
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology Guwahati

Lecture – 11
Instruction Set

So welcome to unit number 5 of the module on addressing mode instruction set and

instruction execution flow.

(Refer Slide Time: 00:34)

So, till now basically we have mainly concentrating on how what is the basic instruction

how it looks like and how it basically executes, from now onwards we are trying to go in

more depth of basically; how instruction works, how it is designed, how it can be

clusters, what are the different type of sets in which you can club them etcetera.

So, in the last unit we basically saw about what is the basic instruction format that what

it has it has 4 different maybe depending on the instruction format it can have 1 address 2

address or even 0 address; now in this unit basically non instruction set we are going to

see in more depth of how the instruction can be club based on their functionalities. So,

this is a small module sorry it is a small unit of the module in which case we will try to

categorize the say instructions based on their functionalities, many times we have

discussed while discussing in this module that it can be of advatic type, logical type or

data transfer type.

But in this case we will look into more depth of those classes and basically what if you

are executing an instruction, what are the different registers that are set, so slightly in

more depth will go in this ok.

(Refer Slide Time: 01:46)

So, in this case basically what is this unit summary about. So, in this unit basically we

will be classifying the instruction based on the functionalities and in each class what are

the different type of instructions available we will be looking in depth. So, basically first

is the data transform, we all know that if the some instructions like load store etc;

transfer data from basically based on 1 memory location to other the memory location

can be a register; it can be a accumulator, it can be a memory location in the main

memory it can be a cache. So, anyway we are not concentrating on the cache that way

because, already we have know told you and in between the registers and the main

memory these are element of memory called cache, in which case wherever you want to

execute some code a part of that main memory; where you are going to executive or the

temporal data are loaded into the cache.

So, you can easily access them because the cache inside the processor, but anyway that

will take in more details in our future module on memory. So, basically for us right now

the classification of instruction of data transfer means you have to transfer data from 1

memory location to other and any will ask in unit, we have seen that the how many such

operations can be done in an instruction depends on the number of addresses.

If it is a 3 address then we can have more number of data transfers corresponding to a 2

addresses and so for. So, basically what happens in this case so it has to calculate the

address of the operands based on the addressing mode; so if the addresses then actually

those things will be detailed out in a future module then basically you first find out

whether the value of these memory location is available in the cache and if it is in the

cache you can directly fetch it and if it is not in the cache then you have to read from the

memory module; but in fact, this will be more dealt in more details in a future module as

we have discussed just told right now. But in our as of now if we just understand that it is

a transfer of data from 1 memory location to another.

(Refer Slide Time: 03:40)

So, as I told will be going into depth of basically or will in look into the more details of

what are the exact type of memory, such type of data operation data or means what I say

that is their transformation operations. So, basically have stored so transfer 1 word of the

transfer word from transfer to memory that is some operations you have already done in

the processor and you store the result to a memory.

So, that memory is generally a main memory sometimes it can also be a register, then

something called load fetch that is you actually transfer the word from memory to a

processor; that the pause the register it can pause the register and accumulator. Exchange

such type of instructions are also there in which you can swap the contacts clear reset set

and reset also very important operations that there are some instructions which you can

make all the values of memory location 0 or 1.

So, set and reset are also a class of operations which fall under this set, push and pop as I

told you that you have to push a value to a register me stack and pop a value from the

stack is also false in the class of data transfer based or data operation or data movement

based instruction. So, that is data transfer based instruction. So, as I told you that push

and pop basically corresponds to a stack based machine or a 0 address based instruction;

next is basically the arithmetic.

(Refer Slide Time: 05:00)

So as I told you that all have been discussing throughout in many of the units over here,

that there are 3 types of operable basically like mainly heart of all the computation is

arithmetic and logic; that is you have to add 2 numbers you have to multiply 2 numbers

there is all the mathematical operations like add subtract multiply divide absolute negate

increment decrement. So, whatever up things are whatever we know about standard

mathematical operations the all the instruction sets or the instructions that it get to it will

be called as arithmetic equation.

But again as I highlighted in the last unit that add can be of several types the that add

immediate; that means, you will have to add the value of 1 operand will be available

instruction itself, add to memory locations value of the 2 memory locations will be

loaded then it can be adding indirect.

So, as I idea is that even for add substract multiply at each particular also particular

operation also; there can be lot of variations as simply add immediate and add from

memory immediate means the operand value will be will be given in the instruction

itself. So, each can have a lot of different variations itself increment 1 increment

decrement increment by 1 increment by 2 they are quite standard like negate absolute,

they do not have much variations like add subtract multiply you have lot of variations.

(Refer Slide Time: 06:16)

Next is basically logical 1 logical means they are mainly basically beat wise operation so

like and or not exclusive or then actually very important these are the standard ones, but

there are some important ones like left sheet right sheet compare that is this test and

compare actually these things are very important as we will see more on the in the future

module, future unit will be looking at the jump instruction or conditional instruction

execution.

So, in that case actually test and compare this will be very important that whenever some

mathematical operations are done basically some flag values are set. So, you can test

those flag values that whether the 0 flag is set then you take a jump instruction, you

compare to arithmetic operations and then some set some values. So, if you compare 2

values like comma a comma b, that means compare the register value a register value b if

they are equal some flags will be set.

So, this type of instructions basically fall under the category of a logical instruction, like

and or not our basic logics left shift right shift are very simple test and compare are very

important logical instructions which will be used for execution of jump instructions

mainly; then some control variables can be set for some kind of protection purposes like

interrupts etc, which will be dealt in later on the nutshell these are some of the

instructions basically which fall into the class of logical instructions that is till now.

We were saying that and or not are mainly the logical instructions, but apart from the

basic ones these are other very important logic instructions.

(Refer Slide Time: 07:46)

And then there are some instructions for I O generally many of the cases we say that the

I O is a part of the data transfer operation, but for many classes we can also classify them

as the input output; basically you read from some port you write from some port that is

the input output devices are available. So, there will be a whole module on I O which

will be taught by the other faculty members who are dealing with the courses. So, in that

case it is more or less data transfer like input is read output is write, but in this case it

will not be exactly from a memory.

So, it will be from some output devices like it can be a mouse it can be a keyboard etc.

So, there we have full unit dedicated to that maybe I can say start of I O; that means, say

I want to read from the keyboard. So, there will be given instruction for that test an I O.

So, whether the device from where I am going to read or write is functionally proper or

not. So, there is and the full sector of the operations or instructions basically which are

dedicated to I O sometimes mean till now.

It means as a separate unit dedicated for I o. So, till now we are not discussing much

about input output, because sometimes in a very broad sense of an abstract sense. We can

also call it the data transfer operation because you are going to read you are going to

write start can be a control instruction test can be again a control instruction or it can be a

in fact logical operation you can tell like that in read write from a memory is very simple

data transfer operation. But when you are talking to some input output devices it will be

a I O instruction like start and test I O can be control or they you can think of logical, but

when you are talk about specifically about connection twin into other devices apart from

memory then actually it is an I O instruction. So, these part will be delta more details in a

future module and I O.

Then in the last part actually of this classification in the control instructions, as I told you

so generally the instruction goes in sequence, but based on some conditions of an

operation some flags may be set based on the value of the flag you can take, the next

instruction or some other instruction that is the conditional instructions.

(Refer Slide Time: 09:48)

Important conditional instructions are branch there is unconditional load, this specific

address wherever you want to jump conditional means you have to check the value of the

flag; if it is true you take that location either you is continuous as procedural. Next step

jump to subroutine basically if there subroutines in the code you jump to that procedural

return, means after completing these subroutine or the interest subroutine ISR you go

back to from where the procedure was called, so in that case all the values of the PC etc;

has be brought back from the stack and it has to go some other instructions has keep

conditional, that is next instruction may be skipped next instructions may be skipped on

some conditions.

So, basically these are in a nutshell the broad classification of conditional instructions,

jump conditional jump to route subroutine return from the subroutine skip, an instruction

skip an instruction based on some condition and halt is also a very important control

instruction, where you stop the code again as we are discussing everything for

pedagogical perspective.

(Refer Slide Time: 10:42)

So, again this is basically a recall and a knowledge based kind of an objectives mainly in

this case, you will be able to after doing this unit you will be able to discuss the different

type of operations inside a processor mainly between a processor and a memory that is

data transfer operation, you will be able to explain about the arithmetic and logical

operations.

You will have some idea and you will describe about I O handling system and control

operations of a processor you will be able to describe the basic idea and in fact, a

separate module we will discuss in depth and comprehension means here; you will be

able to discuss how to program a processor in a machine lever assembly language high

level languages.

Basically the idea is that after doing this unit and also on the knowledge is of some of the

previous units, you will be able to tell that given a code a high level code, how what will

be the assembly language level, what will be the instruction at the assembly level, what

will be is binary version of the machine level and what will be the corresponding high

level; that means, given a high level code you will be able to translate it into assembly

language and a machine language and discuss how it basically executes.

(Refer Slide Time: 11:45)

So, without mean as I told you this unit is basically you can think as a second part of the

last unit on whatever of the instruction set, basically we are discussing on the instruction

format. So, this last 2 units that is you so in fact if you look at it. So, instruction format

and instruction set you can call that at the 2 small units there one is covering about the

different formats and this 1 this unit is to talking about the basic transification based on

some operations so.

In fact, that is why without going into much more theory in this unit let me give you in

more details by some examples, that will set the that will make you help in

understanding more on this units; basically because most of the theory related to this unit

has been discussed in the last unit, anyway discussing about the instruction formats,

because formats means what are the basic structures or what are the basic components

and here we are discussing on the instruction set how to classify based on it is

functionality like data transfer I O control or arithmetic logic right.

So, we take a very simple example like there is 2 memory locations FF0 it has 5 and FF1

has the value of 7, we have to add these 2 numbers and the resultten has to be written in

anywhere location FF2.

So, already sustain program we have discussed in a previous lecture previous unit, but

here we are going to look at it more on a more from the perspective of the instruction set

and instruction format as well as also we will look at how the memory is handled and

how internal registers are handled and what are the control signals; it will bill a same

type of program now in more depth from the architectural concept as well as the

instruction format and addressing mode concept. So, we are saying that the job is simple

to memory location have 2 values you have to add them.

(Refer Slide Time: 13:33)

So; obviously the first instruction and yet we are taking a format what is the machine

thing, the example you are solving here is a single address instruction. So, they told you

the same good we have seen maybe in a previous unit, but now we are going to focus

more on it from the last 2 unit the current unit and last unit perspective, that is on the

addressing mode and the instruction set. So, the first 1 is l d that is load accumulator FFO

so; that means, what whatever is value is memory location FFO will be loaded to the

accumulator. So, this is a data transfer instruction as well as it is a single address

instruction the single addresses because as I already told you single address instruction

means, 1 of the operator or the operand is basically a sorry the operand basically

accumulator. So, it is done and then as I told you whenever 1 thing I miss to tell you

basically.

So, whenever you are writing a code you have to assume what is the instruct what are the

machine type. So, for example, in this case we are assuming that the architecture of the

CPU or the machine type is a 0 sorry single address format. So, in this case 1 is F2 a

accumulator then we are saying add FF1. So, what is it is a arithmetic operation

arithmetic instruction.

So, it says that whatever is in the value of accumulator that is value 5 which was FF0

will be added to the value which is available in FF1 it will be stored back to register

finally, you have to store the value of s d FF2 that is the value of the accumulator you

have to store it to FF2 memory location. So, now accumulator has 5 plus7 so it will be

stored over there. So, to do this operation we have 2 I O operations sorry 2 data transfer

operation and 1 is the arithmetic operation and this machine is a single address machine.

(Refer Slide Time: 15:16)

.

Now, as I told you so that now if you look at the machine code. So, as I told you machine

code is always a binary code, but generally what happens we do not write it too much in

the textual literature of the books or the slides, because it becomes very difficult to read

and understand. So, we will guiltier feeling so what it says it says load FFO. So, single so

this is for the opcode and this is for the operand single address. So, another is defector

the accumulator which is not mentioned. So, maybe I am telling you that maybe this

machine has 3 instructions. So, I think 2 bit codes were enough to do this, but let us

assume that the machine has some more it has 16 operations to do. So, they have kept for

bit as the size of the opcode.

So, the threes codes for l d a store and load add and store a this one. There is the opcode

is 0 0 0 means that it is a load instruction add means 1 0 0 0 at zereo 0 1 first 2. And then

this is the of where from where you have to load the value is FF0. So, this one is going to

be the binary. So, if somebody erases this and say this is your first line of code, 0 0 0

very difficult to read and understand therefore, we always keep the memories. So, in this

case the instruction size is 4 = plus 2 l that is twenties sorry 16 sorry 16 is 4 into 4 16

bits.

So, it is a 16 bit instruction size that you can also think that a memory in this case is a 6 6

16 word bit is the word size. So, in will be all the instructions mainly in this case

whatever is discussing for this example are loaded in a single word. So, it is easy to fetch

decode and execute next it add FF1. So, same case now you can see that this format has

means the code has changed where is correspond to add, and this one is the case

similarly for storing this one. So, the idea is that if I write only in these 3 binary numbers

it is very difficult to understand. So, you always go for the mnemonics and as it is again a

single of the 3 instructions are written in a single address format. So, the last 2 are

basically data transfer and this is the arithmetic.

(Refer Slide Time: 17:20)

Now, we see step wise basically what happens, now we will again deal with will we have

already discussed a similar example beforehand, but now we will see in more depth of

the different instructions, even registers and the formats. So, as I told you. So, this is the

first instruction to be executed. So, the PC is going to have the value of this one value of

the memory location of the first instruction. Then what happen is that. So, in this case.

So, this instruction no as I told you we assuming that this is a 16 bit size. So, each of this

is memory location has a 4 instructions

So, on the one word can be taken to the memory buffer register or the instruction register

and your job is done for example, in this case this is a single address instruction. So,

assuming that if it had been a 2 word instructs the double 2 address instruction. So, in

this case you might have taken a longer size. So, maybe 0 FFF and in this case maybe the

other part of the other address would have been there.

So, in that case you would first require to bring this taken to I r maybe the I O also have

been elongated over here then this part of the instruction will be taken from memory

buffer register to the I r it will be a longer case and then only you will be able to after 2

memory read operation you will be able to understand the meaning of the instruction. If

it would have been something like say I allow add memory location FF 0 memory

location FF1. So, in this case 0 FF 0 would have been here and in this case it would be

FF 1. So, you have to first read this then read this part this memory location of course, it

would have been have been there marginality and. So, it will be more difficult to do that,

but your instruction you would have requested only 1 or 2 instruction to solve it, but now

we require 3 instructions because we are taking a single address format.

But single address these things are very simple because every memory location has a

single instruction. So, i. So, what is the case? So, if FF 0. So, this has to be fetched. So, 3

is a load operation sorry 0 is a load operation from where I have to load? So from FF 0;

that means, it is saying to load the value whatever is available in FF 0 the value of 5 to

accumulator.

So, first F what happens the PC is pointing to this, this instruction is going to the

memory buffer register and as we know that because of this addressing format each

memory location has a single instruction. So, need not worry directly take the value of

memory buffer register the instruction register, it will decode it and it will find out that it

is asking to load the value of FF 0 to accumulator. So, that is what is being done. So, it is

loading the value of FF 0 to the memory buffer register and then to the accumulator and

the value of PC will be incremented by 1 next what happens. So, what is the value of

value of F 1?

So, it says that ad value of accumulator to whatever value is in FF 1. So in fact, again as I

told you one word is enough to take a full instruction 1 address format. So, it will be

loaded in the memory buffer register it will go to instruction register decode it and it is

that FF 8 FF 1 means whatever value is in FF 1 has to be added to the accumulator that

has told back to the accumulator. So, this one is done memory buffer register it is the

instruction register it is decoded and it knows what to do, and you can understand that

program PC is actually program counter has changed to next instruction to be executed

now.

So, as I told you the next step says that you have to add, this one was the step that you

have to add the value of the accumulator to FF 1. So, 5 was initially in the accumulator

now 7 has been in the memory buffer register, you add these 2 value there is 7 plus 5 is

12 that is c and will be stored back to the accumulator this is the job which is done by the

second instruction and finally, now what happens is that next you have to store.

So, this is the program counter has gone to a third instruction, it is getting loaded over 1

FF to the instruction register. So, what it tells that whatever is in the value of

accumulator because 1 means 2 to FF 2. So, accumulator value will go to memory buffer

(Refer Time: 21:22) stored over here. So, this is the final execution. So, what we have

seen in this case.

So, in this case we have seen that as the instructions where a single address instruction

and the size of the memory was we have assumed to be 16 or something. So, it fitted and

very easily one one instructions could be fetched and it could be decoded then the job

done. But you could have taken 2 number of instructions at a time. So, sorry double 2

address then we could have saved on the number of instructions, but in this case you

have to take this word and this word join them in the a instruction register decode and do

it.

So, that would have been a more complex way of solving the problem and again we have

seen that what happens basically. So, in this first was the memory operation memory data

transfer operation. So, in this case the data is transferred from the main memory to the

memory buffer register and then it goes to the accumulator or you go to the instruction it

is depending on the case. The next was a address arithmetic operation in this case what

happens.

So, it takes some values from the accumulator and the memory location, and it actually

operates it uses an adder to add it and store back the results that is happening in the third

step, which is again a I O operation. Now basically now we will. So, that was more or

less whenever you talk about arithmetic operation a (Refer Time: 22:40) with arithmetic

and logic unit is thing let us stood a I O.

(Refer Slide Time: 22:44)

So, control means what is very simple control means based on the value of some of the

jump instruction the value of the PC will be changed like for example,. So, if you look at

it.

So, what happened? So, the first case the value of program counter was this, the next the

value of program counter is.

(Refer Slide Time: 23:04)

Next 8 F, 3 F 1 and after that the value of program counter becomes 3 F that is it goes

step by step now what it can happen that if there is a conditional instruction then instead

of going incrementing like 3 F 0, 3 F 1 at some point of time it will change.

(Refer Slide Time: 23:13)

So, that simple. So, if you have a conditional instruction the value of PC gets change, if

you have a arithmetic instruction what happens? An adder or a multiplier or subtract are

used. Important are with lot of complicated registers and control signals are used are the

memory operation and the I O operations. So, the memory operations basically will be

dealing with here in details, and for the I O operations as I told you, you have a separate

module on this because I O is a more complex operation because in that case you will

have a separate device which is connected to the CPU. It may be a camera, it may be a

keyboard, it may be a mouse.

So, you first understand whether the mouse is correct or operationally fine whether it is

ready to give the data and so for. Like if in case of a keyboard it says that I need a data,

then you have to wait till a person presses the keyboard, then I press the keyboard then

again the data calm. So, a lot of synchronization issues. So, a whole module is dedicated

to that, but right now we will see what is the memory fetch operation how it interacts

with the memory, what are the addresses involved, what the registers involved, and what

are the controls involves. So, memory fetch means memory read because the other class

of instructions like data, data transferred as well as your control are quite simple. So,

what happens whenever you want to fetch a memory location, you have to give the value

in the memory address register.

So, whatever value is given in the memory address register is the location from where

the data has to be read. The MAR is connected to the memory bus and hence the address

is required for this 1 to a main memory. So, MAR basically is connected to the is to the

any memory address register is connected to the basically address bus of the memory

and. So, it is there for you directly memory will get the value of the address from there.

Next the CPU has to tell that it is a read operation, because you are at present discussing

about memory read. So, there is a control line we have already told, it is read or write it

tells the control line says that it is a read operation. Now actually the difference between

the CPU speed and the memory speed and the I O speed. CPU is the fastest memory

slightly slower and I O is extremely slower.

Because I O means myself you and some human being is handling, memory is a slower

device compared to a CPU that we will see later, but for the time being you can consider

this hierarchy. So, therefore, there is a synchronization issue. That whenever I say that I

read from the memory, but you are never assure that immediately I will get the answer.

So, there is a synchronization issue that is a handshake that you say that I want to read it

read some memory location. So, I give the value in the memory address register, and

then the memory address register via the address bus is connected to the memory, then

you said that reads.

So, the read signal is me, but how much time I should wait before I take the value from

the memory buffer register. Because based on your read and the address in the MAR, the

data will be saved in the memory buffer register. Though there is actually CPU waits till

this is an acknowledgement from the memory that is memory function completes MFC.

So, MFC is a very very important control signal. So, what it says is that whenever a job

is done that is ready is done data is done, to the memory buffer register it will make the

MFC signal high or maybe it will say that it is enable. So, now, what will happen? You

have to read the value from the memory buffer register and you can freeze the location

therefore. So, that freezing acceptor will come later.

But for the time being whenever you said I want to read from the memory, and the data is

available in the memory buffer register, and then you have to wait till the memory

function completely set to 1. Once it is done you know that the value is stable in the

memory buffer register, now it can be read to the accumulator it can be read to the

instruction register and so forth. So, next is basically the memory write.

(Refer Slide Time: 26:57)

But let us first this is the memory write we will come to it later.

(Refer Slide Time: 26:58)

First let us basically a memory fetch operation in these steps as well as the pictorial

representation. As I told you first it is in the memory address register, then read, then you

wait that the memory function complete is ready, then when it is done then it can be read

to the memory buffer register or it can be register 1 accumulator or wherever, and then

only then actually the memory buffer can be is ready you read it from this one and then

you can go ahead. I will (Refer Time: 27:26) take it a figure and explain it. So, what was

the example? The example they are saying that data 7 hex which is available in memory

FF 2 0 we want to bring it to CPU register R 0 that is the example. And typically this is a

flow whether you want to take it to accumulator or any register this flow or more or less

will become similar is the accumulator the memory buffer will write to the accumulator

it is R 0 the memory buffer we registered write to R0.

(Refer Slide Time: 27:54)

So, now let us see step one. So, I want to read from this memory location FF 20. So,

memory address register will have the value of FF 2 0, these try to the address bus it is

going then I want to read this basically. So, now, next step is read, read signal is given

now you have to wait how you have to wait till memory function completely is one. So,

once the memory functions complete is 1, it means that the value of this one is, it is

written to the memory buffer register and it is stable

So, once that is done in step 4 you have to freezy, may time I was saying what is freeze.

So, freeze is a very simple operation if I take a D flip flop D Q is the D flip flop, if I

connect D back to Q. So, if I can connect D back to Q therefore, there will be no change

in the value of D even if I apply a flop. So, that is actually a freeze operation. So, if I

make a permanent connection like this. So, the your memory D Q will always have the

same branch actually what happen is that there is a basically arranged multiplexer and

this is D and this is Q sorry this is D and this is Q, maybe 1 port will be free another port

will be low and this will be a mass. So, if you make mass is equal to 1 then from the port

it will read to the and your flip flop can be set and reset and if I make this mass value

equal to 0 then the Q will be feedback to Q sorry Q will be feedback to D, and they will

loop back and it will be the freeze position that the value will ever be stabilized.

So, this is actually multifunction register, you can read over it from the digital

fundamentals. So, basically in step 4 after the MFC is ready, you freezed that memory

buffer register is freeze the value should not change over here. That is even if you give a

new memory address you say read MFC 1 or whatever the value of m memory buffers to

do not change and then in this step 4 you freeze it and load the value in the register r

zero. So, once it is done in step 5 you can release the freeze. So, what happened step 1 I

give the address step 2 I see read then I have to wait for synchronization the memory

function is complete after is complete you read the memory buffer register.

So, at this same step when you are reading it before they are actually after reading it you

have to freeze it all you can see just after step 3 in the MFC has been 1 you freeze the

memory buffer register that is you do not allow any more changes to write over there

from the neighbor; that means, even if I given a new address right and if I give a new

step or whatever this value should not be disturbed and then in this step after freezing it

you read the value of memory before register to a your required register which is r 0 in

this case it can be an accumulator and then after step 5 you defreeze this and again the

step repeats once again.

So, that is what I was saying that in this case generally registers have freeze mode all

these commands are there. So, after basically the memory says that m F c. So, generally

we freeze the in case of read will freeze the memory data registers are also for many

cases will freeze the write and read registers from the memory. So, the data corruption

because of race conditions do not happen basically. So, we are discussing in details for

that memory data transfer operations from the memory because it involves many more

critical steps as we have seen it is not just like giving the address and getting the value

there is a lot of synchronization involved similarly the memory write register is also very

similar, but in this case what should happen is that in this case you have to give a right

command first you have to give the memory location value then you have to give the

right and then you have to again wait till the memory function is complete; that means,

the memory says that I have been able to successfully read the value from the memory

buffer register, but again before after you put the

So, what are the steps. So, step is that first to give the value in the memory buffer register

then you say that you give the memory address or you can change the face then you say

right before you give the right signal your data to be written to the memory has to be

stable in my memory buffer register and then you have to wait then the memory said that

memory function complete, that I have already read the values from the memory buffer

register.

But once the memory starts reading you have again freeze the memory buffer and then

all you can reduce the freeze only when after it says that the memory has been read from

the memory buffer register. So, there is again a synchronization involved that is

whenever the for the time for which the memory is reading from the memory buffer

register it has to be freezed and you have to wait period says that the memory function

complete is equal to 1 then you can again deep freeze and go for the next value.

(Refer Slide Time: 32:09)

.

So, again this is the same example it says there is a data a F in hex which is the available

register 0 and you have to store it memory location F F. So, place the address in memory

buffer register then transfer R to MBR and now memory buffer register is to be freezed

that is what first you locate you the memory address register you put the value of 25 FF

that is I want to handle this memory location, then you put the value of R naught register

or accumulator whatever may be the case in the memory buffer register. And then you

stop the memory buffer that you freeze it, because now the memory will start reading

from the memory buffer register.

Here is now the memory buffer changes, then there can you always a race condition and

some garbage value may go into the memory. So, you have to have a freeze control

signal. So, you freeze the memory buffer register and then you activate write, and then

you have to wait till the memories is that MFC 0; that means, I have read back read the

data correctly from the memory buffer register, now you can remove the control signal

you can defreeze everything and go for the next operation.

(Refer Slide Time: 33:07)

So, this is the example. So, always first step in general any memory operation will be the

value of the memory address register, then in step 2 you bring the value of from register

the ATF to the memory buffer register and freeze that is very important. This one you put

over there and you freeze this whole step, you can you basically freeze the memory

buffer register do not allow any changes there. Now you say keep write signal then write

signal is if you start reading from the memory buffer register.

But note here that the memory buffer register is now freezed said the memory buffer is

freezed know whatever may be the changes over? Here it will not be changed and

memory will very nicely read the value that is ATF will come over here and after ATF

will come over here, it will say that memory function is complete. 1 memory function is

complete you can defreeze everything and go for the next memory cycle ok.

(Refer Slide Time: 33:53)

So, in a nutshell these were very small module in which we have showed you the

classification of different type of instructions, based on the functionality and then one of

the most integrated form of instruction that is the data transfer and I O. So, I O will be

dealt in a detailed manner, but in the current unit we have shown you in a very detailed

manner, that basically how input output operation happens what are the synchronization

signal involved and on that class of instructions, how the memory and the CPU is

synchronized and what are the detailed memory involvement and the registers

involvement in them. So, as I told you these were the basic objectives which we are

targeting in this unit that, you have to basically describe, what are the different type of

instructions.

What are logic and different type of arithmetic operation control operations etcetera. A

very simple question if I say that I want to it is evaluate some expression and I say that

the values are available over this memory location, then I ask you write assembly

language code and very precisely so, how the memory type of operation happens, write

an assembly language code for that then very explicitly show that will different type of

modes, how the memory is accessed, how the synchronization happens and also show the

different type of register values.

So, after listening to this unit and the units provides to that you will be able to solve this

problem. Here you will be able to the design the first the assembly language code then

maybe translate into the machine language, but anyway that is not very easy to read. So,

we keep the mnemonic version, then you can see that there will be lot of memory read

and write operations. So, how they will interact with the memory, basically you can talk

about the I O handling in this fact actually I O means a memory in this case basically

because I O we are not directly dealing with they have just given you the idea. So,

basically different type of logic operations of arithmetic operations will be happening

over here. So, you can great a great a deal of if you are able to solve this problem.

So, most of these knowledge based and explanation based comprehension based

objectives will be solved I mean; obviously, we can be made basically. So, with this we

come to the end of this 2 basic modules or basic units sorry basic 2 units in which case

we have seen an instruction type these components of an instruction, and how they can

be classified.

So, next unit will be a more dedicated unit and it will be elaborate unit on which we will

show that as I told you is add instruction. Add instruction can be very different type add

can be of immediate it can directly take from our memory; it can take from one from a

memory and one for register. So, how they different type of instruction how different

type of instructions for a same operation happens basically, there is in more depth of how

the instructions can be curtailed so that it helps you to solve the more same problem in a

different in a more efficient manner.

Like at the data can be from the instruction itself and if you will require a very wide data

or a very precise data you have to store it in multiple locations in the memory. So, same

instruction we are doing the same operations, but in a different manner. So, that is

different mode of addressing modes will be there. So, next unit will be more dedicated

on our more rigor analysis of different type of instructions.

Thank you.

