
Computer Organization and Architecture: A Pedagogical Aspect
Prof. Jatindra Kr. Deka

Dr. Santosh Biswas
Dr. Arnab Sarkar

Department of Computer Science and Engineering
Indian Institute of Technology, Guwahati

Lecture - 10
Instruction Format

Welcome to the 4th lecture on that in the 4th unit of the module on addressing mode,

instruction set and instruction execution flow.

(Refer Slide Time: 00:35)

So, in the last three units we have basically discussed what are the what is the basically a

CPU? What it consists of; and how it is interfaced with the main memory and then we

have gone into the details of basically, what is the basic motive of this module is to

understand how a basically I instruction executes in a CPU. So, in that in that direction,

first we had seen in the last unit that how our instruction is basically executed.

That in a one human architecture we know that it is already the data and the code is in

the main memory and then slowly one after another the instructions are phased decoded

and executed. So, that is basically the instruction execution. So, up to that we have seen

in the last unit.

So, now in today’s unit we are going to focus on a instruction format, because as I told

you this model is mainly deliver or you would able to understand, basically how to

design an instruction given a set of requirements for a set of specification that is the main

goal actually. So, for that we first now look in a more generic fashion and what is an

instruction and what is the basic format? So, this is the unit four of this module.

(Refer Slide Time: 01:39)

And then as we told that the course is being delivered in a pedagogical perspective. So,

first let us see what is the unit summary. So, the in the in this unit basically you will be

studying the general format of an instruction. So, as an instruction as we have discussed

in the last unit then basically instruction executes or does the general operations in a

computer. So, if there is an operation to be done. So, we require basically two things one

is, what operation I have to do? And, basically on what operands you have to do the

operation.

So, basically OpCode and source and result operands these are the two very important.

So, the most fundamental thing even if is a non computer perspective. So, even if I ask

you that you have to operate add two numbers. So, this is one of the very basic

instruction we do in the at the are the low level school days.

So, this is basically an instruction. So, what is the format of an instruction? So, if I order

you something. So, I have to tell you, what to do and also I have to tell you on what

objects you have to do the operation and where you have to store the result. So, that is

actually call the OpCode; that is, what operation you have to do?.

Like for example, you have to move an operand, you have to add two numbers etcetera,

etcetera. And then you have to tell that what are the operands? That is the in case of a

computer the operands are actually some immediate operations some immediate values

which are in the instruction or in the more broad transfer the time being you can thing

that we all have values of the operands, that is the variables and the values of the

variables are stored in some memory is a one human architecture.

So, a source operand reference; that is, where the value of operand is stored in the

memory, that is; the second part which is basically has to be there in the instruction. Then

of course, I do some operation, now what I do with the result in that has to be stored in

somewhere stored in memory whether it may be a register it can be a memory location

etcetera.

So, that is the result operand reference that is; where you have to store the result. So,

these things are basically of our layman language as for as well as our computer

prospective these three stuff should be there in a instruction.

But, when you are thing over computer prospective or a code prospective, then after one

instruction you have to execute another instruction. So, of course, you have to also tell in

that instruction that which is the next instruction to be fetched. So, the reference of the

next instruction that whether, it is the next immediate instruction or whether it is a jump

instruction whether it will go to some other forward referencing or it may move back.

So, that reference also should be there so. In fact, if you talk of an instruction you have

basically, what to do? On, what to do where you have to store the result and what to do

next whether this is last instruction or whether the next immediate instruction has to be

taken or then to some condition you have to some other places to jump in the memory.

So, that is the basic format of an instruction again as I told you one very important as I,

now we give little bit like what how many? How do you decide the length of an

instruction? So, of course, you have OpCode. So, it is represented in binary. So, if I said

that the OpCode is 3 bits. So, how many operations are possible 2 to the power 3, 8

operations are possible.

So, if your specification says that 8 operations are fine like you can have stored add

subtract multiply, then more or less I am very happy with 3 bit OpCode, but if I have lot

most to do like I want to add immediate I want to add two numbers from a register, then,

if I can have multiply I can have subtract I can have divide and it is what not.

So, in that case the numbers of instructions are much more. So, in that case the number

of bits in the OpCode will be larger. So, as I given in the example in the summary that

depends on the bit size of the OpCode of the reference you can decide how many

instructions or different type of operations are supported.

(Refer Slide Time: 05:17)

Then, basically as I told you many times in the last 2, 3 units that basically instruction is

divided basically into three types like: mathematical, arithmetic, operation. Then you can

have some load store operation and there is re drive and there is some logical operation

that is jump on 0 jump not on 0 etcetera; and one more thing.

So, there are basically that therefore, actually the next part means of basically; if these

things are more or less of basic purgative of a instruction that these are the basic stuff

required like OpCode source destination and what next instruction and basically three

categories of instruction like arithmetic logic etcetera.

So, if you take a logical memory operation. So, sorry in arithmetic operation, we

generally have two operands it can be add multiply subtract. And generally we take two

sometimes unary operations unary operands also can be there like for example, this is the

number you want to nugget it.

So, one operand is also possible, but there cannot be any 0 operand instruction, that is;

very obvious and again before you go to the main stuff. Actually, as I told you that all

these instructions basically are represented in binary like for add there should be an

OpCode and there may be the representation of can be 101, sub the OpCode

representation may be 111, but if you write a instruction like say 110.

Then may be 0011 and then 0 0 11 something like that. Then, what it means? It will

mean add and this may correspond to the third register and this may correspond to 3

memory location number 3. So, it will say add whatever value of the variable stored in

third memory location to be register number three very difficult to understand.

So, we generate like in a of mnemonic fashion a add R 3 to 0 3 sorry 3 hex. So, it was it

add 33 hex. So, what does it mean you take the value of memory location 3 in hex and

then added through number 3 and give to it will be addition as to read back.

So, these way instructions are represented will which we can read very nicely and easily.

So, therefore, with all these mnemonics these are actually this abbreviations are called

basically mnemonic way of representation like instead of add instead of 101, we will

write add sub to note by the binary version. So, from now onwards throughout this

course whenever we will talk about the instructions we have to understand eagerly that

they are all represented in binary in a physical computer, but in this case for use of

representation we do it in a abbreviation for which are embolics. So, that is what is the

summery of this chapter of this unit.

(Refer Slide Time: 07:52)

So, what are the objectives? That is going to we are going to fulfil after doing this unit

basically we will be available to describe you will develop knowledge. So, recall type of

an section in objective which will say the describe the different element of a machine

instruction and some possible formats; that is, how basically an instruction loops, then

you will be aware to illustrate very important instruction formats which were developed.

In the pedagogy of computer science or in the history of computers; that is three address

instruction two address one address and even 0 address instruction very interesting that

we will have many operand are there, but how it is operate. So, 0, 1, 2, 3 basically these

are the formats OpCode is single.

Because, OpCode is will tell you what to do and the operands can be 0, 1, 2, 3 the 0 is

very interesting and it will not have 7, 8, 9 instruction I means 9 operands, why?

Because, otherwise the instruction will be very long it will be very difficult to store in the

memory and then as a knowledge you will be tell the different you will able to identify

the different type of component involved like given an instruction with which section

represents the operation which section represents the data where the data is located

etcetera.

(Refer Slide Time: 08:51)

So, let us go to in details of the unit. So, basically the generic elements of an instruction

and its format so, there are some of the very mandatory features or the mandatory part of

an instruction; that is, the OpCode as we already discussed unless you tell what to do

nobody can set up this an instruction.

So, average instruction will minimum have an OpCode; that is minimum and this is

generally represented binary. So, if you have 1000 instructions. So, if you have 1000

different stack to do to. So, you should have 10 bits for the OpCode. So, that is very

simple. So, based on the number of instructions required you pick a log and that will be

size of the OpCode, then very important is the source of operands like where.

So, it can be 3, 2, 1 ; that means, if I say add say 30 hex ; that means, whatever is the

value of the instruction is says that add, then the memory location 30 hex then the value,

but add where. So, in this case if nothing is mentioned is a de facto standard then it is a

accumulator. So, whatever value.

In the accumulator, as I already this as accumulator is a special type of register the value

of the whatever value will be having in memory location 30 hex will be added to the

value which is already stored in accumulator and it will be added back to this. So, if I do

not write anything in this place. So, it will de facto means that it is accumulator.

So, this is a single word sorry single one address or a single operand type of an

instruction. Now, why this is very good? Because, the size of the instructions are small

because you can say add 30 and that maybe if you have some 1000 instructions. So, this

one will take 10 bits and this is 4 plus 4, 16 bit so, 16 bits. So, your memory word length

will be 16 bits, but say for example, two address.

So, in this case I can have something like add may be say a register one and then can be

30 hex now you see as we find. So, I have 10 bits for that, because you require 1000 plus

instruction types, then this time may be if you have 32 registers. So, all registers will

have different binary values.

So, it may be taken 5 bits 32 registers should be the power 5 bits 32 5 bits will be taken

and should be again 32 bits. Now we can see 18 plus 5 so, it is 23. Now, 23 bits are

require. So, if you assume that your memory word length is say 16 bit. So, in this case

what will happen.

This instruction if the there is a two address instruction will not fit into a single memory

word. So, it will become a double word memory the double word instruction, that is; one

part will be here and then will be other part will be here. So, you will format it in such a

way. So, that it become 32 bits that we can in alignment can be taken care of, but in main

point is to say that now it will become a double word instruction.

So, first now how to even we fetch the instruction you have to take two memory

locations at a time at a time you cannot do. So, you first fetch a part of the memory, that

is; first location then you fetch the second part join them in the instruction register may

be there can be can be two instruction resisters the width of the instruction registers has

to be increased to instruction register you put in parallel jointly and then you decode it

and.

So, you we will understand that it is more cumbersome to do it even, then if you have

add and I said that de facto standard is accumulator in this case that is 8 plus 10, 18. So,

in this case also it is with difficult. So, it may go ahead, but let us assume that for the

time being if I have 20 size memory, then you can easily see that add 30 hex you easily

fit in one word. So, these are taking all are hypothetical examples, but to just illustrate

the concept that if you have a large long instruction.

Then basically the problem is that you will require multiple words to store in the

memory, and when you fetch and decode there all more number of steps involved and the

hardware is also complex, because if I say that the width of the memory is 20 or the word

size is the 20 bits; then this instruction will fit 10 plus 4 plus 4, 18.

So, just a single instruction will be fetched in single instruction will be fetched decode

and execute it, but if you take a double two address instruction. So, in case is 23. So, it

will be one memory location plus another. So, generally these instructions are formatting

in such a way that either it takes one word or it takes two word not generally one and half

this just to give an example.

That, in now it will take more than one word. So, instruction and decoding and all those

things will be much more cumbersome similarly with the three address of course, three

address means you can have say something like that I can say add R 1 R 2 R 3. So, in

this case the value of R 1 will be added to 2 and will be stored at R 1 so. In fact, what

happens that I can add three numbers together?

So, it may have the value of 3 it may have the value of 2 it may have the value of value

5. So, I require 3 plus 2 plus 5, I want to do you can write add R 1 R 3; that is, the value

of R 3 will be added we will be added 2 R 2 will be added to R 1 and everything will be

stored back in R 1, basically at this is the instruction format or.

How the instruction happens in this case? If it is the single if it is two address, then

basically you can take only R 1, R 2, that is; first we will be adding 3 plus 2 2, then we

will be stored in some temporary register like R 1 and then again the new value you have

to add to the existence.

So, the by multiple numbers of steps so, let us look at it in a more nice fashion. So, that

the; so, disadvantages already we have seen that if you take very long long instructions,

then the memory words will be more and then the problem arise will be you have to have

two memory location has to be fetched for a instruction, then decoder it will be slower

and more hardware complex, but what the advantage is larger the instruction.

You can do same operation with less number of instructions like three address say that I

have to add 3, 2 and 5. So, they are in three different registers for the time being.

(Refer Slide Time: 14:39)

Let us assume. So, we can write add R 1 R 2 R 3. So, very simple value of R 3 will be

added to R 3 will be added to R 1 and everything will be stored back to R. So, one

instruction you do the purpose, but if it is a two word instruction; then you are gone. So,

in fact, what will happen it will it will not be able to do it in 2.

So, this is the case. So, R 1 and R 2 so, first 3 plus 2 will be added and it will be stored in

R 1. So, next instructions you have to write add R 2; sorry R 1, R 3. So, first stage what

will happen 3 plus 2 will be added, because in R 1 there is 3 R 2 there is 2 they will be

added and the value will be stored in R 1. Next instruction will be add R 1, R 3, R 3 it is

5. So, now, it will 5, 5, 10 and it is stored.

So, you require two instructions to solve the problem. So, your code will become larger.

So, therefore, basically this is a trade off, but if you look at the current rate people have

all gone for shorter instruction, then because our computers are nowadays become more

and more faster than the number of executing one after another instruction is quite faster.

So, people have gone in this direction that then the instruction smaller less width execute

more number of instructions per cycle, because your CPU processor are much faster let

them making these instructions very complex and taking multiple words in the memory

that is what is the trend and very interestingly we will said about; what is the 0? And this

instruction there is no operand specify like.

(Refer Slide Time: 16:17)

If I say add then where are the operands. So, whenever you say that I am doing with a

zero word instruction or zero address instruction so. In fact, there is a stack involved with

it. So, in that stack there will be different elements like for example, there are three there

are these two. So, and then you (Refer Time: 16:24) the 5.

So, in case what will happen you have to write add and add. So, what is going to happen

in this case. So, whenever you say add or any instruction you give it will take the first

two elements depending if is the two address or three address.

Basically, but in fact, in case of zero address instruction basically, why it happens is that

we default there is a stack attached to it and whatever operation you attach like add if

you say add it will take the first two elements on the top the stack. We will we will pop

that added and the value will be pushed to this stack may be if you say nugget is a single

bit instruction is single operand instruction.

So, of the first value of the stack will be popped up made 5 and push it back. So, if I

write add. So, what will happen 5 and 2 will be popped up and then what is it will be

added up. So, it will be first it will be popped up.

(Refer Slide Time: 17:14)

So, 5 and 2 will be popped up 7, the value of 7 will be written over here.

Next if I say another add the first two will be taken and they will be popped up and the

value of 10 will push back.

(Refer Slide Time: 17:20)

So, whenever I told that zero address means is nothing to be surprised; that means, in the

instruction itself you are not saying where are the operands, but the there is a different

stack attached to it and it will start operating on the elements of this stack my first

pushing means popping them up and doing the operation and push back.

So, if is the unary operation like nugget all those single; will be popped add means two

will be popped. Generally, we have never have that three values are popped and the

operations has been done that architecture was they were popular ok.

(Refer Slide Time: 17:48)

So, now we have told so, many theory. So, let us try to give some proper examples. So, is

an instruction of a three instruction; three address instruction add R 1 3030 hex and 3031

hex. So, what did we say the OpCode is ADD. So, as I told you will be always using

mnemonics will be never writing the binary value destination is the register R 1 if they

are 32 registers all the registers they itself they will also have some binary representation

if there will be all 00001, because if there are 32 number of registers.

So, the number of which reflect will be 5 and or this R 1 is it will be 00001, but for each

of the representation will always use a numonic format. So, three words three address.

So, this is the location of the first.

First operand this is the location of the second operand and as I told you slowly we will

see that when we will be going more advanced into the instruction types. So, sometimes

add it may tell that I have to add what is the location value here what is the value here I

have stored it R 1.

Sometimes it may also mean that whatever value is present in 31, 30 you add them along

with the whatever the values in R 1 and the result is stored in R 1. So, that will tell on the

time of instruction as I told you that many times you have 1000 plus instruction. So, how

many instructions can be possible right very difficult to think 1000 instruction add

multiply subtract load jump etcetera, but you will be think that.

The number is not impractical, because add can be of similar types in this case I can say

that it is add 2. So, I can say that it is add 2, what are they doing? It means I will take the

variables or the operands from the last two or the last two operands and will add to R 1

and I can also say there can be another format R 3 add 3 what it will do?.

It will take the value present in 31 30 as well as an R 1 and together the value will be

stored in R 1 just like if I say that add single address instruction add 3030 hex. So, what

does it mean it means whatever the value is present in 30 add to the accumulator and

write it back so; that means, you can have the formats or the possible in which case.

Also the register in the involved in the operation is that then just load and store. So,

which one you make a restart and no effective and short. So, what I wanted to say that

add can be of several types even something can be write add immediate, likewise; I can

say that add immediate what does it mean add immediate 30 h. So, what does it mean?

Add immediate means this 30 is no not a memory location this is basically the immediate

value of 30 in h.

So, whatever in the accumulator will be added to 30, and it will be written back to this

written back to the accumulator immediate means the value of the operand is specified in

the instruction itself. So, in other words add can be of you know different types 20 types

multiplication can be of. So, much variation store can be of. So, much variation jumps

can also have; so, many variations.

That is, why the number of instruction if it is the basic operands is like add multiply

subtract store can be very few, but the variations are huge in number. So, therefore, 1000

if an instructions or 500 in an instructions or 2000, different instruction is impractical

number they are very much practical. So, anyway that is not the concentration of the or

consideration or the not the method of I mean not the point of focus here you just trying

to see what are the different instruction format and basically how they are represented.

So, in this case we tell you that it is a 3 address instruction. So, these are the 3 address

and this is the OpCode means where it is stored. Now, the values etcetera are been will

be coming later when we will be going into more depth of instruction, how to design an

instruction? What are the different types of instructions etcetera?

Now, the instructions say design etcetera will be taking up three units, then all those

things will come that what is the add what is add immediate etcetera, then this is actually

example of a single address instruction as I told you. So, one address instruction means

basically there is nothing mentioned over here this is basically the accumulator when this

is already the accumulator is the factor given over here.

So, whatever the value will be represent in 30 memory location will be added to the

value already stored in the accumulator and you have to stored back in this one. So, these

are the basic instruction I have shown you as an example ok.

In fact, if you if you consider two or instruction. So, you can have add R 1 3030. So, in

that case it is a 2 address instruction. So, one will be the memory location what will be

kind of R 1 and you can store it back in the R 1.

(Refer Slide Time: 22:14)

Now, basically what are the instruction types. So, basically if you have look at the C

program what do you have you declare some variables, then you do some addition

multiplication subtraction and you have groups. So, basically and some stretched and

standard printf and scanf treatment so, basically no code can have anything other than

this that is data transfer instructions arithmetic and logical instructions and basically

control instructions. So, whenever you see scanf storef and storing some variables

basically they are nothing, but data transfer operation you get the value of the data from

the memory then.

Arithmetic and logical instruction; that is the most important one like you go add

subtract multiply etcetera and control like you have loops. If they in for while etcetera

that they fall under the category of control instruction. So, instructions are basically only

of this drivel and we can play around with it having different formats or different

variations of them like for example, what is the data transfer instruction in case of a

architecture basically you transfer data from one memory location to other one memory

location can be a register another memory location a register to another memory location

a register to register etcetera. So, any memory can in memory transfer is a in the transfer

operation like for example, if I say load R 1 3030.

It means it will take the value whatever is available in this that is in 3030 and it will put a

register number one this is the two address instruction and what (Refer Time: 23:38 you

can have a single instruction like we can say load 3030 h. So, what it will mean in this

case I am not specified any register means is a de facto standard in the accumulator. So,

we stored the value whatever is available in memory location 3030 into the accumulator

arithmetical logic instructions.

(Refer Slide Time: 23:55)

As I told you they are the basic mathematics we do like add R 1 3030, that is add the

value of 3030 memory location to register one and store in register two this is the two

address instruction this is again see not one. So, this is basically a logical instruction that

will negate the bits of the number stored.

(Refer Slide Time: 24:19)

In register R 1. So, generally this is the; logical instruction and many most of the logical

instructions, basically if you see will have a single one address. So, it is not a very

standard rule, but generally not then you can say not negate all those things basically

then shift which is a left shift right shift.

So, generally they have a single operand. So, single address basically then, but not all

basically sometimes we can have bitwise and bitwise or ok. So, in that case this is also

logical operation, but in that case they will have two addresses, but what I; what I mean

this seen see that single operand or single address instruction is mainly type of logical

instructions.

But, there can there are many legal instructions which have two operands like and of two

numbers bitwise ok. Then next is very important instruction, because most of the code

will have lot of logic logics; that means lot of logical or control that is if this happen you

go to this if this happens you go back etcetera.

So, very important are the is I means which will be flow, but it never happens that you

execute step 1, step 2, step 3 and done basically as many steps will check if this has been

the condition I want to do this else I want to do that that is; why that is the idea of

OpCode? The code instructions based on something either you will execute this or

execute that.

So, that is why actually are; control instructions and the heart of any programming. So,

generally here in this case also main memory will find that they are single address

instructions like jump 3030. So, what it tells that unconditionally whatever happens you

jump to the instruction which a memory location 3030. So, generally what happens if I

say add 3030 h?

So, what is that mean it will mean that whatever value is available at 3030 add with R 1

and stored back in R 1 sorry accumulator, because it is a single address instruction, but

when I say jump 3030. In that case what happen it is telling that the instruction available

in 3030 has to be executed. So, if you take this scenario. So, in this case 3030 is having a

instruction to be executed; and if you take this scenario.

So, in case the memory location is 3030 has a data. So, as I told you is the one human

architecture. So, any place can have a data any place can have an instruction like, now

there can be some condition instruction if it is saying the jump on 0, 3030; that means,,

but whenever there is the condition instruction before that some other instructions has

been executed based on which it has been done like for example, you can say that sub

write it thirty.

So, what does it mean it will mean you will take the memory location data 3030,

whatever available in the accumulator subtract it as store the value in the accumulator,

but whenever such operations are done there are some flags there is the flag register.

So, that will be safe there is a zero flag nonzero flag. So, whenever we will come to that

we will read about it and also Professor Deka might have also has discussed something

of some elaboration on the flats. So, whenever some mathematical operations are done or

logical operations are done some flags are said like 0, is available in one flag carry is a

well one flag.

So, some flags all set or reset. So, if you subtract the value of whenever as presented the

accumulator with whatever value vas present in 3030, if the answer is 0. So, zero flag

will be set otherwise 0 flag will not be set. So, then we say you want to say that if the

memory location value of 3030 and the value of the accumulator as equal, then I want to

go to sorry I should call it 3030.

There is confusion let me call it 3000 confusion.

(Refer Slide Time: 27:48)

So, the so, 30 memory location 3000 has a variable in the location of a variable which

has some value. So, I want to check whether this value is equal to the value available in

the accumulator if those two values are equal, then I will jump to the instruction which is

there in the memory location 3030.

So, in this scenario 3030 is having a instruction and memory location 3000 3000 hex is

basically having a data. So, I compare this data with the accumulator; if they are equal

then what I am going to do is that; I am going execute the instruction which is available

in 3030. So, this is the instruction jump on 0.

So, that is the control instruction. So, what it does, but before that generally I should

have done an instruction which is set my zero flag. So, suppose; I have done some equal

to 3030 hex. So, if this two numbers are equal, then zero flag will be set; then when I am

executing the instruction jump on 0 to 3030. You will check whether the zero flag is set,

if the zero flag is set if you go to the memory location 3030 execute the instruction there

have to continue from where the previous instruction was there ; that means, it will not

jump with 3030 whether increment the program counter and going. So, therefore, these

are actually basically control instructions.

Very important with they are two types jump condition and unconditional control

unconditional means whatever be the case you go to that; that is, I mean what do I say

that memory take the instruction there and executing conditional means basically it will

depend on certain conditions, how the conditions are set. Based on some operations flag

values are set and based on those flag values it will take. So, I have given you an

example.

(Refer Slide Time: 29:27)

Now, again as I told you three address two address one address and zero address that is

how many operands are there? So, this is the there address section format. So, R 1 30 hex

so, as I told you in this case additions are have different type.

(Refer Slide Time: 29:33)

So, you it is saying that whatever the value of memory location available in 3030; add

with the immediate value 5 and store the result in R 1. So, this is a special type of an

instruction means similar addition compared to this add instruction R 1 3030 x and say

3031 hex. So, the first one we will take that whatever available over 30 whatever

available over this.

These two instructions has to be a major instructions to be added and put the whether in

R 1. In fact, if you observe this instruction size may be quite large maybe 10 bits here 5

bits here this is 8, 16 16. So, you can understand that if you have an instruction which is

the add R 1 and two memory location which is quite larger may be compared to this,

because in this case 5 is an integer and the integer may be.

Around 16 bits or something I can I can I may not keep it as a 16 bit is size of this

immediate range. I can think that the number or range of the numbers which are put in

immediate values. So, I can restrict it to 8 bits that is 2 to the power 8 my; it is my

decision or my format of design. So, I keep it.

So, what I want to say that? It not only the adds add instructions can be vary in the wave

function, but it can also vary in length like if say the add R 1 and the two memory

locations if length is 10 plus 5 plus 16 plus 16 bits, but here the immediate I can restrict

not to bits, because in this case is a memory location memory address size here which is

the range of number I want to get like, even if we get 32 bits.

Make it longer, because I can get a very large precision number. So, I can keep it in the

32. So, in other words what I mean to say is that a same instruction same address

instruction like three address, two address given any address instruction format the

length may also vary and the way the same operation like add I mean also vary then.

So, therefore, this OpCode and this OpCode is vary. So, therefore, the number of types of

adds the number substrates type of subtraction also varies in nature and also the

OpCodes will be different. So, therefore, you reveal such number of this one. So, now

again coming back to the storage the basic format of three address instruction is that

there will be OpCode destination source and source sometimes this can be source as well

as the destination.

That means to again take this source 1, source 2, this can be source 3 and you write back

the value of the destination problem is quite long read multiple what is in the memory as

I told you multiple operand features that this 3 operands means 3 times you have to talk

to the memory to get the value and for a single instruction you have to read locations in

the memory join them get the instruction totally long instruction you have to you know

the instruction may be split into memory locations opera bring down join them and so,

and so, and so, on; however, the number of instruction less required to execute is less

because in one instruction you have around do much more operation 212 instruction.

Format is the most widely accepted.

(Refer Slide Time: 32:33)

So, it is it says that OpCode source so; that means, what happen is that sometimes

actually like as I showed you add R 1 R 2 that mans its say that; whatever is the value of

R 1 value of R 2 you have to add to R 1 and stored back. So, this one is both are source

as well as the destination. So, that is what has been stored over there.

So, generally the first one, generally one of the operand generally the first one

corresponds to both source end result they already have here is the source as well as a

destination and this is generally the source. So, so it can vary the store it can have the

memory location it can also be immediate, but for all these cases we OpCode will change

and their variants of a. So, this is.

One example where it says that are 1, 3030; that means, the value of probability 3030 is

to be added to R 1 and is stored at to R 1. So, in this case this is both are source and a

destination, but in this case as I told you. So, generally speaking is a destination

generally, they will add these two numbers and give the value of 1, 1 and for many cases.

Sometimes this one you get the source, but that is more real in two instruction format

generally this is a source as well as the destination, but in these three case in these two

address case. Generally, this was a destination itself to be does not add this plus this plus

the value of this and stored back there, but for many cases many instruction formats or

many machine architecture these are all sources of destination.

But; that was less popular this one maybe this was more popular what was the more

format popular format that is these sources and this is on to the distinction, but in two

address the source as well as before destination.

(Refer Slide Time: 34:15)

Then one address in this case as I told you one is a de facto standard is the accumulator;

that means, whenever I say at 3030, if nothing is mentioned, that is a register which is

the accumulator to its easier to write this instruction size is small and the affect is also

similar to a two address format, because in that case also you have to make it specifically

means any registered, but in this case you may not be able it is not equal to explicitly

maintain mentioned the register name. So, instruction sizes are less that is the case.

(Refer Slide Time: 34:44)

But one thing you have to understand that as more than more you make the instruction

size as smaller more number of instruction will be report to execute the simple code or a

single or given code and more number of operands ore more number of addresses you

put it less number of instructions will require will be require to solve this a same problem

or the same code there is obvious basically, but the theory that more longer you make the

instruction hardware is more complex decoding fetching is more complex and therefore,

the modern trend is towards simple instructions and execute them faster and as I told you

the last stray format is 0 address format in zero address format basically only the

operation is specified, but a defective standard is that you have a stack with it.

So, if I say add. So, what it will do? It will pop up the two locations at the result and

write it back. So, basically you have the you have to been extra headache of a stack, but.

In fact, there are many other ways this is zero address format is a stack comes that is the

problem, but again the instruction sizes are small, but this zero address instruction has lot

of rules in the system or handling the internals of a CPU execution like, the program

counter. Whenever you execute procedure or whenever you have to jump from one

memory location to other or you have to execute what do I say or in the

So, in that case what happens? Basically, you have store back store the old programs

status word old value pc old value of register. So, that whenever after execution the

interrupt service routine or the procedure have to come back we have to get the value.

So, where these values are stored; So, they are basically stored in the stack and

depending on the return and come back if we pop up the values and use them and before

going to service the interrupt you have to store that in the stack.

So, there is a defect to stack is always double in the CPU. So, there are you can always

use the same stack for a or a part of the stack or the same architecture for zero address

instruction. Now, before we close down let us see a very practical example. So, this is a

code I am not written the code. So, let us say that I want to add A plus B plus C plus D

and subtract by this one.

(Refer Slide Time: 36:38)

So, we are taking the architecture three address instructions in this case and in this case

we are taking say that say add this is the destination and these two are the sources. We

are not considering the cases that is the source or destination together we have taken the

case that this is a destination only right. So, in this case so, some of so, first instruction is

add h a B.

So, value of A and B are added and stored in C next instruction is add I, C, D. So, value

of C, D is added and stored in I then you say that multiply H I. So, this one is actually

now H and this is I. So, this one is done. So, whole thing this is computed as G now you

take this. So, in this case you are subtracting F and G. So, if substrate F G the value will

be stored at in K.

Now, you say MUL multiplication of K this is your K. So, this is where K is stored. So,

you take K and multiply E and stored in the K. So, this part is basically now LN and then

you have to divide J and l. So, J and L you have to divide and you have to stored that the

value of L. So, finally, it is 2; so, how many instructions 1, 2, 3, 4, 5, 6. So, since the

instruction actually shows the whole problem for you 1, 2, 3, 4, 5, 6 done.

(Refer Slide Time: 38:03)

Now, next two address. So, in this case as I told you this is both the sorry; if this source

as well as destination and this is the source. So, now, what you have doing ADD A, B.

So, the value of A and B are added and stored in a then C, D ADD C, D value of C, D

and stored in C. So, now, this one is A this one is C.

Now, you say that F minus G some multi you can do the multiplication A and C you

multiply these two; now this whole thing becomes a simple the subtract F minus G. So,

this one we will have become F, then you multiply ELF you multiply these two when

these whole thing will become your E and then finally, you add A and E and the store E F

added.

So, A and E were added and the value will be stored in a. So, now, this is a final answer

very interestingly how many instructions are equal if you look at this very easy to

understand.

(Refer Slide Time: 38:51)

How many 1, 2, 3, 4, 5, 6 then there is no sorry then there is no advantage.

(Refer Slide Time: 39:01)

Now, why this is no advantage still always?

I will tell that; I will take the case of the two word this instruction, because this is also

taken 6 and this is also taken as 6, but as I told you here you have kept the format like, A

and B and the value is stored in each and using this edge as a only destination, but as a

home work. You can always try and you will find that the number of instructions will

reduce.

If you also allow this one to be a source as well as a destination it may not happen from

this code, but you can easily find out codes where the length can be a much smaller. If

you consider this as a source destination as well as these two are the sources. So, you

will find out that the number of instructions will be much lesser in some examples, but

here as I have considered this as the only source only destination and these two are the

sources.

So, basically this one is actually source destination source. So, now, in this case

affectively these two formats have become similar.

(Refer Slide Time: 39:51)

So, the same type of instructions same number of steps has been taken, but if you take a

more generic way of doing it number of instruction sizes will be less number of

instruction will be less now there will class come. Now, I am taking a single address

instruction, now defect two is accumulator everywhere accumulator is defective. Now,

big problem that is in this CAE; what you have done? You have say that an A comma B

and the store the value of a C comma D value is in C, but if you do not writhing anything

in a single address instruction, there is enough with the defective accumulator.

But, accumulator is only one. So, what you have to do you gave to use the accumulator

and at the same time you have to again free, before it can be used for some other like; for

example, what was are answer A plus B star C plus B. So, what is the first thing? A plus

B star C plus D this will be n correct.

Now, what I said A ADD t so, what it will be it will add the value of do not saw as a load,

because I am loading the value in the accumulator. Now, I say ADD B. So, what it does it

will ADD accumulator plus B. So, what is that the accumulator in the value of B? The

value of A in the accumulator you note the value of B to A and stored at the result. So, if

B will be added to A and in the accumulator.

Because, A has the value of, because accumulator has the value of A, and it will be stored

in the accumulator after these two what happens? Now you are having in accumulator us;

now after these two steps you have the accumulator which is having the value of A plus

B; now may be you will be using the accumulator to this C plus, because accumulator is

only one.

So, if the free how can I free it I have to store the value of accumulator to memory

location A. Now a accumulator has the value of A plus B. Now I say that store A; that

means what? That is A plus B is stored in A.

So, therefore, after load A add B and store A, what is going to happen? A is going to have

the value of A plus B. So, in action what happens I wrote the value of A in accumulator, I

add the value of A plus B are stored in the accumulator and I am store the value of

accumulator to A and free the accumulator I have to free the accumulator, because there

is accumulator is one. So, now, I freed it now A is having the A value of B.

(Refer Slide Time: 42:20)

Similarly, these two things will do the same thing. So, what I am doing load C. Now

accumulator will let me just erase it. So, up to this accumulator has the value of A plus B.

Now accumulator is free basically accumulator is A, is having the value of A plus B and

accumulator is free now. So, in this case now I load the value of accumulator C; then I

ADD B.

Now, accumulator is going to have the value of after these two statements I have the

value of C plus D will be accumulator. Now, what I had to do? My basic operations we

performed in A plus B star C plus D. So, this one is now stored in A and C plus D is in

the accumulator.

So, you can write an instruction MUL A; that means what C plus D? Which is already in

the accumulator; when we multiplied with A which now has the initial value A plus B

and accumulator will have the value of this whole thing and the first part of the

expression A plus B starts it. So, up to this first part is done; now again I have to free the

accumulator, because I have to also do this part of the operation. So, again whatever the

value of this was in the accumulator.

So, again I store it in the this whole thing I store it in memory location A and the whole

thing is, now in the memory location A. Again, I have to free the accumulator. So, now, it

is very much in the similar procedure you can see. So, in the next step is basically store

is done, now load F in the accumulator subtract G. So, F equal to F minus G. So, the next

expression was to check.

(Refer Slide Time: 43:44)

The next expansion E star F minus G E star F minus G if you do this. So, now, you can

see, what I have done? I have noted the value of F in the accumulator have subtracted it

G. So, now, the accumulator will have F this accumulator will have F minus G now you

multiply with E. So, this is done. So, now, the whole accumulator will have this.

Now again you store E; that means, this whole value will be stored in E, because the

accumulator has to be free. So, I am freeing the accumulator multiply this, when I am

storing the value of accumulator to E the accumulator is freed. Now, I gain load the

accumulator with A, because A was having this whole value and then you say dp. So,

basically A was the first part of the equation, E is the second part of the equation before

that is see the accumulator.

Again load the accumulator with A that is A equal to A plus B star B in to C, that part of

the equation is loaded over there and then you do this operation and even done. So, you

can if you do this program carefully it will be easily and joint with down will be as it will

easily able to figure out, but what I mean to say is that now the number of instruction is

1, 2, 3, 4, 5, 6 quite long; why? Because, if there is a single accumulator there are single

accumulator and if are using one word address.

So, every time you do some operation you have to free the accumulator, because before

doing the another operation you may have to doing new valued from the memory

location to the accumulator do it that is; why: If you are doing the single address

instruction it will take the more number of instructions. In the most general case in this

case I told you please take an example where the third operand can be a or the first

operand.

Can be both are source or destination and take an expression which we have three

variables at a time like A plus B plus C B, C plus A plus B plus C star C plus d plus k

three variables you take and then you take this format and then this format we will

always have less number of instructions over here that you can try.

(Refer Slide Time: 45:32)

So, generally the defective standard is less number of lesser number of addresses shorter

will be the instructions, but more number of instructions for a code and the other we

around know. So, now, the before we complete let us take a very simple that same

example with the zero address we can go through the whole code, but I will just tell what

happens. So, for example, first you have to put A plus B it will have you have to do A

plus B star C plus D. So, this is the only thing you have to do other things are.

Similar so, we can easily explain. So, first you have 2, because the first two is whenever

a single zero address instruction means is a stack. So, A plus B; how you do you have to

first push a, then push B and then you have to say. So, push A push B are got then you

say ADD. Now, what happens when add is done de facto standard it will pop this up and

you will have the value of A plus B over here. Now, you have to be C plus D then you

have to say push C push D. So, C and B will be there then you say ADD. So, it will be

automatically you got and it will be same got and which will be one it will be equal to C

plus D; sorry C plus D, then you say MUL, then what will happen these two values will

be popped and multiplied.

So, now the stack will have the first value that is A plus B star C plus question will be

done. Similarly you can very easily interpret; how it will happen? So, again now EFG

you have to do. So, you have to push and pop and you have to sorry you will get it

answer done.

So, in so, generally the number of stack based operation will be more in number

compared to even a single address instruction or where is a stack based if the more

number of instructions compared to a one (Refer Time: 47:20) instruction. So, there will

logical basically. So, if you have very long instructions or a very complex instructions

and more number of operations can be done together the number of instructions will be

less.

And it is a very simple instruction the number of instructions required will be more to

solve the same problem.

(Refer Slide Time: 47:34)

So, that is what basically we have in this unit which where we where we have showed

basically; what is the basically a instruction format? What it has? And basically

depending on a format what are the good things and what are the bad things. So, some

questions like and we see how it meets the objectives, what are the generic elements of

an instruction explain is an example.

So, you can see that it can easily handle we describe the different elements of a machine

instruction and some possible format for instruction decoding. So, easily if you solve this

problem you can very easily meet this objective what are the different type of different

type of instruction explained with the examples.

(Refer Slide Time: 48:16)

This one and these two are the objectives which is satisfied even for this one because

different type of instruction means; if I take a data business. Now, explain three address,

two address, one address as formats with example already we have discussed and it

actually satisfied; that if you are able to explain different type of instructions with

different addressing formats you will be able to solve you have able to meet all this recall

based objectives.

So, with this we conclude this unit and the next from the next unit in the next unit. What

we are going to do? Basically, we are going to see more specific idea of how basically

the instructions will one like as I told you add can be your very different types that is

these two addressing modes at these may be two words, three words, one word is one

operand is available in the memory 1 in the register and you have the add them two.

So, how different type of same operations like, but how different ways the instructions

can be instructions work what are the different variations what are the different type of

instructions how can we make them as a set of instructions. So, more in depth will go to

the instruction set design ok.

Thank you.

