FFF maybe some from here. So,

you know, this part of the program memory is allocated for a stack when your stack will

be saved and it is assumed that this stacks goes downwards; that means, you will be

going downwards as a stack implementation. And the main program is located from

1100, 110 to 2CF, procedure A 300 to 3B0, procedure B is located from memory location

3C1 to 3EF.

So, basically it has 3 programs one is the main program which location is 110 to 2CF,

procedure A is loaded in 300 to 3B0 and procedure B is loaded at 3C1 to 3EF. And

memory location from the main memory at location 1CD which is in between this will

call procedure A and in sorry main memory location call A instruction is at CD. So, in the

main memory main program at 1CD in memory location call A instruction is present that

is when the main program will be at instruction which is located in memory location

1CD it will be calling procedure A.

Similarly, while I am executing call A, sorry procedure A then this instruction which is in

place of 37A as a part of procedure A it will call procedure B. That is when I mean

executing the main program it will call procedure A at memory location 1CD that is the

call A instruction is located in memory location 1CD when I am exhibiting procedure in

at memory location 37A the instruction call B is there and after executing call procedure

B you will return back to A and then you can you return back to the main program.

So, we look at details what exactly what is going to happen the stack pointer at present is

F20 that is the top of the stack it is assumed. So, let us assume that the stack pointer is

this at some point of time this is your stack. This is the part of the main memory which is

allocated for this stack, the stack pointer value is there we are having 4 general purpose

registers which will hold the values, that is your scratch pad kind of a thing which are the

general purpose registers which are given to you to basically for user programming, for

using user programming. Stack pointer, program counter all are also present as a general

CPU architecture, so they are all available over here.

So, now we will see how this stack is implemented or how the stack is modified when

such a code is executed using jump instructions in a nested procedure with the example

is given below.

(Refer Slide Time: 21:32)

So, if you look at the pictorial representation we start main program at 110 in that 2CF

and then if you look at it 1CB is the instruction of the main program which is calling

function A subroutine A is starting at 300 ending at 3B0 at 37A location it is calling

procedure B who starts at 3C1 and which ends at 3EF and after ending of the procedure

again you go back. So, this is the pictorial representation of the nested call which you are

going to see and this is the example of this stack.

(Refer Slide Time: 22:00)

So, this part of the memory has been allocated for this stack. So, the memory is written

in a reverse manner basically FFF to FF0 in fact, if you go dot dot dot this will be 000.

So, we have they have not written the memory in this fashion, like 000 to FFF there just

illustrated in a reverse manner that is not a problem. Now just we have to think about

that is the last location and the 0th location is down the line. So, and this part of the

memory is allocated for your stack implementation sorry, this part of the whole part is

allocated for stack implementation and at present the stack pointer is here.

There may be some other elements over here which we are not bothered for the time

being, but our stack pointer is this point and, so we have to think about the stack which

actually starts from here, in this range sorry.

(Refer Slide Time: 22:53)

So, now we have built our context and now let us go ahead with the implementation. So,

our stack was that 20 if you remember our stack was pointing over here. Now main

program is calling the procedure A. So, now, we are at 13B. So, at this point the program

main program is calling subroutine A which with is located at location 300. So, basically

our stack pointer was here then first PC is equal to 1CD location from which the call to

procedure A is intimated. So, you see 1CD is the location from which the call is there,

call has occurred. So, what you have to do first you have to store the value of 1CD in this

stack this one because when I will be returning I will be returning back to this point.

When I will be returning from subroutine A to main program after of course, going for

subroutine B sorry this is subroutine B this is actually subroutine B. So, it is a mistake

over this is subroutine nothing, but subroutine B. So, when after executing subroutine B

you are going to execute subroutine A and then after that you are going to come to the

main program. So, I have to remember the value of 1CD because. After that I have to

start executing from 1CE that is the next instruction. So, I have to save the value of 1CD.

So, the value of 1CD is saved over here.

Next, here we are going to save the program status word of the main memory that is a lot

of contact flag registers etcetera will be saved and then I will also save the value of the 4

registers. This is the context which is saved of the main program in stack before I go to

memory location number 300 where the program procedure A starts, so 1 2 3 4 5 6 7. So,

7 values have been stored and now your stack pointer will be placed over here because

(Refer Time: 24:41) I told you stack pointer points to the memory location in this case

F14 where the last element was pushed into this stack for the current set of course, being

executed. So, this actually slide very clearly shows that when I am calling procedure A

from main program the main location per when the procedure call is initiated 1CD so

that is the program counter at that point it is first saved then the program status word of

main memories main program is saved which is the flag registers and several other

values of the intermediate variables are stored then the user registers like R 1, R 2 ,R 3, R

4, R 0, R 1, R 2 and R 3 are saved and then you go to jump to memory location 300 well

they the procedure a starts. But now the 7 elements have been saved so your stack

pointer will now point to F14.

So, now whenever from A to you will be calling procedure B. So, it will start cleaning up

from here tonight only now look at here.

(Refer Slide Time: 25:36)

So, here call B program. So, after this if you remember this was the part for main

program. Now, from here I am going to call program B. This procedure A is going to call

procedure B. So, while jumping the procedure will be you have to do the same thing you

have to save the value of 37A. So, 37A is nothing but the part of procedure A or the

location or procedure A from where the procedure B is called. So, you have to store 37A

because whenever be completing procedure B you have to return to the point in

procedure A from where procedure B was called any of the completes A. So, you have to

remember basically 37 in from when procedure A called procedure B because after

computing procedure B you have to return to memory location 37A and then you it will

start executing the next instruction that is 37B.

Of course, you have again store all the values of the context of a user registers of

procedure B because this user register well what executing the main program we are

saving some values which were local to the main program. When I am going to consider

me the same set of registers will be shared within main program and procedure A, but

then procedure even against save some values which are required to be saved or called or

this one which are local to A.

For example, I may use in the main program to store the value of C plus B in R 0 when I

am calling procedure A then I can use the same register R 0 to compute some other stuff

which may be F plus 3. So, the resources are same. These registers are same for

procedure a main program and procedure B. So, therefore, the local values involved in

the registers has to be saved when you are leaving that procedure and calling some other

procedure. Then again the program stack will again get implemented by C. So, it will

come down by already saved and the 7 values. So, the now this stack pointer will be

pointing over 7 and then it will move to 3C1 which is nothing, but the place where this

one is called. So, I am going to 3C1. So, this is nothing, but the instruction location

where procedure B starts.

(Refer Slide Time: 27:51)

And then procedure B is done. So, then procedure we will start executing and when

procedure B will be completed it has to regain back. So, after procedure B is completed

what do you have to do? You have to start executing procedure A from the point which

we have left. So, if you see if you remember 37A is the point where I called B from A.

So, you have to when I am completing. So, my stack pointer is n.

So, when I am completing procedure B see that is the 3EF which is the last location of

procedure B then it is start unwinding. So, what will happen? Then procedure B is

finished now it has to return. So, now, what will happen the stack will try to find out that

where I have to return. So, it is nothing, but procedure A very where you have return. So,

how we how the holds computer will know that what I have to do, so it does not

understand or does not remembered in a very explicit sense that A called B, B called C is

not in that way B has ended that is the last instruction of procedure B has completed now

it is a return instruction. So, we never return instruction is executed it will first look at

the stack pointer. So, stack pointer will start refilling the values in the respective

registers.

So, procedure B has completed return instruction is executed, now this part is involved

what it is doing stack pointer is 7. So, whatever is in this stack first stack pointer will be

fed to register 3 2 1 0, 4 PSW of a PSW other parts will be loaded in these corresponding

registers and main name and these registers and the flag registers etcetera. So, up to this

the whole context of A will be loaded into the respective registers; that will be

automatically done when B will be either by doing a return instruction. B is executing a

return instruction means the stack pointer starts incrementing one by one that is they are

popping out all the elements and feeding in the respective registers.

Then the program counter will be loaded at 37A that is now it will return back to A. Then

at procedure A, 37A is the location where I left A it to go to B then program counter will

be incremented by 1. So, it will be 37B and procedure B will be executed, basically this

is what is the situation.

(Refer Slide Time: 30:03)

So, in this case the whole stack which was corresponding to A is gone it has been fed to

the corresponding registers and the program status part of A (Refer Time: 30:14), A code

has been started to execute from memory location 37B and A will complete. So, when

procedure A is running. So, this is the part of this step which is in context the stack

pointer is over here and these are the elements which corresponds to the main program,

but at present we are do not require the context of the main program right now, because

now procedure A is run.

(Refer Slide Time: 30:40)

Once preceded A will be completed then what is going to happen the same thing which I

discussed from B to A the same thing will repeat for the case of A to main program. So,

the stack pointer was at 14. So, we remains you remember 3B0 is this last location in

which the procedure A was called from main location. So, you have to, from 3B0 is the

last location of procedure A and when return is called. So, last location of program that is

3B0 in procedure a when return is called. That means, at 3B0 has stopped then when it

then as I told you whenever a return instruction is called these are 0 R 1 R 2 R 3 will be

now fed to the respective registers.

So, what will happen? So, the R 0 R 1 R 2 R 4 till now were having the values

corresponding to procedure A now they will be eliminated and the values of registers

correspond in the main program will be loaded into the register. Similar thing will

happen for the program status one.

Now, what is going to happen? Now 1CD will be loaded in a program counter that is

very important because 1CD is if you remember 1CD is the place where the main

program called for senior A. So, now, this will be incremented it will be 1CE and the

main program will start executing from 1CE and finally, the stack pointer also after start

before starting the execution in the main program which called A the stack pointer will

be pointing over here the whole stack will be empty, the main program will be executed

and finally, the whole code will stop. So, this is what will be your stack.

Because after I am loading all the context to main program then there is no other code

which remains to be executed in the nesting. So, proceed your main program A B from B

to A, A to main program and the whole stack is clean. So, this is a very very simple way

in how a procedure is basically implemented.

So, now we are going to see a slight because we are this last lecture of this unit module

sorry. So, in the next module which we will be going into more integrated way of

understanding how basically the codes are executed in terms of micro instructions. So,

what we are going to see now, so when you are going to say pop, when you are going to

say push, when you are going to say jump, when you are going to say return, how

actually be what are the set of assembly language instructions that are executed. Like

push, pop, actually, involve some kind of micro instructions. Like when I say push so

what is going to happen? Push means first we have to take the value of the stack pointer

because it is pointing to the main memory. So, that value has to be loaded to the memory

address register then the value from the memory buffer register will be loaded to the

memory and then it will be again decremented.

So, because when I say pop, what is going to happen? Again the stack pointer value has

to be put to the register a memory address because only a part of the main memory is

given for the stack implementation. So, again when have the pop means this stack

pointer value will be loaded to the address register, then the address register will point to

the mean the memory address which is having the corresponding value for that stack

which you I mean I want to pop. So, that value of the memory will be going to the

memory data register and that will go to the instruction register and so forth. So in fact,

push pop call and return. So, you want to call then what you have to do before you have

to call you have to push so many instructions into the main memory into the stack and

then you have to jump unconditional to our place. So, all these push, pop, call and return

will have some kind of micro instructions.

So, now we will see basically or micro operations. So, how basically cost call return

push and pop are implemented in a micro level.

(Refer Slide Time: 34:15)

(Refer Slide Time: 34:17)

So, when I say push its very simple. So, the stack pointer will be loaded to the memory

address register and then, so, now, the memory address register is having the value of the

point in the stack which I want to push a value. So, the register Ri will be written to the

memory buffer register and finally, the memory will be returned it is something like this.

So, this is your stack pointer. So, stack pointer basically will be sorry sorry sorry. So, this

is your memory, address register will be pointing to the memory that is your stack. So,

this one will be fed by the stack pointer. So, stack pointers is a register it will be returned

to the memory address register simply pointing over here then the memory the data will

be going to the memory buffer register and the memory buffer register sorry sorry sorry

the stack pointer the memory is a push, so it will be the other way round. So, the memory

buffer register will be returned from the Ri because I want to store the value of memory

register Ri to a memory location.

And in which memory location I want to put that is the stack pointer. So, the value of

stack pointer will be given to the memory register memory register. Memory address

register memory address register is pointing to the point in this stack what I want to push

the value, but who writes to the memory if you remember the memory buffer register is

written to the memory as well as read to the memory. So, in this case it is a write

operation because you are pushing it. So, the right signal will be made high in the

memory the register Ri will be the written memory buffer register already the address

register is pointing to the top of the stack and then the value of the memory buffer

register will be written over here.

(Refer Slide Time: 36:01)

In case of pop it is just the reverse same thing. So, this is your memory address register

you are writing the value of the memory register from the stack pointer. So, we are

pointing to the exact location of this stack from we want to pop the value then you make

a read so that it will come to nothing, but the memory buffer register. So, the stack

pointer will give the address to the memory address register, memory address register

will point to the address location in the stack from where you want to read you make a

read signal and then your memory buffer register will be getting the value and memory

buffer register will be writing to the memory location from to the register. So, Ri is going

to gain back the value which you want. So, it is very simple of a pop push pop operation.

(Refer Slide Time: 36:42)

Now, call, so call is slightly complex means before you call there are so many stuff has

that has to be done. So, say I want to do a call location call. So, what I will have to do?

So, call is nothing, but a jump instruction. So, before doing it we have to push all the

elements to the stack like the program status word, where you have to return the context

and then you go for a unconditional jump. So, what you have to do? So, this is your

stack. So, whenever you want to do any instruction like return call push and pop you

have to first load the value of the program, you have to first load the value of the

memory address register from the stack pointer. You know stack pointer is the temporary

register sorry the register whose which contains the value of the top element of the stack

which can be pushed and popped right.

So, memory address register is going to get the value of SP at in stack pointer memory

buffer register you store the value of PC. So, in this case there is a memory buffer

register here you put the value of PC and then you say write. So, if you write the memory

PC will be saved over here. Then you make SP equal to SP minus 1 that is SP minus one

then you again load the memory address register, so now, your memory address register

will be pointing to the next element of this stack because this one you have stored PC

now you decrement SP equal to SP minus 1 give the value of the memory register and

memory buffer register now you put your program status word. So, now, you will have

program status word.

And you keep on doing it and then you write it then again you decrement the PC you

keep on doing it till you want to save all the elements. So, what I am doing? I am taking

the SP writing to the memory address register and then in the memory buffer register I

am putting whatever I want to save. PC step program status word all registers values I

will write in this manner and then finally, I will be PC I will load with the address where

I want to jump because now my PC has already been saved. So, I can rewrite the PC, so

the jump instruction. So, in this way he will jump to the respective location.

(Refer Slide Time: 38:47)

Return will happen, if you reverse will happen when you want to return back. So, what I

want to do? Again memory addresses register this is the fact. So, this means the facto.

So, whenever you want to do any kind of an operation of call returns push and pop

returning to this function call stack pointer will be writing to the memory address register

then you will read it. So, again you will read the value of memory buffer register to

register 1 and you will keep on doing it. So, what I am doing? Memory this is the stack

pointer is now pointing to this memory location, now this is a memory address register

this is the stack pointer this is default.

So, now whatever in this case is now in the memory buffer register, now I will first write

to R 1 R 2 R 3 R 4 there is all the in this case it will be R read will be there. So, you will

keep on reading the values if you see if the read operation. So, first from the memory

buffer register you will read R 1 R 2 R 3 then we will be reading the value of program

status word, then we will be reading the value of program counter and so forth. You will

keep on doing it from everywhere you will do register R 1 you will read, then increment

the value of program SP by 1. So, now, it will be your new SP you will read R 2, R 3, R 4

program status word and finally, you will read the value of the program counter.

If you remember I have saved the program counter then I have saved all the programs

status word handy registers. While I am popping I am reading R 1 R 2 R 3 R 4 program

status word and finally, I am reading the program counter. So, when you are returning the

program counter; obviously, you have returned from where you have left. So, basically

these two slides are showing the micro level instructions or the micro level operations

required to implement a call return push and pop. Very simple first you have to give the

value of stack pointer to the memory address register, then either do read or write and

you have to keep on doing it till you have fetched all the pushed or popped all the

required elements. When you are calling any function you have to change the value of

program quality jump instruction and when you are returning you have to write the

program counter from the stack because this stack will be remembering the value of the

program counter where I have to return.

(Refer Slide Time: 40:59)

So, this basically completes this module as well as this unit. Where you have started

from what is a very basic CPU architecture, then how instructions are designed and

finally, we have ended to a very very complex set of instructions which are involving

procedure call return calls and what do I say that is your the conditional jumps etcetera.

So, in the next module will be trying to look into more internal medians of a CPU

architecture and how these basic instructions are executed in terms of hardware signals.

So, before we close down let us see one or two simple questions. So, given the

organization of CPU how or a nested procedure how call and return can be incorporated.

Mention the name and purpose of several of the hardware elements required to do this.

So, if you are able to answer this question it will means suffice for the object is like

describe the concept of modular programming, discuss the basic requirements of CPU

design and also discuss in details about the return and issues of call and return

instructions because when you will be solving this problem you will be able to justify

these objectives.

Second similar question can be mention the general micro operations needed for the push

and pop, return and call. So, as we have last discussed what are the basic micro level

instructions required for a proper procedure call and return. So, this actually directly

satisfies the objective of synthesis design that is explain the issues of design and called

written instructions that how internally they are designed and implemented.

So, with this we come to the end of this module as this lecture as well as module. So, in

the next we will be looking at in a newer module which will be looking into more details

on the hardware aspects of execution of the instructions.

Thank you.

