
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture – 13
Flags and Conditional Instructions

 [noise]

Ok. So, ah welcome to the next unit on the module on addressing [noise] mode

instruction set and [vocalized-noise] instruction execution flow [vocalized-noise].

(Refer Slide Time: 00:30)

So, ah till now whatever we were discussing [vocalized-noise] basically what [noise] are

the different in type [noise] of instructions? How it looks? What are the formats

[vocalized-noise]? What are the different components of an instruction? [vocalized-

noise] And in the all the cases if you observe we were just assuming or thinking [noise]

that [vocalized-noise] the instructions would execute a sequential manner [vocalized-

noise].

That is first instruction may load something from the memory [noise] then it may do

some memory operation [noise] addition operation subtraction operation [vocalized-

noise] and then will again write to the memory [vocalized-noise]. So in fact, [noise] we

are assuming that everything would go in a very sequential flow [vocalized-noise], but

[vocalized-noise] as all of us have written some c code [vocalized-noise] or any any high

level language code in our line [noise]. So, we are [vocalized-noise] it is really obvious

to us [vocalized-noise] that [vocalized-noise] there is nothing which is very sequential in

a code [noise].

That means, [vocalized-noise] every time you will have some logic [noise] and it will

depend on some input conditions [noise] and based on that [vocalized-noise] you will

either jump to another instruction or even continue; like a loop [vocalized-noise] based

on some instruction you will go back to the loop and based on the [noise] exit condition

you will exit out of the loop [vocalized-noise].

In other words a very very important concept which we need to understand; when you

are looking at the instruction format and execution of instructions [vocalized-noise] is

that [vocalized-noise]; we are always have some conditions [vocalized-noise] and based

on the condition some of the instructions [vocalized-noise] will execute the next

instructions or jump to some other instruction, [vocalized-noise] which will be [noise]

executed [vocalized-noise] once the conditions are satisfied [vocalized-noise]. In fact,

they are called as this [noise] conditional [noise] instruction [vocalized-noise] and

without a conditional instruction no coding paradigm is complete [vocalized-noise].

So, along with conditional instruction [noise] in this unit we are going to look at flags

and conditional instructions [vocalized-noise]. So, conditional instructions are very

[vocalized-noise] similar to our [noise] like or if then else statement while conditions,

jump, loops, etcetera [vocalized-noise], but [vocalized-noise] whenever we say

something like [vocalized-noise] ah [noise] if x is greater than y then do something

[vocalized-noise].

So, a high level language we have a condition like x is greater than y [vocalized-noise]

and [noise] how a condition is internally checked [noise] in a [vocalized-noise] hardware

or in your [vocalized-noise] CPU [vocalized-noise] is basically depending on certain

kind of flag registers [vocalized-noise] or the registers are there and there are some bits

[vocalized-noise] which are actually set [noise] or reset depending on some conditions

[vocalized-noise]. And your conditional instruction; actually checks those flag

[vocalized-noise] and then decide what to do [vocalized-noise]. So, this unit will be

dedicated to [vocalized-noise] such conditional instructions [vocalized-noise] and what

are the flags and how they coordinate.

And how they are executed [noise]. So, this is about the [vocalized-noise] in the number

7 of this module [vocalized-noise] on flags and conditional instructions [vocalized-

noise]. So, as we are [vocalized-noise] doing at hardware [vocalized-noise] the term flag

is actually coming with the conditional instructions.

(Refer Slide Time: 02:56)

But or a high level language version [vocalized-noise] we generally talk about

conditional instructions [noise] if there else [vocalized-noise] for loops etcetera [noise].

(Refer Slide Time: 03:04)

So, [vocalized-noise] as the whole course is ah based on pedagogical acts aspect

[vocalized-noise]; so, what is the unit summary? [noise] [vocalized-noise]. So, or what

you are going to look in this unit [vocalized-noise]. So, basically this unit will be mainly

focusing on [noise] this that [noise] there are certain instructions [vocalized-noise] whose

executions are not sequential [vocalized-noise], they actually depend on conditions

[vocalized-noise]. So, actually they as you all know there is something called program

counter [vocalized-noise] which will help us to know what is the next instruction

[vocalized-noise].

So, if there is no conditional instruction as such [vocalized-noise] then the program

counter increments by 1 [vocalized-noise], but whenever there is a conditional

instruction [vocalized-noise] based on the truth of the condition [vocalized-noise]; the

program counter value changes and it jumps to the required instruction [noise]

[vocalized-noise].

So, there are two type of conditional instruction that is conditional branch and

unconditional branch [vocalized-noise]. Conditional branching means from statement x

you go to statement y [noise] or you just execute statement x plus 1 [vocalized-noise]

next instruction [vocalized-noise] depend on [vocalized-noise] some condition like

[vocalized-noise] x is greater than y, then you execute the next instruction and if it is

false [noise] you jump to some other memory location and execute the instruction there

[vocalized-noise].

But there are some unconditional jumps also [vocalized-noise] ah unconditional

statement that you come here [vocalized-noise] and then jump [noise] to such and such

memory location execute the instruction [noise] there without waiting for any condition

[vocalized-noise] or without validating any condition; that is jump unconditional

[vocalized-noise] that is just like a function call [vocalized-noise]. So, you come over

here [vocalized-noise] without any condition you just execute the instruction [noise]

which is corresponding to the function [noise] which is being called.

So, they are actually unconditional [vocalized-noise] jump instructions [vocalized-noise].

So, in this unit basically we are going to look at [vocalized-noise] ah what are the

conditional [vocalized-noise] instructions? [noise] How they actually change the

program counter? [noise] [vocalized-noise] When they are stored? What are the internal

dynamics of it [vocalized-noise]? And basically there are two types of conditional

treatment branch an [vocalized-noise] unconditional branch and conditional branch

[noise] [vocalized-noise]. And then we will look at the basic heart or basically what

actually ah determines this condition [vocalized-noise].

In high level language we say x is greater than y [vocalized-noise] or the fall [vocalized-

noise] I mean say [noise] loop continues from 0 to 10 [vocalized-noise] and every point

we increment [noise] the counter by 1 [vocalized-noise], but when the counter which is

10 [vocalized-noise] then we exit [vocalized-noise]. If hardware how actually it is

reflected [vocalized-noise]? So, it is reflected in terms of certain [noise] flag bits

[vocalized-noise] which are [vocalized-noise] some registers call the flag registers and

inside the flag register [vocalized-noise] there are certain bits allocated for [noise] some

important parameters like sign, zero, carry, parity, [noise] overflow, equality etcetera

[vocalized-noise].

So, what they are basically [vocalized-noise]? When some conditional [vocalized-noise]

instructions are executed like say add [noise] [vocalized-noise] and then certain flags

will be set [noise] in the flag register depending on the value of the operation [vocalized-

noise] say for example, if I subtract two numbers [vocalized-noise] and the answer is 0

[vocalized-noise].

So, in that case the flag bit [vocalized-noise] corresponding to 0 will be set [vocalized-

noise] if I add two numbers and the sum is say 5 [vocalized-noise]. So, in this case the

zeroth flag [vocalized-noise] which will be say reset because [noise] the answer is more

than 1 [vocalized-noise]. Then there is something called [vocalized-noise] even parity;

so, if the answer is 5 1 0 1 is an odd parity number [vocalized-noise]. So, this even parity

bit will be reset and so, forth.

That means, in other words [vocalized-noise] in this unit we are also going to look at

certain flag [noise] bits [vocalized-noise]. And how they are set and how they are reset

depending on the arithmetic operation [vocalized-noise] just before a [vocalized-noise]

just [vocalized-noise] ah after [noise] going for this instructions corresponding to

addition subtraction equality checking [noise] etcetera [vocalized-noise]. And then we

will see [vocalized-noise] how the charm conditional jump instructions basically execute

[vocalized-noise] by looking at the [noise] value of this bits in the flag register [noise].

So, what are the objective of the [vocalized-noise] unit?

(Refer Slide Time: 06:25)

This is a small unit [vocalized-noise] and the objectives are basically to discuss [noise]

that [vocalized-noise] after this object code after this unit [vocalized-noise] as a

comprehension you will be able to discuss [vocalized-noise] flag bits [noise] and how

this flag bits are set and reset [noise] [vocalized-noise]. This flag bits are heart of [noise]

any kind of a conditional instruction [vocalized-noise] and you will be able to discuss

[noise] [vocalized-noise] in comprehension [vocalized-noise] that what are the bits how

are this bit set [noise] and how are the bits reset [noise]? And then you will be able to

design the synthesis objective using this flag bits you will be able to design conditional

statements.

That is [vocalized-noise] ah [noise] are based on the because [noise] no conditional

instructions can be executed without the flag bits [vocalized-noise]. So, using these flag

bits; so, what are the conditional instructions can be designed [vocalized-noise]? Like for

example, if you have a zeroth flag [vocalized-noise] then you [vocalized-noise] you can

have instructions corresponding the equality checking [vocalized-noise] that [noise] if

two numbers are compared [vocalized-noise] or if I subtract two numbers [vocalized-

noise] and then if the [noise] answer is 0; then this zeroth flag will be set [noise] then

[vocalized-noise] I can have a instruction [vocalized-noise] called I can have a

subtraction instruction just before it [vocalized-noise] and then I can say jump on 0

[vocalized-noise].

That means, say for example, I have a counter [vocalized-noise] and I am [vocalized-

noise] I actually want to increment the counter till 10 [vocalized-noise] and [vocalized-

noise] just after [vocalized-noise] executing of the each loop, [vocalized-noise] I will

decrement [noise] or I will increment the value of the index by 1 [vocalized-noise]. And

as [vocalized-noise] as I check as I check [vocalized-noise] I will subtract the [noise]

index ah with 10 [vocalized-noise]. So, whenever the answer is 0; that means, the loop

[vocalized-noise] has reached [noise] up to 10 [noise] and it should exit [vocalized-

noise].

So, in that case I will use the jump [noise] conditional jump on wet [noise] [vocalized-

noise], but just before that I will subtract [noise] the index [vocalized-noise] variable

with 10 [vocalized-noise] and if it is zero the zeroth flag will be set and I can have a

special instruction [noise] called jump on 0 [noise] [vocalized-noise]. So, this is actually

a synthesis objective just by looking at the flag bits, you can decide what are the

instructions can be designed for this conditional course [noise].

(Refer Slide Time: 08:09)

So, before we start off this one [noise]. So, we know that whenever you talk of a

[vocalized-noise] jump instruction then what basically happens [vocalized-noise] you

you are executing certain set of code [noise] or you are in a certain [vocalized-noise]

temporal part of a code [vocalized-noise]. And as a jump instruction you generally you

can go and serve a procedure or a function [vocalized-noise]. So, before we jump

[vocalized-noise] from the [vocalized-noise] main program to some other [noise]

function or.

From one location to a some other location [vocalized-noise] the current context of the

code has to be saved [vocalized-noise]. So, [vocalized-noise] therefore, that is certain

what are the temporary [noise] memory location, what are different register values at this

time [noise], what was the accumulator value at this time [vocalized-noise]. Say for

example, you have loaded some variable you have added with something [noise] as store

the value in the accumulator and [vocalized-noise] just after that [vocalized-noise] before

saving it to the main memory [vocalized-noise], you got a procedural code and you job

[vocalized-noise].

So, whenever I come back and [vocalized-noise] execute from this one [noise]. So, what

basically happens [vocalized-noise]? The program [noise] counter say [noise] is that

memory location 5 [vocalized-noise] in each case what I have done [noise] I have added

something with accumulator [noise] and stored the value accumulator [vocalized-noise]

now the sixth location was storing the accumulator to the main memory [vocalized-

noise].

But the sixth memory locations what happened [vocalized-noise]? Just before [noise]

that [vocalized-noise] ah [vocalized-noise] sorry the [noise] location may be a

[vocalized-noise] this accumulated operation, then there is a function [noise] which may

be a condition and operation that depending on something [vocalized-noise] you execute

the next instruction [vocalized-noise] or jump to a [noise] function [vocalized-noise].

As a next instruction may be to store the value of the accumulator to the memory

[vocalized-noise] just, but just before that there was a conditional instruction [vocalized-

noise] based on something something you jump [vocalized-noise]. So, just after the

accumulator operation at memory location fifth [noise]; you add [vocalized-noise] add

something else to be accumulator, but next was a conditional instruction [vocalized-

noise]. So, without saving it to the memory you have a executed a procedure [noise] call.

But then what happens the accumulator will also be used in the procedure code; so, the

intermediate value [noise] of this sum which in the accumulator will be lost [vocalized-

noise]. So, what do you have to do? [vocalized-noise] Before you go to the executing the

function [noise] you have to store the value of the accumulator [vocalized-noise], you

have to remember the value of program counter [vocalized-noise] that now I am in 5

[noise] sixth was the [vocalized-noise] I mean [vocalized-noise] conditional instruction

[vocalized-noise].

And after I come back [noise] I have to start executing some ah [vocalized-noise] means

memory location number 7 [vocalized-noise] the instruction that will [noise] save the

[vocalized-noise] accumulator value to the same memory [noise] [vocalized-noise]. So,

you have to also remember [noise] that what position that is if I jump from this location

[noise] to this location [noise]. So, I have fifth the accumulator operation [noise] sixth is

your conditional jump seventh is again.

You are storing back the value of accumulator [noise] whatever you have done over here

in the main memory [vocalized-noise]. So, after doing this function you have to begin

come back [noise] an execute [noise] for memory location 7 [vocalized-noise]. So, when

I am jumping you have to remember that I have to come back to memory location

number 7 [vocalized-noise] whatever you need inter need value has to be stored in the

memory register memory. An d so, many temporary variable or context of the program

has to be saved [noise] [vocalized-noise]. So, that when I come [vocalized-noise] after

executing the function [vocalized-noise] I can recollect everything back [noise] and

reload the registers [noise] accordingly [vocalized-noise]. So, there is something called a

program status word [noise] which the part of the memory [vocalized-noise] or registers

which contained information [vocalized-noise] about the present state of the program

[vocalized-noise] by storing [vocalized-noise] current PSW [vocalized-noise] during

interaction [noise].

Or procedure call [vocalized-noise] then everything will safe and then you come back

after the executing your function [vocalized-noise] you can ah get back the whole [noise]

code and all the intermediate values we feel and start executing from we have left

[vocalized-noise]. So, what are the [vocalized-noise] why you are. So, [noise] PSW

[vocalized-noise] PSW is.

So, important [noise] [vocalized-noise] when you are studying about jump instructions

[noise] [vocalized-noise] because jump means you may leave the context of the current

code [vocalized-noise] and execute some other context [noise] and again come back and

re execute from where I have there [vocalized-noise]. So, the whole [noise] intermediate

state of your program [vocalized-noise] is saved as a PSW [vocalized-noise] and it will

collect that [vocalized-noise].

So, what the PSW has? It has lot of components [noise] some of them I have listed error

status of code point up the next instruction to be executed like in this case it is 7 [noise]

where I have left [noise] sign bits [noise] 0 bits [noise] carry bits [noise] reset beeps

overflow bits [vocalized-noise] and so, many other things which is listed over here

[vocalized-noise].

(Refer Slide Time: 11:58)

So in fact, [noise]. So, when we destroy [noise] books free [noise] advancing in different

[noise] [vocalized-noise] other [vocalized-noise] newer modules [noise] on interrupts

[noise], but then ah actually on memory operations then we will be looking at more in

details about what exactly [noise] the PSW stores [vocalized-noise], but for at the time

being [noise] you can see what they are [noise] there are status [noise] pointer pc is next

value all the flag bits [noise] current values of accumulator if there are some [noise]

[vocalized-noise] if [vocalized-noise] they are some [noise] registers r 1, r 2, r 3

[vocalized-noise] which are the user defined registers all those variables you will store

[noise] it as a program status words [vocalized-noise].

So, whenever I come back [vocalized-noise] I can recollect [noise] everything and I can

[noise] reuse [vocalized-noise]. So, that is one very important thing that just before

executing a jump to a [noise] function [vocalized-noise] or an interrupt service routine

which store the program status word [vocalized-noise].

(Refer Slide Time: 12:34)

Now that is about the background that before I ah I am doing some work now

[vocalized-noise] I have just go and do something else [vocalized-noise]. So, before that

actually I save my work in some intermediate memory [vocalized-noise] and when I

come back I can do that [vocalized-noise].

Now we are going to the real clocks of these ah [vocalized-noise] I means conditional

instructions that is flags [noise] [vocalized-noise]. So, this was about bookkeeping

[vocalized-noise]; so, once you have the more details about bookkeeping etcetera will be

doing when you are doing the [noise] module or interrupts [noise] [vocalized-noise] that

is all I go [vocalized-noise] then ah [noise] because the [noise] whenever there is an

interrupt you have to leave the main good well serviced interrupt [noise]. So, you have to

store the context of the main [vocalized-noise] main [vocalized-noise] main code

[vocalized-noise] ok.

So, leaving aside that [noise] that is just a quantity of the keep in mind for the time being

[vocalized-noise], then we are going to something called the heart of [noise] [vocalized-

noise] ah this job instruction that this is the code or flags [vocalized-noise]. The code or

flag is a register basically [noise] it is something called a flag register [vocalized-noise]

you have individual bits [noise] which are set and reset [noise] by the some execution of

a enigmatic [noise] operational logic operation just [noise] before the setting of it [noise].

In other words there is a register is a flag register [noise] [vocalized-noise]. So, whenever

[noise] some ah the arithmetic operation or logic operations happens [vocalized-noise];

the corresponding bits are set or reset [vocalized-noise]. For example, [vocalized-noise]

if a subtraction instruction reads to zero [vocalized-noise] then the zeroth flag is set

[vocalized-noise]; that means, there are a lot of flag like zeroth flag, parity flag, [noise]

sign flag, overflow flag etcetera [vocalized-noise].

So, [noise] this also some arithmetic operation [noise] of a subtraction addition

[vocalized-noise]; the corresponding bits are certainly set [vocalized-noise] and for many

cases [vocalized-noise] basically some of the flag bits are set or reset, but they are

[noise] not taken into picture [vocalized-noise] for example, if I am doing a subtraction

operation [noise] a minus b [vocalized-noise] so; obviously, there will be no carry

generated [noise] because unless I add two negative numbers or ah add two positive

numbers [noise] [vocalized-noise] the carry [noise] will not be generated.

But there is no overflow [vocalized-noise] a carry can be generated a as we will see in

2’s complement [noise] arithmetic [vocalized-noise], but a overflow is not generated

[vocalized-noise]. So, even if the [noise] overflow flag is set or reset if I am just adding

two [noise] ah one if I am doing a subtraction operation [noise] that is I subtract a

negative number for positive [noise] number [vocalized-noise] or one number is positive

and one number is add negative we are adding it [noise] that is [vocalized-noise] two

sign numbers are there.

But of the opposite sign [noise] and we are adding it [vocalized-noise] then the overflow

flag is immaterial the flag will be set or reset [noise] there is some different conditions

[noise] as we will see [vocalized-noise], but it will be a do not care condition [noise]

[vocalized-noise], but a very concrete example [noise] is given over there if I subtract

two numbers [vocalized-noise] and the answer is zero [noise] then the zero flag is set

[vocalized-noise] and then you can use it [noise] for an instruction like jump if zero there

is jump on zero.

So, [noise] if there is an instruction [noise]; so, if I have a operation like say SUB [noise]

SUB sub some say [noise] ah 30 [noise]. So, ah [noise] [vocalized-noise] what is we it is

taking the value of memory location 30 [vocalized-noise] whatever is [vocalized-noise]

the assuming [noise] it to be a direct instruction [vocalized-noise]. So, ah [noise] it will

go to the location 30; find out what is the value in the memory location 30, subtract with

the accumulator and store back [vocalized-noise]; you see if we [noise] content up

memory location 30 is equal to the accumulator you will get a zero over here [vocalized-

noise].

Immediately zero flag will be set [vocalized-noise] now with the next instruction you can

have a conditional instruction [noise] you can see that [noise] jump if zero [vocalized-

noise]. So; that means, if ah [vocalized-noise] the means that the memory location have

the value of 10 30 [noise] memory location 30 has the value 10 [vocalized-noise] and

accumulator is an index of a counter [vocalized-noise] which is also got 10 [noise] you

subtracted [noise] then the loop has been completed [noise] and I have to jump

[vocalized-noise] out of the boot.

So, you can say have a instruction called jump on zero [vocalized-noise] that is up to this

abstraction instruction [vocalized-noise]. So, it will jump [noise] and go out to some

other memory location because the instruction has been [noise] satisfied conditional

instruction will be satisfied because the zeroth flag will set [noise] [vocalized-noise].

(Refer Slide Time: 15:58)

So, now, we are going to see [vocalized-noise] different type of [noise] ah what are the

different type of ah [noise] typical [noise] in a typical CPU, what are the different types

of flags? [vocalized-noise] First is the sign flag [vocalized-noise]; so, this is flag is of

importance the arithmetic [noise] is sign [vocalized-noise]; that means, if if I am using

unsigned arithmetic for time being [noise]. So, these flag is of no importance [vocalized-

noise] if the operation that is if I am [noise] is in the 2’s complement [noise] arithmetic.

So, if I know the MSB is 1; it is a negative number [vocalized-noise] and if the MSB the

0 it is a positive number [vocalized-noise].

So, ah the sign basis of importance if the arithmetic is sign [vocalized-noise]; so, if the

[noise] answer is 0 that is positive [noise] if the MSB is 0 [noise]. So, it is set [vocalized-

noise] that is a positive number [vocalized-noise] and if the [noise] MSB is a 1 then it is

a negative number and it is reset [noise] 0 [noise]. So, if you do some operation and the

answer is 0; so, it is set [noise] and it is if it is the answer is not [noise] equal to 0 user is

set [noise].

So, of course, for any operation everything [noise] zeroth flag is very very important

[vocalized-noise]. Unlike if it is a unsigned arithmetic [noise] then the sign has no

meaning [vocalized-noise]; carry flag [vocalized-noise] if two numbers if the addition of

two numbers result in a carry out [noise] of the most significantly [noise] is obvious

[vocalized-noise] if I am having two numbers [noise] say example [vocalized-noise] 0 1

1 1 and if I have a ah number 1 0 0; unsigned arithmetic I am considering [noise]

[vocalized-noise] sorry if I take 1 1 sorry [noise].

If I 7 and this is 12 if I add [noise] 7 with 12 [noise] we are going to get 1 1 0 [noise] 0

[noise] and then the carry generated [vocalized-noise]. So, you you in case of a unsigned

arithmetic [noise] such a carry is [vocalized-noise] generated the more [noise]

significantly; so, the carry flag is set [vocalized-noise]. So, if I am taking two [vocalized-

noise] if I subtract [vocalized-noise] two numbers [noise] and there is some [vocalized-

noise] carry is borrowed [noise].

Then also ah sign [noise] carry flag will be set [vocalized-noise] and in all other cases it

is reset [vocalized-noise]. So, is very simple words [noise] ah as I am giving you an

example if some [noise] carry is generated by adding two numbers at the MSB

[vocalized-noise] or if the subtraction of two numbers [vocalized-noise] required a

borrow [noise] and this then ah carry flag is set [noise]. Similarly [noise] even parity

[noise] the results are generated; so, if the number of once [noise] is even the parity is set

in the another cases [noise] and you say like in this case [noise] the carry is 1, but the 4

bit answer is [noise] 0 0 1 1. So, it a number of 1s or 2; so, we say even, so even parity is

set [noise].

(Refer Slide Time: 18:05)

Several others [noise] overflow flag [vocalized-noise]; so, they tell you what is an

overflow [vocalized-noise]? Overflow will happen if the two numbers are positive

[vocalized-noise] or the two numbers are negative [vocalized-noise] because a negative

and a positive number will never generate a carry [vocalized-noise].

So, if the two in a positive numbers; with sign 0 are added [vocalized-noise] and

[vocalized-noise] is a negative number [noise] we will see why why [noise] [vocalized-

noise] what is the reason [vocalized-noise]. So, if there are its a signed arithmetic [noise]

for example, assume [noise] and there are two numbers [vocalized-noise] and you add

them and then these are over.

Because you all know in digital design what is the concept of an over, but we are also

looking in details with some examples in this [vocalized-noise]. For example, [noise] so

ah oh [noise] like as I have told you [noise] let us take an unsigned number [noise]

already we have taken the example; so, let us take 1 1 1 1 [noise]. So, definitely if I if I

will be a carry over there [vocalized-noise] and in fact, [noise] in fact, if I say [noise]

[vocalized-noise] it cannot be accommodate be in the 4 bit [noise]. So, if I assume that

the result has to be given in 4 bits [noise] and I have two numbers like 1 0 0 0

[vocalized-noise] and all triple ones [vocalized-noise].

So, of course, there will be overflow will be generated [vocalized-noise] and [vocalized-

noise] and [vocalized-noise] also we will see the idea [noise]. So, if the negative [noise]

number positive numbers [noise] whatever happens [vocalized-noise]. So, in other words

[vocalized-noise] in a digital arithmetic if a overflow is generated [noise] based on the

number of bits to store for the answered and number of bits to store for the operands

[noise] [vocalized-noise] if it is a [noise] overflow [noise] is there [noise] it [vocalized-

noise] between this [vocalized-noise] ah [vocalized-noise] it will be set [noise] other than

this will be reason [vocalized-noise].

Like [noise] for example, if you add 0 0 0 0 with [noise] triple 0 with [noise]. So, 0 0 0 4

[vocalized-noise]; so, the answer is 1 0 0 [noise] unsigned [noise] arithmetic [vocalized-

noise] of course, no over flow is generated the overflow flag is reset [noise] in this case

very simple [vocalized-noise]. Equality as I told you [vocalized-noise] if [vocalized-

noise] if [vocalized-noise] it is a [vocalized-noise]; it will [noise] this is restricted to a

[vocalized-noise] compare instruction [vocalized-noise].

So, if there is the instruction called compare [vocalized-noise] and [noise] [vocalized-

noise] then if the two numbers are equal [noise] then this flag is set [noise]. So, it is a

come to structure [noise] and you give two operands [vocalized-noise] and if they are

equal [noise] the answer with thus bit is set in the flag register otherwise it is a reset

[noise] [vocalized-noise] interrupt enabled [noise].

So, we will this also a flag in which case you allow a interrupt to be [noise] occurred or

not; that means, [vocalized-noise] ah main code is done in [vocalized-noise] whether will

allow some other course to interrupt them [vocalized-noise] if you allow it [noise]. So, it

will be [noise] its flag will be 1 [noise] [vocalized-noise] and if you are not allowing

such a interrupt to interrupt [vocalized-noise] your code [vocalized-noise] then the

[vocalized-noise] that is flag will be set to 0 [vocalized-noise].

So, at this point of time [noise] I am not going to elaborate more on interoperable

enabled flag because it is a full unit [vocalized-noise] and module which is dedicated io

and interrupts [noise] [vocalized-noise]. And simply like supervisor mode also

[vocalized-noise] some of the [noise] some some of the codes may like [vocalized-noise]

assume in the supervisor mode [vocalized-noise]. So, in all those cases you have to set

that flag [vocalized-noise] and if you are not allowing any code to run in the supervisor

mode [noise] or user privileged or [vocalized-noise] super user privileged mode [noise]

you can reset this bits [vocalized-noise].

So, these two will be discussed [noise] later whenever you are going to some advanced

modules mainly we will be talking in a further down the line [noise] on the IO module

[vocalized-noise] about interrupts [noise] [vocalized-noise]. Supervisor mode is

something [noise] also related to [noise] [vocalized-noise] operating system and

executing in a [noise] coordinate super user mode etcetera [vocalized-noise], but in

details we will be looking at interrupt [noise] flags.

Whenever we will be discussing [noise] the chapter on with [noise] them [vocalized-

noise]. Now [vocalized-noise] based on this [noise] some of the very important flags for

us is the sign flag, zero flag, carry flag, parity flag, overflow flag and equality flag

[vocalized-noise]. So, these are some of the most typically important flags [vocalized-

noise] which [noise] will be used in everyday life of designing [noise] [vocalized-noise]

sign a control instructions [noise] [vocalized-noise].

(Refer Slide Time: 21:20)

So, now we will look at some of the typical [vocalized-noise] control instructions based

on the flags [vocalized-noise]. We first move simpler what is in the unconditional

instruction [noise]; unconditional jump [vocalized-noise] that is you are at this memory

location the Pc is say 5 [noise] this is the safe memory location [noise] where the code is

using [vocalized-noise] where you can jump [noise] 50 [vocalized-noise]. So, without

looking in [noise] anything [noise] the program counter [noise] is [vocalized-noise]

going to become 50 [noise] [vocalized-noise].

Whatever instruction is present in the memory location 50 will be execute [vocalized-

noise]l there is a very simple unconditional jump instruction [noise] [vocalized-noise] no

flags are required for that [noise] [vocalized-noise].

(Refer Slide Time: 21:50)

An example [vocalized-noise]; so, move accumulator 0; so, in this case move immediate

so, they [vocalized-noise] have already mentioned about the accumulator [vocalized-

noise] ah [noise] this depends on the mnemonics or the instruction type of this machine

[vocalized-noise]. So, they say that movie immediate accumulator 0 [vocalized-noise];

so, move the value of [vocalized-noise] 0 to accumulator [noise] sometimes as I told you

many times you can also drop this [vocalized-noise].

We say that [noise] move immediate 0; it means the [noise] default [noise] destination

[vocalized-noise] destination operand in the accumulator [vocalized-noise]. So, move I 0

means the value of 0 will be directly the accumulator [vocalized-noise] then move R 2 0

0 [noise]. So, initialize this is also move immediate R 2 0 0 [noise] [vocalized-noise] so

in fact, it is better to write [noise] this 1 0 0 [noise] because [vocalized-noise] from the

size [vocalized-noise].

So, it is saying that [noise] move immediate ah R 2 0 0 [noise] that is your resetting

[noise] register R 2 [vocalized-noise] as well as you are resetting [noise] accumulator to

0 0 [noise]. So, in this case I am assuming the accumulate there is a [noise] 8 bit

accumulator [noise] [vocalized-noise]. So, these two are just [noise] [vocalized-noise]

initializing accumulator to 0 initializing user register to zero [vocalized-noise]. So, in this

ah [noise] in this instruction in this machine [noise] they are explicitly solved [noise]

[vocalized-noise].

So, in this case [noise] they are explicitly keeping the value of [noise] accumulator in the

instruction [noise] itself mentioning [noise] let us keep it [noise] in that way [vocalized-

noise]. And then another very very important thing [vocalized-noise] in when you are

doing conditional instructions [noise] is the label [noise]. So; that means, we can attach

some [noise] labels to the instruction. So, these are not actually ah [vocalized-noise] the

it [noise] will be written in the memory when the code will be executed [noise]

[vocalized-noise], but actually it is a label [noise] [vocalized-noise].

So, label means [noise] it is same as a name [noise] to the instruction [vocalized-noise]

for example, the [noise] label 1 it is saying that ADD 1 [noise] R 2 R 1 [vocalized-noise];

that means, whatever this the content of R 2 [vocalized-noise] it will be added with 1

[noise] and the value will be [noise] given to the R 2 [noise]; that means, R 2 is equal to

[noise] R 2 plus 1 [noise] that is nothing, but increment R 2 [vocalized-noise].

So, the [vocalized-noise] label 1 [vocalized-noise] colon this 1 [noise] it means that

[noise] add I R 2 1 [noise] this as with the [noise] label add [noise] then what I am

doing? [noise] You are adding accumulator to R 2 [noise]; so, whatever is in the value of

R 2 is [vocalized-noise] stored back to the accumulator [vocalized-noise]. So, now, R 2 is

[noise] dumped into a [vocalized-noise] add sorry [vocalized-noise] add the value of

accumulator to R 2 [noise].

So, whatever is in the accumulator [vocalized-noise] we will be added to R 2 and stored

back to the accumulator [noise] see the [noise] accumulator is equal to [noise]

accumulator plus R 2 [noise] [vocalized-noise]. Then jump to [noise] level 1 [noise]

unconditionally again you jump back [noise] [vocalized-noise]. So, what do I mean by

jump [noise] at level 1 means I want to jump and execute [noise] this instruction [noise]

[vocalized-noise].

That is from jump level 1 is jump to [noise] add [vocalized-noise] ah jump to add

immediate [noise] this instruction [noise] [vocalized-noise]; you want to jump [noise] to

this instruction [vocalized-noise]. So, then how can I tell that [noise] jump [noise]

unconditional to this instruction [noise]. So, it; so, some [noise] name has to be given

[vocalized-noise]. So, label is nothing [vocalized-noise], but in the name which is given

to this instruction [vocalized-noise]; so, this label 1 is a name [noise] which is given to

this [noise] instruction [vocalized-noise].

That is just after [vocalized-noise] adding R 2 [noise] to accumulator [noise] and storing

back the value in accumulator; again I wanted to jump back to this what. That means,

[noise] [vocalized-noise] you are going to execute these two instructions [noise] in a

[noise] indefinitely; there is no condition [noise] you execute this [noise] then you

execute this [noise]; that means, R 2 equal to R 2 plus 1 [vocalized-noise] that is one

incrementing R 2 [vocalized-noise].

And then again you are going to add the value of R 2 accumulator [vocalized-noise] and

save it to the accumulator. That means, you are doing 1 plus, 2 plus [noise] and you are

doing 1 plus [noise] 1 plus 1 [noise] and you are actually keeping on doing it [noise].

And it is the infinite loop [vocalized-noise]; if you like see [noise] what is happening it is

the finite loop [vocalized-noise]. So, add immediate R 2 2 1 [vocalized-noise] that means

R 2 is initially reset [noise] to 0 [vocalized-noise].

So, every time here [vocalized-noise] incrementing 1, [noise] 2, 3, 4 [vocalized-noise]

and you are adding the same value to the accumulator [noise]. So, you are adding 1 plus

2 plus 3 [noise] plus dot dot dot [vocalized-noise] [noise], but as this your unconditional

[vocalized-noise] jump [noise] label is the name of this instruction. So, you are jumping

over there [vocalized-noise]; so, you are actually having a infinitum [noise] there is no

exit from these two [vocalized-noise]. So, this just shows two very important things

forget about this ah [vocalized-noise] infinite loop [noise] business [vocalized-noise]; the

idea is that jump [noise] unconditional means [noise] without taking anything you jump

over here [vocalized-noise] and we are doing 1 plus 2 plus 3 [noise] so, on [vocalized-

noise]. And [noise] basically as I want to say jump from [noise] this to some instruction

[vocalized-noise].

So, some label is there [vocalized-noise]; so, label is the name of the instruction [noise]

where you want to jump [noise]. So, in this case [noise] I have given the name of this

instruction [vocalized-noise]. So, whenever [noise] I will load the code [noise] in that

case [noise] I will replace the value of [vocalized-noise] name of the label with a

memory location [noise].

Say for example, I load this that memory location 1 [noise] I load this as memory [noise]

location 2; then [noise] basically ah this instruction is a memory location 3 because label

[vocalized-noise] and this is the same row [vocalized-noise]. So, a label equation number

[vocalized-noise] label number 4 [vocalized-noise]; so, this is instruction number 5;

[vocalized-noise] sorry memory location number 5 [vocalized-noise]. So, it will say

jump to label 1; so, [vocalized-noise]; that means, the which memory location label 1

[noise].

So, label 1 is nothing, but memory location 3 where the instruction and R 2 plus R 1 is

there [noise] [vocalized-noise]. So, when the code will be assembled and linked and

loaded [vocalized-noise] you will replace it with the value of memory location 3

[vocalized-noise] that means [noise] after [vocalized-noise] at 5 that memory location

number fifth [noise], you unconditionally jump [noise] to memory location number 3 and

you keep on doing it [noise] 3, 4, 5, [noise] 3, 4, 5, 3, 4, 5 [noise] it will be continuously

[noise] executing [vocalized-noise].

But that is [vocalized-noise] all these labels are etcetera are replaced to the memory

location values [vocalized-noise] when they quote is par [vocalized-noise] because when

you code be assembled [vocalized-noise]. So, the [vocalized-noise] these are all

[vocalized-noise] thought in details [noise] that are code [noise] called assembled link

control [noise] that is the system programming [noise] [vocalized-noise], but for us is

enough to understand right now [noise] that from jump [noise] to label 1 means [noise]

you are jumping from this one [vocalized-noise] to the name to this instruction whose

name is label 1 [vocalized-noise] and in this [vocalized-noise]. In fact, this is a [noise]

[vocalized-noise] it is a loop instruction basically because there is no condition it has to

if say infinitely [vocalized-noise].

(Refer Slide Time: 27:16)

Right now you are [vocalized-noise] as we have told [noise] that actually jump

unconditionally use many things [noise], but we need [vocalized-noise] heart of

[vocalized-noise] instructions on [noise] control instructions are basically on conditional

instructions [noise] [vocalized-noise].

Like some of the examples it is given [vocalized-noise] jump any or jump on zero [noise]

there jump [noise] if not equal to [noise] zero [noise] [vocalized-noise] jump any [noise]

jump not equal to zero [noise] or jump not zero [noise] [vocalized-noise] right JEQ jump

is equal to [noise] jump on Z [noise] JNC JL [vocalized-noise] JLO [noise] jump; if no

carry [noise] or jump if carry [noise].

So, you can go through it [vocalized-noise] [noise] several [noise] type of instructions

that there [vocalized-noise] jump L [vocalized-noise] jump [noise] if less [noise]

[vocalized-noise] ah JGE [noise] jump is greater than or equal [noise] JN [noise] jump if

negative [vocalized-noise].

So, based on the flag [vocalized-noise] like it is saying that [noise] jump any or jump not

Z [noise] [vocalized-noise] in. In fact, [vocalized-noise] this time you are checking the

jump not zero means you are checking the zero flag. [noise] [vocalized-noise] Jump any

[noise] jump not equal to means if you are checking the [noise] equality flag [noise].

Jump [noise] negative [noise] you are checking the negativity flag that is a sign flag

[vocalized-noise]. So, if the sign flag is set [noise]; that means, is a negative number

[noise] jump [vocalized-noise] ah if less; so, you can check the equality flag. So, all

those different flags will be present [vocalized-noise] based on the flag values of the flag

with registers available [noise] [vocalized-noise] you can correspondingly decide or

design your instruction set [vocalized-noise] on the jumps [noise].

(Refer Slide Time: 28:33)

Like we are now going back to the same example [noise] [vocalized-noise] of ah the

same thing that there is a loop, [noise] we are resetting the value of accumulator. [noise]

we are resetting the value of [noise] R 2 [noise] that is we are adding 1 plus 2 plus 3 plus

4 like that [vocalized-noise], but [vocalized-noise] in the previous step we were actually

jumping it [noise] unconditionally [noise] back to the initial one [vocalized-noise]

[noise] [vocalized-noise]; set reset this accumulator and registered 2 [vocalized-noise]

then every time he was making R 2 1 1 [noise] implementing R 2 [noise].

Then every time you are adding the value of R 2 2 [noise] accumulator [noise] and the

repeating this [vocalized-noise]; that means, we are not [noise] we are not existing out of

the loop based on some [noise] condition [vocalized-noise]. Here we are actually using a

loop [vocalized-noise] [noise] [vocalized-noise], the same example we are going to take,

but here we are going to [noise] come out distance have several conditions [noise]

[vocalized-noise]. Like if you look [noise] label 1 is the [noise] name of this instruction

[vocalized-noise] then add R 2 the accumulator [noise] add R 2, R 1.

That is increment the value of R 2 same thing as above [noise] at the value of R 2 the

[noise] accumulator [noise] that is add [noise] add accumulator to R 2 [noise]; here the

conditional step comes in [vocalized-noise]. That is CMPI [vocalized-noise] that is

compare the value [vocalized-noise] of R 2 to n [vocalized-noise]; that means, [noise]

you are incrementing the value of R 2 [vocalized-noise] say I want to ADD 1 plus 2 plus

3 plus 4 up to 10 [vocalized-noise].

So, this n is in this case going to be 10 [vocalized-noise]. So, after doing the add R 2

[vocalized-noise] ah [vocalized-noise] R 2 2 accumulator and saving that the value

accumulator [vocalized-noise] we are going to check [vocalized-noise] whether R 2 has

reached the value of 10 or not [noise]; here it is 10 [vocalized-noise]. So, there is a

[vocalized-noise] CMPI instruction [noise] [vocalized-noise] and whenever R 2 will be

equal to 10 [vocalized-noise]; that corresponding [noise] equality flag will be checked

[noise] when they made set [vocalized-noise].

And then you can say [noise] jump not equal [vocalized-noise]; that means, if the

equality flag is not set [noise] jump not equal then again you jump back to label

[vocalized-noise]. And whenever this will be equal that is [vocalized-noise] R 2 and n

will be equal because n is equal to 10. So, n R 2 will have the value of 10 [vocalized-

noise] then jump not equal to label 1 will become false; because now they will be equal.

Because jump not equal [noise] J not equal; it is true [noise] if and only if [noise] the

equally the flag is reset (Refer Time: 30:21). Whenever the equality flag is true jump not

equal who will become false you know the equality flag will be set [noise]. So, there is

something called equality flag [vocalized-noise]; so, if the equality flag is equal to

[noise] 1 sorry equality flag is 0; that means, when two stuffs are not equal, two operands

are not equal [noise] [vocalized-noise] then jump not equal will be true [vocalized-

noise], but whenever two numbers will be equal then what is going to happen the

equality flag will be set [vocalized-noise].

And then jump not equal who will become false [vocalized-noise] whenever jump not

equal 2 will be false; [noise] it will not jump to label [noise], but we will go and execute

the next instruction [vocalized-noise]; so, it will come out of them [vocalized-noise]. So,

it gives a very nice example [vocalized-noise] that how the other [vocalized-noise]

infinite loop of adding 1 plus 2 plus 3 has been modified to [vocalized-noise] ADD 1

plus 2 plus 3 [noise] up to that [vocalized-noise].

So, it gives a very nice idea that ah just before a comparison instruction we do a

corresponding comparison [vocalized-noise] ah sorry we do a comparison instruction set

the corresponding flags [vocalized-noise] and just by looking at this flag [noise]; we

decide either to go to the [noise] top of the loop as re execute the loop or we come out of

this one [noise]. So, that is actually the [vocalized-noise] very concrete example of using

a control instruction [noise]

(Refer Slide Time: 31:27)

Now [vocalized-noise] because [noise] ah whenever we will be looking at more ah

different complicated codes [noise] in the next module; we will be always using so,

many times [vocalized-noise] these ah control instructions [noise], but [noise]

[vocalized-noise] in this unit we let us look at the more interesting [noise] part of it that

is how the flags are set [vocalized-noise] or which flags are set [vocalized-noise]. If we

can find out which flags are set or reset [vocalized-noise] then after that it is very simple

to think about the control instructions [vocalized-noise] because they have [noise] just

option [noise] true or false.

If it is true [vocalized-noise] generally it will go to the next [vocalized-noise] to the

desired position of the label which is [vocalized-noise] ah which is the conditional

instruction is pointing to the label; it will go to that label [vocalized-noise]. If the

[vocalized-noise] condition is true [noise] else we will just execute the next instruction

after the [noise] jump instruction [noise]; extremely simple [noise] about it [vocalized-

noise].

So, now we are seeing [vocalized-noise] with different examples [vocalized-noise] how

different flags are set which flags are set, [noise] and which flags [noise] are reset

[vocalized-noise] that is more interesting [vocalized-noise]. So, for example, they are

doing 7 and minus 7; so, as both plus and minus are involved [noise]. So, it is a sign that

is value [vocalized-noise] 7 [vocalized-noise] is represented as 0 1 1 is 2’s complement

[vocalized-noise] minus 7 is nothing, but in 2’s complement it is 0 1 1 and [noise] again

you have to add a 1.

So, it is [noise] [vocalized-noise] sorry [vocalized-noise]; so, this is actually [noise] 2’s

complement [noise] of minus 7 [vocalized-noise] because [vocalized-noise] a once

complement of minus 7 is nothing, but [vocalized-noise] 1 0 0 0, you add a 1; you get

this [noise]. So, this is actually the [noise] [vocalized-noise] 2’s complement of [noise] 7

that is [noise] minus 7 [vocalized-noise]. So, minus 7 and plus 7 are represented over

here [vocalized-noise] just I recall from the digital design [noise].

So, the LSB is 0; [noise] it is a positive number [noise]; so, this is a positive number and

this any number [vocalized-noise]; now let us add it [noise]. So, as [noise] it is a it is a

signed arithmetic [vocalized-noise]. So, if you add it you are going to get 1 [noise] 1 plus

1 is 0 [vocalized-noise] carry will be 1. So, 1 plus 1 again 0; the carry will be 1; so, 1

plus 1 is 0 [noise] again 0 and this is generating [noise]. So, this is basically your answer.

(Refer Slide Time: 33:08)

[vocalized-noise] And this is your some extra [noise] it has been generated [vocalized-

noise]. So, 7 minus 7 is equal to 0; so, answer is 0 which is correct [noise] [vocalized-

noise] now you see what are the flags [noise] are set and reset [vocalized-noise]. In flag

all flags are either set [vocalized-noise], but some will be used and some will be

discarded based on the context [vocalized-noise]. So, [noise] for example, zero flag is set

[noise] [vocalized-noise] the 4 bit answer is 0 0 0 0 [vocalized-noise]. So, it holds

[noise]; so, this in this [noise] case Z equal to 0. So, the [noise] zero the flag is [noise] set

[noise] [vocalized-noise].

It may be noted that we have considered 2’s arithmetic [noise]. So, we ignore be carry

[noise] this is very important [vocalized-noise] in 2’s complement the arithmetic we

generally ignore the carry [vocalized-noise] ah, but [noise] anyway for calculating the

zero s flag which is not at all going into look at the carry business [vocalized-noise] for

the zeroth flag checking this is only of matter of importance [noise] that is the answer 4

bits [vocalized-noise].

Whether a carry is generated it is [noise] not generated whether you want to reject be

carry because [noise] of 2’s complement [noise] arithmetic it has nothing to do

[vocalized-noise] it has got the 4; 0’s as the answer [vocalized-noise]; so, the zeroth flag

is set [noise] [vocalized-noise]. A new checks or the 4 bits ah if the answer is 0 as this

words [vocalized-noise] in this case the zeroth flag is 1 [vocalized-noise]. Then the MSB

of the final answer [noise] after negating we carry because [vocalized-noise]. So, in this

case zero flag is equal to 1 that is the first thing [noise] because [noise] it has nothing to

do with [noise] any other stuff [noise].

You just take the 4 bits as the answer [noise] or 0 [noise] serious flag is set [noise]

[vocalized-noise]. Now the MSB is 0 [noise] because as I told you [noise] in 2’s

complement arithmetic [vocalized-noise] we cannot neglect the carry [noise] 0; so,

indicating that is a positive answer [noise]. So, [noise] the ah; so, the answer is positive,

so if there is a positive flag the answer will be 1; [noise] in these case N [noise] in case

say is a negative flag N.

So, the negative flag is 0 because the answer is a positive flag [noise] in the case it is a

positive [noise]. So, negative flag is used [noise] there is a negative flag call m

[vocalized-noise]. So, it will be reset [noise] because the answer is a positive answer

[noise] [vocalized-noise]. So, have it been [noise]; so, we will see if the answer is a

negative answer then what will be value of the negative flag [noise] N flag; in this case

as carry is generated. So, if you see; so, zeroth [noise] flag is 1 negative flag is 0.

Negative flag is reset because these MSB is equal to [noise] 0 [noise] 0 is I thing 2’s

complement arithmetic at the MSB will [noise] denotes a positive number [vocalized-

noise]. Now look at the carry [noise]; so, a carry is generated [vocalized-noise]. So, as a

carry is generated the [vocalized-noise] C flag of the carry flag is set to be 1 [noise]

[vocalized-noise], but again as we arithmetically signed [noise] the value of carry is

ignored [vocalized-noise].

So, that is very important [vocalized-noise]; so, in a 2’s complement arithmetic what

happens? We have [noise] done this and [noise] if you look at the de facto [noise]

standard in digital design [noise] in 2’s complement [noise] arithmetic, we are not

actually bothering [noise] about the carry which is generated [noise] that is a do not care

condition [vocalized-noise]. But [noise] in a hardware when the flags are set or reset in

to have a look at all those contexts [vocalized-noise].

This is zero the zeroth flag will just check [noise] what are the [vocalized-noise] answer

of the [vocalized-noise] 4 bits [noise] as it is 0 [noise] these 0 the flag is set [noise] this

bit is [noise] 0; that means, the positive number. So, the [noise] positive flag will be set

[noise] or the negative flag is reset [noise] a carry has been generated [noise]. So, in this

case the carry flag is set [noise], but as [noise] the arithmetic or the instructions [noise]

you have executed [noise] [vocalized-noise] we know the in the 2’s [noise] complement

numbers I have given as input [vocalized-noise]; so, I will not use the carry flag

[vocalized-noise].

So, in other words the [noise] flag setting logic [noise] is totally blind [noise]; it is taking

two numbers 0 1 1 1 and 1 0 1 and generating the answer as 1 as a carry [vocalized-

noise] and 4; 0s as the answer [vocalized-noise]. And accordingly the flag bits of 0 is set

[noise] [vocalized-noise] the flag bit of negative number is reset [vocalized-noise] and

[noise] a carries [noise] the flag set [vocalized-noise], but as I know [noise] as a

programmer.

That I have given the two numbers which are the input has 2’s complement arithmetic

[noise] and in this case the carry is not [vocalized-noise] calculated or ignored

[vocalized-noise]. So, I have to myself ignore the carry flag [vocalized-noise] even if

they said I should not use it as a [noise] [vocalized-noise]. If I use the value of carry bit

[vocalized-noise] immediately after this instruction [noise] to do some conditional check

and jump [vocalized-noise], there may be a logical error in my code [vocalized-noise].

So, as a programmer I have to know that I have to [vocalized-noise] ignore the carry flag

for this instruction [vocalized-noise]. Since the both the numbers of [noise] [vocalized-

noise]; so, anyway ah say that [noise] the another flags we can think [vocalized-noise]

since both the numbers are of different sign, [noise] [vocalized-noise] the output flag is

zero [noise] anyway we will see that [vocalized-noise] as the number of 1s in the answer

is 0 [noise]; so, even parity flag is set to one and so, forth [vocalized-noise]. So, anyway

all this ah [noise] flag bits can be easily understood [noise] [vocalized-noise] ok [noise].

So, again I will come to that; so, [vocalized-noise] important add [vocalized-noise]

basically this 3 [noise] [vocalized-noise] that the zero flag is set, [noise] the negative flag

is reset, a carry flag is set [noise], but it has to be ignored [noise] [vocalized-noise]

similarly the [vocalized-noise] 4 bits the answer [noise] is 0. So, the th flag will be set

[vocalized-noise] and [noise] if the sorry I mean the ah [vocalized-noise] the 4; there are

4 0’s [vocalized-noise]; so, the number of parity is even [vocalized-noise].

So, given parity [vocalized-noise] is decide [noise] [vocalized-noise] to be more the

[noise] and the [noise] numbers are of different signs, [noise] some sign flag will be set

to 0 and so, [vocalized-noise] Sso, forth [noise]. So, lot of flags will be there and based

on the values the flags will be set or rest [vocalized-noise], but which flag has to be

ignored has to be decided by us [noise]. Again I will take another example; so, [noise] to

make the things [noise] more [noise] easier [vocalized-noise] like for example, I have

taken 2 [noise] and I have taken minus 3.

(Refer Slide Time: 38:10)

That is 2 minus 3 I am going to do [vocalized-noise]. So, this is our 2’s complement

[noise] implementation of the minus 3 and 3 [noise] if I do the answer [vocalized-noise]

and ready to get this as the answer [vocalized-noise]. So in the basically if the answer

should be equal to nothing [noise], but minus 1 [vocalized-noise]; so, in this case what

happens? [noise] the 4; 1s are there [vocalized-noise]. So, the [noise] it is checking that

the last bit is 1 [noise].

So, the zero is flag [noise] let us first say less at the zeroth flag [vocalized-noise]; so, the

all the answers are 1 [noise]; so in fact, [noise]; obviously, the answer is not the

[vocalized-noise] 0. So, the zeroth flag is set to 0 [noise] that is obvious [vocalized-

noise]. The MSB is 1; so, it is a negative number [noise]; so, the negative flag is set to 1

[noise] obviously there is a [vocalized-noise] negative number because there ah

[vocalized-noise]. So, the 2 minus 3 is minus 1 [noise]; so, negative flag you set

[vocalized-noise] there is no carry will be generated [vocalized-noise].

So, the [noise] carry flag is at 2 [vocalized-noise] but again as a programmer; you have

to always do not consider the carry flag as of now [vocalized-noise] because even if the

carry flag is reset because it is no carry generated [vocalized-noise], but in 2’s

complement the arithmetic [noise] carry flags are not used [vocalized-noise]. So, that

you have to over [vocalized-noise] [noise] since both the numbers of different size

[noise] the overall [noise] flag is 0 [vocalized-noise] [noise].

So, why what I was telling about this overflow flag now and this [noise] [vocalized-

noise] means the idea is that if the two numbers; one is positive and one is negative, a

overflow can never happen [vocalized-noise]. So, basically in such cases always the

overflow flag is reset [vocalized-noise]. So, whenever [vocalized-noise] I means

whenever I take some new examples now when both the numbers will be positive or both

the numbers will be if the negative [vocalized-noise]; the overflow flag will be talked

about [vocalized-noise].

So, in both the cases the overflow flag is set to 0; the 4 answers are 4 1’s [vocalized-

noise]. So, if the 4 answers are 1 [noise] then what is the case? Is an even parity; so, the

even parity flag is set to 1 [vocalized-noise].

(Refer Slide Time: 39:44)

Now, as I was telling you that all the flags we have [noise] considered [vocalized-noise],

but every time the output or the [vocalized-noise] sorry in the overflow flag O is the

overflow flag [vocalized-noise]. The overflow flag we are actually not considering right

now because [noise] one number is positive and one number is negative [vocalized-

noise].

If both the numbers of differences the overflow flag is [noise] neglected [vocalized-

noise]. Now you are taking two numbers of 8 [noise] and we are using an unsigned

arithmetic. So, now all the other flags importance will start coming up [vocalized-noise]

because two numbers are splitting and if you are adding you may get the overflow, you

may get the carry [vocalized-noise] because you are going an unsigned arithmetic [noise]

in unsigned arithmetic carry etcetera are of importance [vocalized-noise].

So, I add two numbers 8 plus 8; so, you are going to get the answer as [noise] 1 [noise] 0

0 0 0 that is 16 [vocalized-noise], but now you see these are the 4 bit which are of

importance [vocalized-noise] this one bit carry or overflow as been generated [vocalized-

noise]. So, now, this [noise] sorry [noise]; so, as the hardware it will just check

[vocalized-noise] the answers are 4 0. So, that is true that the zero flag is set [vocalized-

noise].

The MSB is [noise] zero [vocalized-noise]; so, [vocalized-noise] it is not going to check

the carry 1 [noise]. So, the answer is 1 0 0 0; 1 0 0 0 [vocalized-noise] both the answer is

a 0 0 0 0 [vocalized-noise] the carry is generated as 1 [vocalized-noise]. So, [vocalized-

noise] this is checked the MSB is 0; [noise] it is not going to look at the overflow

[vocalized-noise] [noise]; so, the negative flag is reset [noise] [vocalized-noise] again ah

[noise] in this case also you can ah ignore the [noise] ah negative or [vocalized-noise]

positive flag here [vocalized-noise]; using this case is an unsigned arithmetic [vocalized-

noise].

Previous version [vocalized-noise] using a signed arithmetic in 2’s complement [noise]

[vocalized-noise]; this was very very important [noise]; then you get the flag was [noise]

very important. In that case the [noise] zeroth MSB means a [noise] [vocalized-noise]

positive number and 1 in the MSB as a [noise] negative number [vocalized-noise]. So, in

large context [noise] you had to take [noise] into mind that I have a consider [noise] this

flag [vocalized-noise]. So, if I take 1 0 0 [noise] and 1 0 0 [vocalized-noise] sorry 1 0 0 0

and 1 0 0 0 in 2’s complement [noise] arithmetic, these are two negative numbers

basically [vocalized-noise]. So, if you are [noise] e as [vocalized-noise] programmer you

know that I have given [noise] the two numbers as input which are in 2’s complement in

that case [noise] you have to very deliberately [noise] keep in mind about the sign flag

[noise].

[vocalized-noise], But as the present example we are taking unsigned arithmetic [noise].

So, you have two negative flag [noise] ah has been generated definitely [noise]. So, the

carry flag is set to 1 [vocalized-noise] again previous case [noise] we have to neglect the

carry flag; that means, because we are using [vocalized-noise] [noise] ah 2’s complement

arithmetic [noise] and one number was negative and one numbers positive [noise]. So,

you are neglecting the carry flag [vocalized-noise], but here as [noise] we are using an

unsigned arithmetic [noise] a carry as been generated [vocalized-noise] and in such

unsigned arithmetic the carry flag is set to 1, [vocalized-noise] ah carry has been

generated and you have to consider this [vocalized-noise].

Similarly ah [noise] the number of plus [noise] [vocalized-noise] if you see; the number

of ones in the answer is 0, the parity flag is set to 1 [vocalized-noise], but again since

both numbers are [noise] negative [noise], but the sign is 0 which indicates the answer is

positive [noise].

So, overflow flag is 1 [vocalized-noise]; so, in this case you see [noise] [vocalized-noise]

what why is an overflow [noise] [vocalized-noise] ah for example, if both the numbers

are [noise] negative. So, if you consider ah [noise]; so, again this one is very important

[noise] [vocalized-noise] is you are considering [vocalized-noise] [noise] ah ah [noise]

sign [noise] [vocalized-noise] arithmetic [vocalized-noise]. So, if you are taking a sign

arithmetic [noise] then 1 and 1; they are two negative [noise] numbers [vocalized-noise].

Since both the numbers are negative [noise] sine bit is 1, if you are considering a 2’s

complement arithmetic [vocalized-noise], but the sign [noise] bit of the answer is 0

[noise] that is this is a 0 [vocalized-noise]. So, had [noise] these been the two negative

numbers [noise]; so, what are the 1 0 0 and 1 0 0. So, if you are taking a 2’s complement

[noise] arithmetic [noise] it will be 0 0 [noise] ah it will be [noise] 0 sorry [noise] ah this

is actually nothing, but [noise] 0 1 1 1, you add a 1 [noise] nothing, but [vocalized-noise]

minus 8 [noise].

But this is nothing but [noise] equal to minus 8 [noise] and minus 8 [noise] [vocalized-

noise]. So, if you are taking it is a signed arithmetic format [noise] this is minus 8 [noise]

basically [noise] [vocalized-noise]. So, in that case [noise] you are adding minus 8

[vocalized-noise] and minus a. So, in this case your answer should be minus 16

[vocalized-noise], but somehow you are giving the MSB as 0 [vocalized-noise]. So, in

this case there is a [noise] which is the both the numbers are negative [vocalized-noise],

but the answer is 0 which indicates that the answer is positive [vocalized-noise].

So, the overflow flag is 0 [vocalized-noise]; so, the over flag overflow [vocalized-noise]

or [vocalized-noise] overflow [noise] flag is set to 0; that means, [vocalized-noise] ah

[vocalized-noise] the overflow flag is set to 1 [vocalized-noise] because [vocalized-

noise] had this is a signed arithmetic. So, this minus 8 minus 8; [noise] the answer should

have been minus 16 [vocalized-noise].

But some of the answer is showing [noise] MSB as 0 [noise] which is basically wrong

due to an overflow [vocalized-noise]; so, the [noise] overflow flag is set to 1 [noise]. But

[noise] in this context [noise] as we are using an unsigned arithmetic [noise], you have to

totally neglect the overflow flag [vocalized-noise]. So, in this case we are going to

neglect the overflow flag, but we are going to take the [noise] carry flag because they are

both unsigned numbers [vocalized-noise] one has been generated which is nothing, but

your [noise] carry flag [vocalized-noise] [noise].

But [noise] this is not a mistake with there is a no overflow [noise] because we are

considering only [noise] unsigned positive number [noise]. So, in this case this is plus 8

[noise] and not minus 8 [noise] in the 2’s complement format [vocalized-noise]. So, in

other words [noise] it is very very important [vocalized-noise] to decide what is the

context and what flex I have to take and what flex [noise] I do not have to take

[vocalized-noise].

Like when I am adding two numbers [vocalized-noise] which are positive [noise]

[vocalized-noise] immediately have to think that [vocalized-noise] I will take the [noise]

zeroth [noise] ah I will take the zeroth flag [vocalized-noise], I can take the negative flag

[vocalized-noise], I can take the parity flag, I can take the carry flag, but as they are two

sign arithmetics I am [noise] [vocalized-noise] adding it [vocalized-noise]. So, the

overflow flags can be neglected for the time being like just like this; here [noise] it is a

[noise] unsigned [noise] arithmetic two numbers you are generating [vocalized-noise].

So, [noise] the carry flag will be neglected over here [noise] because [vocalized-noise] in

a unsigned [noise] binary one is negative one is positive [vocalized-noise] or in 2’s

complement subtraction when you are doing; [noise] we always neglect the [noise] carry

[noise] [vocalized-noise] 2’s complement positive [noise] or negativity whatever when

you are doing in 2’s complement we may neglect the [noise] [vocalized-noise] carry

[vocalized-noise].

So, since both the numbers are of different size ah [vocalized-noise] ah the the different

symbols like one is positive and one is negative [noise]; the overflow can never [noise]

will generate [noise]. So, the overflow flag will always be [vocalized-noise] 0 as

discussed [noise], but we are not neglecting [noise] that is very very important over here

[vocalized-noise] ok ah some more [vocalized-noise] very simple examples [noise].

(Refer Slide Time: 45:30)

Like 5 plus 4 [noise] if you are going to do [noise] al this is a unsigned arithmetic

[vocalized-noise]. So, you add this you are going to get the answer as this [noise]

[vocalized-noise]; obviously, the zero flag is reset [noise] because the answer is not 0;

[vocalized-noise] the MSB is 1 indicating is a negative number [noise], but again is an

unsigned arithmetic [noise]. So, you have to neglect the negative flag [vocalized-noise]

there is no carry generated over here. So, the carry flag is reset we have to consider this

[vocalized-noise] because 4 plus 5 is 9; [vocalized-noise] you are doing the operation in

a 4 bit arithmetic.

So; obviously, [noise] no carry will be generated [noise] two numbers you are taking plus

4 and minus 4 the MSBs are 1 [noise] which is a negative number [noise]. So in fact, a

overflow flag will be set [noise] because two negative numbers [noise] numbers who are

takes [vocalized-noise] two positive numbers who are taking the answer should [noise]

always be positive [vocalized-noise], but the answer is showing an MSB. But again as I

told you is an answer in the arithmetic [vocalized-noise] overflow flag will be set to 1,

but is an answer in arithmetic. So, it is ignored [noise] the number of 1’s are [noise] 2

over here even parity [noise] even if fact flag is set and you have to consider this flag

[noise].

(Refer Slide Time: 46:28)

Similarly, [noise] again if I ah [noise] take some other example 7 plus 1 is equal to 8

[noise]; same thing [noise] is going to be the answer answer is not all 0 [noise] zeroth

flag is reset we have to take it [noise] look at the flag MSB we final answer is negative

[noise]. So, negative flag is set to 1; again [noise] ok [noise] just a minute [noise].

So, let us assume that this slightly ah [noise] ah different in this case. So, in this case I

take [noise] 7 plus 1 [vocalized-noise], but in this case I assume a 2’s complement

arithmetic [noise] like in this case this was just to just to keep your variation [vocalized-

noise]. So, in this case ah is a unsigned arithmetic [vocalized-noise] I could have also

taken this in unsigned arithmetic version [vocalized-noise], but in this case [noise] I am

using [noise] two positive numbers, but still I am using a signed arithmetic version

[noise].

So, just I am trying to see what is the difference [vocalized-noise]? So, in this case; so, I

am adding 7 plus 1. So, it is 8 [noise] to this is the case [vocalized-noise]; so, in this case

I am using a 2’s [noise] arithmetic [vocalized-noise] 2’s complement arithmetic [noise]

2’s numbers are positive [vocalized-noise], but still I am using [noise] a sign that here

[noise] just to give the example [vocalized-noise]. So, MSB is 1; so, indicating the

number is negative; so, the negative flag is set to 1 [noise] [vocalized-noise].

So, there is no carry generated [noise]; so, the carry flag is set to 0 [vocalized-noise].

Since both the numbers are positive [noise] that is sign bits are 0 [vocalized-noise], but

the sign of the answer is one which is a reverse [noise]. So, the overflow flag is set to 1

[noise] [vocalized-noise] as 1 is also this is [vocalized-noise] as [noise] O is 1 [noise] the

answer is not [noise] valid [noise] and so, is flag a [noise].

Now we are going to see in details [noise] only 1 1 in this answer. So, in this case [noise]

is a odd parity [noise]; so, the odd parity flag is set to 0 [vocalized-noise]. Again in this

case [noise] all flags are valid [noise] again let us we look what we are doing and what is

the [noise] difference [vocalized-noise]. So, in this case plus 5 and plus and 4 they are

positive numbers we are using a [noise] unsigned arithmetic [noise] format [vocalized-

noise]. So, I have told you [noise] what it means [noise] in this case [noise] I am taking

two [noise] positive numbers [noise] like 7 and 7 [vocalized-noise].

But in fact, [noise] I am using a sign arithmetic version [vocalized-noise] that is ah is ah

[vocalized-noise] 2’s complement arithmetic [noise] where the ranges from minus 8 in

this 4 bit number [noise] minus a to plus 8 [noise] this is the rate [noise] you all know

from digital design fundamentals [vocalized-noise]. But in this case there are 4 bit

numbers [vocalized-noise] and this is a unsigned arithmetic [noise]. So, you can go from

0 to [noise] 50 [noise] that is the range difference [noise] [vocalized-noise].

(Refer Slide Time: 48:39)

So, in this case I have [vocalized-noise] talking on a 2’s complement rate [noise] that is

minus 7 to [noise] plus 7 [vocalized-noise]. So, if I do the addition [noise] we are going

to give this as the answer [vocalized-noise]. So, as [vocalized-noise] if you look at it

[noise] it is a invalid answer [vocalized-noise] because [noise] 7 plus 8 is going to be

positive 8 [noise] [vocalized-noise], but positive 8 cannot be represented in 4 bits in 2’s

complement arithmetic [noise]; these are very well known thing I think if if you are

[noise] forgot.

You can just go and [vocalized-noise] if I do a digital [noise] design fundamentals

[noise] [vocalized-noise]. Because positive 8 will be 0 [noise] 1 0 0 [noise] this is

actually positive 8 [vocalized-noise] because 1 0 0 0 is [noise] negative 8 in [noise] 2’s

complement arithmetic [vocalized-noise]. So, this in fact, [noise] that is why I told you

them going out of [noise] range; so, this will be the incorrect answer [vocalized-noise].

So, if you do this [noise] we are going to get the answer [noise] this one; 1 0 0 0

[vocalized-noise] as a hardware you does not understand much, [noise] it [noise] will just

[vocalized-noise] develop the value of flags [vocalized-noise] based on certain hardware

computation [vocalized-noise]. So, 0 0 flag is reset [noise] it is taken [vocalized-noise]

MSB is 1 [noise] directly indicating that is a negative number [noise]. So, negative flag

is set [noise] it is a negative number. In fact, as I told you the answer should be [noise]

positive [noise]; positive 8 [vocalized-noise], but we are not going to get the answer

positive 8 in a 4 bit answer [noise].

So, therefore, [vocalized-noise] you require a larger space or a 5 bit [noise] space to

implement [noise] [vocalized-noise]; if you could have done in this way then your

answer would have been correct [vocalized-noise] would have [noise] bought this as the

answer [vocalized-noise] which is going to give you [noise] the correct answer in signed

arithmetic [vocalized-noise].

But as you are using a [noise] 4 bit number to do this [noise] so in fact, that is why

[noise] you are going to get an overflow [noise] and all the problems have started

[vocalized-noise]. So, MSB is 1 1 [noise] the negative flag is 1 [vocalized-noise] there is

no carry generated [noise], those carry flag is listed [vocalized-noise], but here the

overflow flag is actually our main role player here [vocalized-noise]. So, it is finding

[vocalized-noise] both did answers [noise]; both the inputs are 0 0 [noise] that is that

positive numbers, but the answer is a [noise] negative number [vocalized-noise].

So, immediately [noise] it is going to say that the [noise] overflow flag is 1 [vocalized-

noise]. So, now, we have to check [noise] [vocalized-noise] that when the overflow flag

is 1 [vocalized-noise] and the answer is negative [noise]. So, both of them are saying that

the answer is not valid [noise] and so, is the [noise] negative flag [noise]. So,

immediately whenever a overflow is generated [noise]; that means, you have to

understand that overflow is different from carry [vocalized-noise].

Carry means some carry has been generated [vocalized-noise] and [noise], but the

answer is valid [noise]. But in [vocalized-noise] in this case what happens [vocalized-

noise]; so, with the carry the whole answer is done [noise], but in this case mainly the

overflow generated [vocalized-noise] with this not carry generated [vocalized-noise], but

the answer is actually a wrong answer [vocalized-noise] because of the over flow [noise].

So, I could have easily connected [noise] by putting its [noise] as a 1 bit [noise]

additional I mean I could have [noise] if I would have done with the 5 bit; the answer

would have been carry [vocalized-noise]. So, whenever the overflow flag is said [noise]

so, immediately it will say the answer is invalid [vocalized-noise] as well as the negative

flag is also invalid [noise] this sign is also invalid [vocalized-noise] and the answer is

also invalid [noise] [vocalized-noise].

But that is why if I just compare [noise] [vocalized-noise] again with the [noise] this one

[noise] you could have checked [noise] the ah [vocalized-noise] [noise] see both the

numbers of different sizes, this is of different size, this is of different size; then

immediately the [noise] ah over the flag is reset [noise]; that means, if the two numbers

of different [noise] like one number is positive one number is negative [noise] in a signed

arithmetic [vocalized-noise]; you can never generate an overflow [vocalized-noise].

Because then if two numbers are subtracted; [vocalized-noise] the answer is always less

[noise]. So, if you can represent [noise] one negative number sorry positive [noise] and

one negative number in 4 bits [noise]; then the answer will always can be represented in

4 bits [noise] because you are making the number [noise] less due to subtraction

[vocalized-noise].

But if there are two numbers of same sign [noise] positive number or negative number

[vocalized-noise]; then the number can become larger than the two operand itself and it

requests to take more number of bits [noise] that is what actually has happened

[vocalized-noise]. 7 plus 1 is 8 [noise] [vocalized-noise] which is plus 8 in the signed

arithmetic is nothing, but is 0 1 0 0 [noise] 0; 5 bits [noise] it cannot be accommodated

[noise] in 4 bit [noise].

So, ah [noise] overflow has been generated which actually [noise] neglects the [noise]

[vocalized-noise] you have it will not do anything [vocalized-noise], but just stuff [noise]

with the operation some flags are set and reset [vocalized-noise]. So, whenever you find

about this overflow flag is set [vocalized-noise]. So, we have to know that the answer is

wrong and therefore, in fact, you have to [noise] give more precision to this answer. So

[vocalized-noise] so, that is what is the idea of setting the flag [vocalized-noise].

So, we have very very complicated situation [noise] and maybe later we will see how to

use this overflow flag to set a [vocalized-noise] ah [vocalized-noise] how can you [noise]

generate a [vocalized-noise] instruction [vocalized-noise] based on the overflow flag

[vocalized-noise] to see whether the [noise] answer is valid or not [vocalized-noise]. So,

for example, if you have a 32 bit machine [vocalized-noise] and you are taking all

[noise] largest possible number you have fitted up into the [noise] memory [vocalized-

noise].

And you are doing the [vocalized-noise] computation [vocalized-noise]; so, every time

[noise] you have to check whether there is an overflow or not [noise] [vocalized-noise].

Since you are getting a overflow bits set [vocalized-noise] by default you have to be

clear [vocalized-noise] that this is a valid answer ah or the position is an error; so, all

these things you have to [noise] report [vocalized-noise]. So, this complicates things

maybe we will try to see whenever we will [vocalized-noise] knowing [noise] going

more in to assembly language coding [vocalized-noise] and micro [vocalized-noise]

micro programming etcetera [noise] [vocalized-noise].

(Refer Slide Time: 53:17)

So in fact, what we have done in this class [noise]? In this class basically we have seen in

the crux of what is the ah [noise] conditional instructions and more importantly [noise]

[vocalized-noise]; how basically flags are set and said that is [noise] the most difficult

part of it [vocalized-noise].

Once you understand how a flag is set and reset [vocalized-noise] and then accordingly

you can easily generate [vocalized-noise] the instruction based on that. And visually

[noise] truth and false you go over to the label [vocalized-noise] or you just execute the

instructions [noise] let us do it [noise] [vocalized-noise]. So, ah some typical questions

[noise] basically which can be asked [noise] and let us see how we fix your objective

[vocalized-noise] like for example, the first question is [vocalized-noise] what is the

program status work [noise] and what it contains? [vocalized-noise] Then the second

question said [noise] what are flag bits, [vocalized-noise] what are different types of flag

bits [noise] like set [noise], reset, auxiliary set, [noise] overflow [noise] etcetera

[vocalized-noise].

Indicate the use of this flag registers [noise] and with examples [noise] how can you do it

[noise] and basically [vocalized-noise] what instructions can be done [noise] ah what

purpose it can solve [vocalized-noise]. So, if you look at the [noise] discuss about flag

bits and how this flag bits are [noise] set and reset [vocalized-noise]. So, if you are able

to answer this and if you are able to answer this of course, [noise] this [vocalized-noise]

instruction is made [noise] [vocalized-noise].

Use of flag bits to design [noise] conditional statements [noise]; that is again ah this ah

[vocalized-noise] if if indicating use of [noise] flag bit should [noise] design some

instructions [vocalized-noise]; so, is the synthesis objective [noise]. So, after the [noise]

after doing this unit [vocalized-noise] when you will be able to [noise] as if you are

answering the question [noise] number 3 that you are designing [vocalized-noise] newer

instruction [noise] some instruction sets for a [vocalized-noise] processor based on these

flags, [noise] then basically you are able to satisfy the synthesis [noise] of the tips of

designing [vocalized-noise] conditional statements [noise].

And when about like talking about [vocalized-noise] program status word; so, whenever

this flag bits etcetera [noise]; that means, flags bit self [noise] [vocalized-noise] you can

[vocalized-noise] whenever you are [noise] synthesizing on the use of flag bits for

[noise] design conditional statements this implies that [vocalized-noise] you have to

know that when I am ah [noise] jumping from [noise] one context to another [vocalized-

noise] then everything has to be set [vocalized-noise].

And basically what are the values like intermediate registers acceptor which has to be

[noise] which are in a program status word what it contains [vocalized-noise] basically

where it is to be saved [noise] [vocalized-noise]? This will actually satisfy the objective

on comprehension [noise] [vocalized-noise] so in fact, ah just strapless unit [noise], you

will be able to meet these two objectives which we targeted [noise] in the beginning

[vocalized-noise].

So, ah this actually completes the ah [vocalized-noise] second one in the seventh [noise]

unit of this module [vocalized-noise] and next time we will see how to use these

instructions please jump instructions or conditional instructions [vocalized-noise] to

execute one very important part of your [noise] programming paradigm; that is actually

your functions and procedures.

Thank you [noise].

