Design Verification and Test of Digital VLSI Designs
Dr. Santosh Biswas
Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 3
Logic Optimization and Synthesis
Lecture-1
Two level Boolean Logic Synthesis — 1

So, good morning and welcome to module 3 of the course of the design part of the
course. So, as you know that in the design part of the course, we have seen that we start
in case of VLSI digital design, we start of design specification, and finally we and finally
we have to reach for the stage where we can go and layout the chip. So, in module 1 of
this design part of the course, we have seen that that the basic design, and then we have
seen that we start with high level design synthesis that is we take a specification and then

we go for a RTL level design.

In the second module, we have seen that what are the different type automatic
algorithms, which can solve the different parts of high level synthesis. That is we can go
for we know that high level synthesis comprises scheduling allocation and binding. So,
we have seen algorithms, which can solve the scheduling problem, which can solve the
allocation and which can solve the binding problems.

Then, after the end of high level synthesis or after the high level synthesis procedural
completes, then what we get? We get a RTL level design, that is a register level transfer
design or you can say a basic architectural level design. Now, the next step of the design
flow as discussed in module 1 or the introductory lecture of the course. We know we
have seen that after the high level design is obtained or the RTL design is obtained that is

some kind of black box design is obtained, then our idea is to go for a gate level design.

So, once the gate level design is obtained, then only we can place it, route it and go for
the further down these steps. So, high level from the high level design, we need to have a
largely gate level design because everything ultimately has to be implemented using in
terms of gates and flops. Then, finally it can be | mean and actually in the hardware

library, we have nothing but the gates and they actually comprise the transistors.

So, gates are a unit block, you can say the building block for digital designs and then
there will be actually placed routers and will be going for the backend design. So, very

important is that we have to convert the high level designs to a gate level design.

(Refer Slide Time: 02:03)

J M)
s

Design Verification and Test of
Digital VLSI Circuits

NPTEL Video-Course {*“ #7
A oale 1!'- . -';&;ii

£

Aol R

NN Module-ll
Lecture-|, Il and I1I

_Two level Booleah Logic Synthesis

I
B

So, now in this case, what is what we are going to see, we are now in the second module,
second module number 3, we in this lectures 3 lectures series, what you will see? We
will see two level Boolean synthesis logic synthesis. So, what you mean? We will see
what you mean by two level Boolean logic synthesis. So, first what you are going to see
is what do you mean by Boolean logic synthesis.

So, actually the idea is that whatever | mean RTL design you have like we can say RTL
design or black box design. So, they can all, they are all nothing but they represent some
Boolean functions. So, how they represent some digital functions? So, you can easily
represent them as Boolean logic or Boolean all binary functions sorry Boolean functions,
which can have some binary values or in other words, every even RTL design will have
some inputs and have some outputs. So, all the outputs actually are digital outputs and

the inputs are obviously digital inputs because we are talking about digital design.

So, all the outputs can be represented in terms of the inputs and also in terms of input
outputs also. | mean if you have what you call of sequential circuit, then the output will

be depending on input and also on the state. If it is purely combinational circuit, then the

output will be depending on the input. So, in other words, all the outputs of the circuits

can be represented in terms of some kind of Boolean functions.

Now, what happens? So, that is what all the functions all the outputs, if you can say can
be represented in terms of some Boolean functions or they have some binary output
values, then what is the idea? Then, we can convert each of these functions to logic gates
that is say for example, we have a function say f x is an output for one of the output of
the RTL design. Then we know that if you say it will be a function of say a, b, ¢ where a
and b and c are the inputs.

So, f x is equal to some function of actually a, b, c. So, that is the output, x will be
depend on some input values of a, b, . So, it can be like a b plus ¢ or something like that
you can have some any Boolean, you can have any Boolean values or any binary, you
will have x will have a binary value and you can have any Boolean, it can be represent

any Boolean function.

Now, so that is the idea like for example, if it is an adder circuit, so you will have this
adder is equal to a x sorry a x or b. Similarly, if it is a carried part of half adder, so the
carried part will be a b. So, that means, output of all the all the outputs of the RTL design

or the high level design can be represented by some Boolean functions.

So, that now these Boolean functions have to be converted into logic gates. So, Boolean
as if they are Boolean functions will take they will have a binary values. So, we can
easily represent them represent them in terms of by using some binary gates sorry in

terms of some logic gates. So, that procedural is actually called logic synthesis.

So, in this 3 module, I mean module 3 in the 3 lecture series, we will see about two level
Boolean synthesis or we will be trying to implement our that is Boolean functions by
what do you say two level by using of Boolean by using logic gates, which should be
having two levels. So, now we will see in details what you mean by two levels, what you

mean by multiple levels, so forth.

(Refer Slide Time: 04:55)

introduction

i the lesd two modules, we dicuised that b case of digitel VLS desipn we sThi
with high-level syrtem spec¥ications, which are randfcemned into optimal Reghier
Transher Level [RTL] cirouits using Mgh Level Symthesis (HLS) algorithms

WO the ATL cleult i svallabls, we nesd b0 Trancinesn i o gats b design,
_1.-.-'\--\:1"'1.;-' then be processed by backend akporithm; this process i -::-ﬁ:! Loghe')
S:t:?-_gh_-i Formaly spesking. Boolean logic mymthest i & prodess by whith—an

ratraglcem of dasined cirpull Behavior, Dypically ATL. b trensformad info & delign

mplemmentation in terms of logic gates _J-_'\-I:I_|l_|:-_|‘_i‘:lI!1- That module iy dedicated to
ofc syntheis of combinational and weguential Cirtuits

= [t may be moted that two evels of logic are minimum reguired o implemsst an
arbiitrary Bockes function. Generally, we & lafne Mt the prlmithves e AND #nd
_f;l_liy'.m v IFr T s AND patas e uisd oL tha-Lnt bvel and DR gates are uied
n e second level Inverters By e pretentlal sofeinputs of the gates oF the
lirjle Ut At Eond 4 Pyl
r [Jgj B 3 fet conjdered & an jﬂ'-.j‘:_ﬁ“r".\?

. - / [
[LN /
o U,

g LA e

L L
- i
.-'"'_I

So, this is the introduction. What | have said that we have seen that we get the RTL

design from high level synthesis. After the high level synthesis, we get the RTL designs.
Then, now the RTL circuit is available, you have to transfer into gate level design. Now,
that is actually called logic synthesis. So, if you are having the RTL design, so formally
speaking, so if the RTL design you want to represent them using logic gates, so this
process is called logic synthesis because all the outputs that as | mentioned, all the

outputs of this RTL circuits will be represented by some Boolean functions.

Anything that is represented by some Boolean function can be always represented by
some logic gates or some gates because logic gates are also nothing but they also
represent some Boolean functions like for AND gate, it is a dot b having two inputs
AND gate. So, the output, so the function of and two input AND gate is you can say that
adot b.

Similarly, you can read every function also, they will all be represented using Boolean |
mean sorry logic gates. So, that is why it is called logic synthesis. So, now we are going
to see this module, 1 mean this module is entirely ridiculous logic synthesis. So, module
3 and in the first three lectures, we will see how we can about two level logic synthesis.
Now, we will slowly see what you mean by two level, what you mean by multiple level,

so we will be coming into picture.

(Refer Slide Time: 07:17)

introduction

o the l8s Two modeles, we dicuised that bn case of digtal VLS desipn we stam
with high-level mratem specications, which are transicemed into opiimal Reghier
Transher Level [RTL] ciroaits using Migh Level Symthesis [HLS) algorithms

w0 the RTL clevult s svallabls, we nedd b0 Transioesn i to gate beas design,
whichean then be processed by backend algorithm; this process is -:l-"C!ﬁl-ﬁE-E_
._‘.:J-t:_-‘-_g;.-i Formally speaking, Boolean logic mmthest i & progess by whith-dr
:q-._r_-.n-_;,r"irr-'u- of dasired cirpull Behavior, Dypically RTL & eranisbormed nse g Seiign
mplementation in terms of logic gates J_l:iﬂ_“LF-_F_ﬁjl;i This module s dedicated to
g syniEhedn of combinational and wequentiad Gitwits

= [may OF mobed that b eves of Ogic are minemiem resguired_bo smiplemasst an
arbitrary Bockes function. Denerally, we &ijaine Tt the :IF;’H e AND and
DR gaten and lervertens, AND pitet e uvsed b T e brapednd DR gates are Gted

m 1aE second bevel Investers may be p'eur.".'ut some Inguts of the gates of the
|||rr"'||j_ Bt & B rot condidensd i -'lr:_ll:l'ﬂ';!-'l."h-i kvl { -Cil . L2
| - | & i e |
o s - 1 . / A !_'-__ L
: AP) S GY
§ 5 LY .

So, whenever you say logic synthesis, so we are actually using logic gates if it is a
combinational circuit and both logic gates and flip flop is a sequential circuit. So, nhow
coming to the question of what you mean by sorry two level logic. So, what is a two
level logic? In two level logic, we are using only AND gates, OR gates and inverters. So,
inverters means a prime is if we inputs are not inverted, so if you see assume that inputs

are a, b, ¢, d, so if you want to get a prime, b prime or ¢ prime that is the inversion.

So, you have to use i inverter. So, use AND gates, OR gates and inverters. So, in two
levels, AND gates are used at the first level and OR gates are used as the second level.
We will see what do that mean. So, that means, | think in your digital design
undergraduate course, we have seen that some function like f of x, which | have told can
be represented as a b plus c. So, what does that mean? It means, you have an AND gate
for a b, this is a b and then there will be a OR gate at the second level. So, it will be
nothing but c. So, it is ¢ a dot b plus c. So, that means, what in the first level, you have
put an AND gate and the second level, you have put an OR gate. So, we will see with the

bigger examples. So, that is the basic idea.

So, in sum of product form, what we know that in our under graduate design lectures, so
in sum of product means a b plus c d plus e f that is you are summing all the products.
So, that is that is all the product terms is they are actually represented by AND gates and

we are actually of summing them the sum of products. So, your productors, all the

products are being summed. So, how can you generate the product? So, products are

generated by obviously AND gate.

So, first you have the AND gate, so you are summing them, sum of products. How can
you sum them? You have to use an OR gate. So, in the end of all these things, you have
an OR gate like this. So, therefore, it is called a sum of product, some are represented by
two level logic at the first level is AND and the second level is inverter, I am sorry
second level is OR gates and sometimes you may have a bar b. So, in that case, you have
to put an inverter and this will be a and actually inverters are not considered as another

level.

(Refer Slide Time: 08:08)

Introduction

kilarry other choices are also possiile naemely, using O gates at first leved and AND
gated in the tecond, using MOR asd MAND gated #ic

*it 1§ ais5 podsibie Bo Implement a orcult I monre than fwo levels, howewer, i 5
middE oomphEa procediung

«in Ehis Erple leciure, we will first discuss bwa beve logs synthein procedures
LEME i thel modiule, we will decuid molileve fynitheis
*IhEfe §Fe DaD MEn reglond Wiy Eily WAL 0O mpeemEnT § O & T

e, radrser than muitiple vt nameesys speed of operabon snd simglity of the
dgodifiima. Howewer, = praciical cases Two lewvel smplementalssn may ot be
padiible, Reducing the numiber of levell incresie the eain and fendul coumts of
gates. Gades having bigh fanins and fanouwis are slow. Thevelore, design Fbraries do
nod genedally have gates i-‘:.l'__.:illq'f- Than four faami, thit fequires multiphe beve

? o - %
Fityidi % ! o ,'f:" j i)

/ 7

|'.‘-1) J\I i % =3 i
Yo SRAW AT S VAL *
) i .i:, ':l ol i P l|.-.___.-

™ X w
So, this actually is called a two level synthesis. So, in this lecture, 1 mean this triple
lecture, so we are mainly going to look out look at two level logic synthesis algorithms. |
have already mentioned the main focus of this video course is that we are will be telling

you about the algorithms, which can solve the problem.

So, here you will be given some Boolean functions like, so the functions will be like
some f of something, something, something and then you have to automatically find out
how they can be implemented by two level logic. And obviously you have to minimize
you have to you have the you have to do your algorithms will be such so that the number
of gates required is minimum, because obviously a function can be represented in many

many ways like very simple example like x x prime. So this is nothing but actually a 0,

but if I write x plus x prime; so this is nothing but a 1. So, this one can be represented
this way, x can be 0 can be represented in this way. In a very similar way, | can write xyz

plus X. So, this is nothing but this is nothing but actually only.

(Refer Slide Time: 09:21)

Introduction
“barey other choices are also possible ramely, using OF gates at first lesved and AND
a0 the iecond, uing MOR and NAND gated #ic

ot Is also possible to implement a circuit in mone than tao levels, howeses, it b
g COmphEa progedure

«in thiz triple lecture, we will first discusy two lewel Iﬂg‘ SntheLs procedures
Latter in this module, we will dacuis mokilevs] synithais

tThfe '8 DWW M eEsons W W R WL T MpAETEnT & CHTLET I DWW
Wiy, rather than muliples levels namsely, speed of opsration snd simplity of the
sigovithma. Howewer, in practical caset two level implementation may not be
poteible, Reducing the namber of level incresss the enin snd fenoul coumts ol
gates. Gades having kigh fanims and fanouts are slow, Thevedors, design Fbraries do
not genavally have gatel with more than four faming, thin requiret multiple beved
Freieai "

x"‘) i} llll Y

2l B
e Y e
-
T Ii?- : -
]
/

You can say that this is nothing but x into xy plus 1, so this is nothing but x. So, this
whole thing can be represented by an x. So, that means, what all the functions whatever
the functions can be written, so same function like 1 0 or whatever you given like
example like xyz plus x is nothing but equivalent to x. So, the idea is here you will be
requiring a 3 input AND gate and a OR gate kind of a thing but it is equivalent to x will

not require a gate.

(Refer Slide Time: 09:52)

Introduction
“Slgery other chowoes are also possible nemely, using OF gates ot first leved 3nd AND

gatEd i the ieiond, wing MOR asd NAND gated #ic

=1 1§ 350 poatibid Bo implement 3 OFCUil B mane Dhan Do W, hoeswen, i1
i COMmiphE procedune

«in thit triple lecture, we will firet discutn two level logic synthet procedures

Lattet i thi module, we will decuds mokilevsd fynitheis

#Thefs §ie W0 Maln Neskond wihy ae Fily Wanl 0O mpesment & Cdie] & (Wl
b, radPeer Ehan muliple level namsely, speed of operation snd simplicity of the
BgoFRhma. Howewer, im praciical cases Two level implemsntalasn may ot be
poteible. Reducing the namber of level incresss the enin and lencul coumts of
gates. Gades having kigh fanims and fanouts are slow. Thevelors, design Fbraries do
not penecally have gatetr with more than four faning, thit requires multiple leve
'.'p‘\-!'_‘uﬁl'- 4

. ln-) i i L

So, idea is that so any of the function which will be represented any of what you call
these Boolean functions, which will be using to represent the outputs of your RTL
circuits, they can be represented in many different ways. The same function can be
represented in many different ways like just like xyz plus x is equivalent to x. So, the
idea in other words, same function can be represented in different ways, but the number
of gates required or number of hardware required will be different. So, our idea here will
be you have given a function, so you have to represent it in such a way so that it is, it can
be represented by the minimum number of gates.

Again, we will see that this problem is n p hard and n p comp, then it will be difficult to
solve in a way to get the most minimum value is very difficult to do it in a polynomial
time or a less amount of transfusion times. So, again we will find out heuristics to do

that. So, this is the basic agenda.

So, as | told you in the beginning of the course or in many lectures of the course that
most of the problems in VLSI design are all n p hard and n p comp that is you do not
have a very simple or a computationally lower low complex algorithm to solve the
problems. That means, you do not have a polynomial time algorithm to solve the

problem of this Boolean function minimization.

Now, why you cannot represent it? This is because you will find out that if the number of

variables is x, the amount of time required to spend is about the order of 2 to the power n

plus. So, therefore, I mean if you need to have a 100 function 100 variable function, so to
find out the minimum number of gate representation for that, it will be order of 2 to the

power of 100, which is feasible in terms of complexity time, so time complexity.

So, what you have to do? You have to take some heuristics to find out some
representation, so which is very near the minimal as well as the execution time will be
lower. So, this is actually true for all the things like for different high level synthesis

algorithms you have seen like your zero one ILP for high level scheduling.

Then, also we have seen that if you are going for quick partitioning based finding and so
forth and they are all difficult problems, then if you have found out heuristics, which are
required to solve the problem for same thing, you will also doing for the Boolean two
level Boolean synthesis. So, we will see that multi level is much more complex problem

than the two level problem.

(Refer Slide Time: 11:55)

Introduction

3 the [a3t two modabed, we dhicuised that o case of digital VLS design we STRM
with high-level syatem speclications, which see-ransloemed info oplimal Reghter
Transher Level [ATL] circaits upriHigh Level Synthesis [HLS) algbrithms

- p——
e —

w“naCy thap ATL ceoulf 5 Jvm'jh'd;__m nedd 15 Wandineen & o gace b design,

Jahich ean then be processed by backend algorithm; this process s u'urd'\h:-g-c_

..‘.:-_'rr_I.!'-_gg.-i Formaly speaking, Boolean logic mmthesis i & process by whith-an
Beysty {-_;Hn-'u- of desired cirpull Behavion, typically RTL & cransbarmad 150 4 dailgn

mplementation in terms of logic gates and flip-flops. This module is dedicated to

g synthedn of combinational and weguents Grtuits

* [t may be moted that two levels of logic are minimum required to implement an
wbirary Bockesn function. Generally, we atiume That the primitives are AND and
DR gaten and lenveriers, AND gates are used of the fint beved and DR prﬂ-éuﬁ_uu
n thg second bevel Inverters may be present at some inputs of the gates of the
'lr:!'f';l:_j. But & b Pk foniadened o .=Fn._.|d'-'|'-l-=.'ﬂl' vl

.
“r 0
’

So, we will all slowly come into that, but now for the time being, you just assume that
from the discussion, just you can understand that the problem like also this two level
Boolean synthesis, two level binary, so two level logic synthesis is also a very difficult
problem.

(Refer Slide Time: 12:17)

Introduction
=kigrey other choioes are also possible ramely, using OR gates at first leved and ARD
Eated in the iecond, uiing MOR and NAND gated ¢

it is also possible to implement & circuit in mone than two levels, however, it
gy Comphen progedune

#in thiz triple lecture, we will first discusy two level logic syntheth procedures
Lata i thid modle, wi will gicuis mokilivel fyntheis

+*There &8 Dad MEN NelEON Wity W My WEnt 10 implement & U in Two
weoels, ratier than muliple levels namsely, speed of opsration snd simnlity of the
sigovithma. Howewer, in practical cases two level implementation may mot be
patelble. Reducing the number of level ncressd the enin and fenoul coumts ol
gates. Gades having kigh fanims ard fanouts are slow. Thevefore, design Fbraries do
not genecally have gater withe I'hnrrw.'lhln four faming, thin requires multiple level
ialip T ’ ik
I. -3

& r+.l.-'l r i
[wh (

What is the problem? The problem given a function here, we represent it with a

minimum number of gates.

(Refer Slide Time: 12:47)

Intreduction
=hlarwy other chowes are also potssible namely, using O gates at first leved and AND
Eabed in the iepand, uling NOR ansd NAND gates st

«f |5 alic podilble to implement & circult v moane than two livels, howewed, i 5
mode omplex prodedure

«n this triple lecture, we will first discuss two lewel logie syntheth procedures
Latted in this module, wewill deicuis molilevel sentheds

*There I8 DAO MEN FeREOnd Wity w8 My Wanl [0 impement & Cifoul in Two
wels, ratfeer than muhiple levels namsely. speed of operation snd simglicity of the
dgodithms. However, in practical cases two level implementation may not be
patiible, Reducing the number of lrvell increste the nin snd fendul coumts of
gates. Gades having bigh fanins and fanouts are slow. Thevefors, design Fbraries do
nod genedally have gater with mafe than four faning, thin requires multiphe leved

5 aliat] 'I > - ' \.II
(-‘) b ﬂﬁff :'aht:n::"\] () u:'} \

HFTEL i ‘;I‘T|/ | /

So, that is actually the definition of the register transfer level to high level synthesis,
which is given, the RTL designs using which are obtained by high level synthesis. So,
you have to represent them using gates, so which is called logic synthesis and that
number of gates should be minimum, otherwise | mean as | gave an example similar

function, which is actually a similar function, same function here we represent it in very

different ways. They require a different number of gates to solve the problem like xyz
plus x here you require 3 input AND gate and a OR gate, but for x same function

equivalent function x this is actually equivalent to this.

Here, you do not require any gates. So, therefore, not only that you represent the Boolean
functions by some logic gates or also that you have to do it in the minimum number of
gates like so that is two input logic synthesis I mean two level logic synthesis like AND
OR and AND OR. In this case, there are other choices also like you can use OR gates at
the first level, AND gate in the second level, so what is that? It is actually called product
of sums like A plus B dot C. So, what is this?

(Refer Slide Time: 13:37)

Introduction

“Sillgrey other choices are also potsible ramely, using O gates at first leved and AND
gated in the tetond, using MOR and MAND gated et -

it 1§ 350 podiibie B0 impement a ondull B mare than fwo levels, howeewer, i 5
mide oomplex prodedure

«in this trple leciure, we will lirst discusy bwa lewel !ag-: pnihetn procedures
LEmss i this modile, we will decuid mokilevel fynthais

*Ihife §fe DaD Man reEiond Wi W8 My Wl 0 Impement § ci = Wi
Wi, radier than muaiiple evets oamsely, ipeed of operaton and simglity of the
Egorifiima. Howewer, & praciical cases two lewvel smplementaissn may ot be
pateible, Reducing the number of levell incrests the tnin and fendut coumts of
gates. Gades having bigh fanims and fanouts are slow. Thevefore, design Bbraries do
not genecally have gated with mode than four faning, this requires "Hl,.':-p"\'- e

= alinl gtk F
() /o)
; [¥ o oY
A+ F il

It is called the POS form that is you are producting the sums, so it will be what? It will A

or B or B.

(Refer Slide Time: 13:58)

Introduction

“klgrwy other choioes are also possile namely, using OF gates at first leved and ARD
gated in the decond, waing NOR srd NAND gt stc—

=i I5 350 podtiDeE fo ImpleEment 3 CFCull i mone than Do levels, homeewer, it

i CoOmiphnl procedune—

«in thit triple lecture, we will firgt discuty two lewel log=x Wntheta procedures

Latter it ghin module, we will dacuis mokileesl synithais

#hErE §ie WO Man fessond why ae Fily WL 0O mpesment & Cdia] & (W
Wi, radPeer Ehan muliple level namsely, speed of operation snd sirmlicity of the
sigovithma. Howewer, in practical caset two level implementation may ot be
poteible, Reducing the namber of level increstd the enin and fendit coumts of
gates. Gades having kigh fanims and fanouts are slow. Thevelors, design Bbraries do
nod gpenevally have gatel w rh more than four faning: thin requiret mult n{;_'.g_-.'\f
i
Freithies \ 1= !

- o — !

. b, a1
i o=t T L
B LY '-II | '.I Y

Then, finally, you have to put an AND gate and make it, this is will be C. So, this is POS
form. So, you already know from digital design undergraduate course that two times we
represent thermal product and product of sum. So, it is a product of sum. So, if you are
using a product of sum, then the first level will be your OR gate and the second level will
be your AND gates. So, you can also make it using NAND and NOR gates.

So, I will think it is possible right now, also inverters also will be equal if you are using.
If you are not using inverting logic like if you are using NOR, OR, AND gates, so their
inverters are already coming by | mean actually because you know AND and the OR
gates. But, if you are using AND and the OR gates, so OR and AND gates like OR gates
and AND gates are two level sorry AND level and OR level.

So, if you are using this, you require inverters, because you are not using any of the
inverters in the OR AND or and gates. But if you are using NAND and NOR logic gates
to represent, result is automatically, the inverters are taken care of this one as we will see
that it is also possible to represent the circuit in multiple number of levels. So, here these
two levels, so will see why it is very much required to represent in multiple levels

because two level synthesis is a very hypothetical situation.

(Refer Slide Time: 14:43)

Introduction
=kilarwy other choioes are also possile naemely, using OR gates at first leved and AND
gt in the pecand, using MOR snd MAND gaed #lc—

e ——

it is also potsible to implement a circult in mone than two levels, howeser, it it
Mo Comphey Drogedune & ————— S

#in thiz triple lecture, we will first discusy two level logic synthesh procedures
Latter i ths module, we will dacuis mokileesd synithais

#Thefs §e W0 Man feksond why we My Wl 1o EMpATIENT § CHCLE] BN DWW
Weeels, ratier than muliple levels namsly, speed of operation snd simplkity of the
sigorshms. Howewer, in practical caset two level implementation may mot be
poteible. Reducing the namber of levell ncressd the enin and fencit coumts ol
gates. Gades having kigh fanims and fanouts are slow. Thevelore, design Fbraries do
not penevally have gater with more than four faning, thin requires multiple leved
L3 patinl e

L =

We slowly see, but from the representation point of view or circuit synthesis point of
view, you cannot go on using two level synthesis. You require multilevel

implementation.

(Refer Slide Time: 14:52)

Introduction

.-"'-‘_Hll I.
f]
Pty 1 ™
r Lt L
|__P'|\ r
L
2l B o A
[

o | F ':]
it L/ =
-
r’:_) T ': i ;;EE#"
| I_.-"’"-__ — — ___-

FTNL 7 g
“-\|.|,-:._- & Boodemn fumction m. | % xl v wkowi |h-:. o T ko -.l-'-_-._j_]_.j}'

Multilevel means it should be something like this. More than two levels will be there and
in the end, you can have an OR gate. So, it will be 1, 2, 3, 4, four levels. So, you can
slowly see that or can also have some, I mean you can have intuition and you can find

out this much more difficult problem to solve as we will see it later. So, in the last lecture

of this module, we will see how to go for multilevel synthesis. Then, it will be will be
very clear to you in formal terms that why multilevel synthesis is such a difficult
problem. Now, we will see that why we require a circuit in more than two levels. So,

slowly we will come to that.

So, first of all let me take an example, so then we will again come back to this point that
why multilevel and why two level? Then, in this case, let us see the function like is a
Boolean function fof x 1 x 1 2x 3 x4 x5 x 6 plus x 7 x 8 x 9 and this one. So, this is a
sum of product form, this is one product term, this is one product term and making a sum
two level implementation is what it is? x 1 dot x 2 dot up to x 6, so you have AND gate

and x 7 to x 12 is that again as a dot product, and then again finally OR gate.

Now, these are two levels implementation because the first level is AND, the second
level is OR and these are sum of product form. So, these are two level implementation.
Like if we want to go for a multilevel implementation, so what is a multiple level
implementation? They will have more than one level. So, we are actually splitting up this
AND gates.

So, you see first that x 1 x 2 x 3 in one, X 4 and x 5 in second level and this IS the case
and x 6 has taken a third level. So, there is level one level, two level, three again in this
case also. It has taken x 7 x 8 x 9 in one gate AND gate x 10 and x 11 in the other and x
f in another. So it is like again 1, 2, 3 and finally, it is a four level implementation. Now,
if you just look at this, so what is the difference.

(Refer Slide Time: 16:03)

Inlrn&ut mn
—— “ -\\'._ } ._.-'f .\"\..

|
| | \
1 | = A
1 'j b o g |
—l. - ~ | -___"l
e ——¢/)
'—: Iy il T
. = I _F". i
- 1 \ - P
— A ¥ ; -
T 3 L
| - | ' i | —
/ + T & M.
R i —i— n

So, you can understand that in this case, it is very simple actually. Thus, whatever,
function so SOP you have, you can directly map to this one. The sum product terms is
there and sum terms is there and here you have to do lot of things like here you may get
three input AND gate, three input AND gate, again a two input AND gate, you can do
with another. This can be also implemented by other two inputs AND gate like you can
have x 1 x 2 here and then again you can have another gate called x 3. Here, make

another AND gate over here and then you can connect it over here.

So, it will be two input, two input, two input AND gate. Similarly, you can three input,
three input and you can have together three input AND gate. So, a lot of options will be
available to do it. So, more the number of options, more difficult is a problem to solve.
Here, there is one option to do it. So, the algorithm what the automatic techniques to
convert the SOP tool to this equivalent implement, which will be very simple, but here
there are lot of options available like. These are three input, two input, two input say
again you have put making a two input and AND gate 2, 3 input AND gate and this again
made a two input AND gate. So, lots of options are available and you have to take the
best option.

(Refer Slide Time: 17:18)

Introduction

af 1 i % e |r =%
{ | |- — =T
] '—‘i | 1 — i F) _'H- -
i | =i [
— oy 1 __,'-|;-"
._ " 1 e
e i' - | | L 1
a | | - F
o | 1)
1 f A
= 1
-1 | S L b
| Na ! —
= | - [
| SRS Eare P —
o . -
e R
, | o
H"H. LY b — | ~
Ny — r
", I
™, =5 A
L - o —— W
(%) -
w havve 5 Bacslomn fomction & b 2l 113
.-"';’-

So, if there are lot of options available, so the algorithm will be very, very difficult
because you have to find out the solution from among all the options, but still, why? As |
told you that we first go on, we can say that this also you can think that this is a simple
procedural that is you have to convert into two level implementation and multilevel

implementation is having a lot of options.

So, the algorithm will be difficult, but still as I told you that I am in these two level
implementation is not the very feasible or you can say that this is the circuit directly, go
and fabricate it this is not a very feasible one. We have to convert this to multilevel
implementation, and then only it can be fabricated. Now, we will see why it is so? But,
then and there we will see, but still why you need to first go for two level

implementation?

So, but I am saying is an actual that it is very given a SOP form from a product term
very, very easily, you can go for this circuit implementation, two level circuit
implementation, but two level circuit implementation cannot be directly fabricated. You
have to convert it into a multilevel circuit implementation, and then only fabrication will
possible. Now, we will see why and secondly why you do not directly go for multilevel
circuit? We directly go for two level and from there, we actually convert. Now, we will

get logic, we will try to break.

(Refer Slide Time: 18:02)

Introduction
o el et 10 Bave Deo il ESnemaEnEntinn. then we netd #h .!.Hr‘- g_.ml '.h "I.
faning. If we have gates with 3 masjreurm faning, a multilevel 'npﬂ--ra' arh gl
required p— ri—

 Hiovaever, two-bevel implementstion B important to be studied Two-level
mpsemerlaions ae carer 0 delgn and analyie becaase the solution ipade &
preatly revtricted

-,
Farther, belore the devslopment l.i‘[-'-'.h'-C‘i- }".lsl‘_i._l:d“'u Baolean fungtioni were
rediied wing Programmabls Logs '|I_uu3__ LAs) snd Programmalils Arrey Logk
(Pkit] =
sl hase programmisbls ameys Can implemnant any combinabonal logi cleTult
Broadity speaking, they hawe a set of programmable AND planes, which connect ta
& et of progremmable OR plansi; this afrengement B two level AND-OR
vl afkoen that can Imiplement fusctiong in Do of wumn of prodects, In sdd®ioen,
the outputs could be conditionally complemented when required. As PLAs and
PR moried on “product of sum (POSKeum of product (SOP)T baded
1-E 2 Istion, the aigothima fer the aplimem mmalermentabon of e leeel
fuhiiSr were developed in the fifties

So, if you want to have a two level implementation, then we need an AND gate is having
five fanins. We have a, if you have a gate with three fanins, then multilevel
implementation is required. Now, you see what it is. If we have two level
implementation, then we require an AND gate, which has five inputs 1, 2, 3, 4, 5, 6 sorry

in this case it is 6 sorry 2 here and it is it is a six level fanins.

In this case, what is the maximum fanin? Fanin number of inputs for this gate for this
implementation it is 3. So, for a multiple level implementation, you have three and for a
two level two level. | mean implementation it is a 6. Now, you see why it is a problem?
Just to show you can here come back. So, the idea here is that now a days, so that thing is

making more clear slowly going down the lecture.

So, now days, actually you are using CMOS implementation. What is a CMOS
implementation? So, in CMOS implementation in this diagram and why the easily you
will get to you for the time being, you just take it from my side. And take it that granted
for the time being that in a CMOS implementation, it is very difficult to fabricate a gate

or even if you have a gate it is very expensive or it very slow.

If you have a gate, which is having more than four inputs, so if you have 5 inputs AND
gate, 10 inputs AND gate, 100 inputs AND gate, theoretically it is possible, but if I want

to do such a implementation in CMOS, now that is all the circuits are CMOS circuits. So,

if you have that gates will be extremely slow and the other or if you very expensive in

terms of power and in the fabrication cost.

(Refer Slide Time: 18:14)

Introduction

So, in case of CMOS, you can take thumb rule that most, almost all the gates are having
four inputs or less. So, if that is the case, then we are in a big problem. Then, whenever
we have a two level implementation, some of the gates have more than four inputs, then
you have split it into multiple level inputs multiple level circuits. So, that is the idea, but
directly if you want to convert SOP form to multiple level implementations to the
algorithm will be horribly complex. So, that will be totally towards we are going to the
end of the third module.

So, for time being, you take the two points from the as granted. The first point is into
they are also into that if you directly go for this multiple level implicants as there are
many available. So, this functions base is last. So, that is why the algorithm will be very,

very complex, but here solution space is very limited because it is one way we can do it.

It is quite simple to go for a two level implantation from a SOP. So, you go that and then
as in this thermo technology, it is very expensive or the gate should be very much having
high deal play or low frequency or high voltage a lot of power. If you actually serving
with more than four inputs, so that is why we have to convert this into this at the into, if
we number of inputs in the multiple two level indentation is more than 4, then we have to

convert it into break doubt, so that the inputs for each gate remains four or less.

That is why it is a two step process. First, we go for this two level implementation and
then we convert it into a multiple level implementation, so satisfying the things to
themselves simply as well as none of the gates will have be having more than four
inputs. So, that is what is the idea.

(Refer Slide Time: 21:35)

Introduction
wMarwy other choiwoes are also poscible nemely, using OF gates ot first leved and AND
EatEd i the iecond, wiing MOR asd MAND gatél #ic -

=1 IS5 350 poatiDée to ImpeEmEnt 3 Croult in mone Dhan Do e, homeewer, i s

M comphEnl procedun—

«in thiz triple lecture, we will first discuas two bewe o synihetn procedures
Latter it ghin module, we will dacuis mokileved pynitheis

sThefs fe [Wo M feeEond wiy we I'll"..*l"ll [14] "ﬂ[!‘tﬂ'!"-l i CEELEL BN WD
b, radbeer Ehan muliple levebs nameply, sieed of opsTaiy n anid simplcity of the
sgorithma. Howeser, in practicsl cases twd. level ':p_ﬁ‘f‘rf-ﬂr-;'! m#y not be
_;_n,.';.'.qll-r:- Reducing the |'.4|‘_"|_!_|_|;-! o |rﬂ|'|;!_,'_"‘.'l;‘rblﬂ:_l'-|r LSt) |.'!|':|:-_.|,.n|.|ﬂﬂ.'. al
gates. Gates having kigh fafoms and I'nﬁbl,{-i":_:"t).h' Therefare de'.?gl_ _l:'a:'-_et - [3]
not penecally have gater aThomoseTan four fan 2'. thift nesquires fmu 1'5'{“74'*
-\.',‘-I:(:':"i 3 i

-
=

- —

=

Now, so again, you can see that if somehow if somehow you could have a fabricated
very good quality and it is so obviously this implementation would have been faster
because for high pathetic calculation, it is no very easy to calculate 100 input AND gates
or something like that having this possible, there is only two levels. So, circuit
implementation would have been faster, but in this you see 1, 2, 3 and so far so many
levels will be there, circuits will be slower. Therefore, we say that there are two main

reasons. Why?

We may want to implement in two and then multiple levels only speed of
implementation, operation and simplicity of the algorithms, speed of operation we get
hypothetical ways because nobody can fabricate very fast. 100 input AND gates are
taken, but simplicity of the algorithm is there, directly nothing you can find out.
However, in practical cases, two level implementation may not be possible because

reducing the number of levels including the fan outs and this one.

So, if you have the, so if you are having two level implementation, then what happens? If

you have two level implementations there, if you see the number of fanins, the number of

inputs, so in the case will be higher. If you are reducing the number, if you reduce the
number of fanins, so fan outs should also be higher. So, gates having high fanins and
fanouts are slow that is what if you have gates with 10 inputs or 10 inputs are extremely
slow. So, what we have to do? So, designs libraries do not have generally have gates
with more than 4 fanins. This requires multiple level synthesis. If a design library is not
supporting any gates these having more than 4 inputs kind of a thing, so you have, so
what we have to do? We have to go for high; you have to go for multiple level synthesis

so that you can handle this case.

(Refer Slide Time: 22:45)

Intreduction
o el et 10 B e gl ebnlemEnaation. then we need ah .!.Hl"- 5,.|nl Mr. :-EB
faning. If we Fuoree gates wigh 3 'r-:-}n-ur'- famins, @ multilevel imp rrle

e __——— 4
— e i

» However, two-level implementation B importans be st l.lnln-
mplermenlalons ane caser 1o dergn and analyre becaae b
praatly restricted

Farher, :Hrfl..ur the dewelopment "'T = _5-1 panes, BGQE} funarstis -'rrlr:'l
redifed wing Progremmabls Logs |Iu| A:.u ahad 'Prﬂ AhiT '-"-i"{u'
(PLy) . _;’;ﬁ"'

e

*Thais programmsbls srreys Can impleenant any nﬂhrc-j.lf B clTult

Broadiy speaking, they hase a set of programmable AND b W gnpect ta

& el of programmabie OR planes; this arrangement o bl :‘t‘ﬂ-—l}i

riadlat o Lhat caes :m,nl:mrc_l"..f_\--.’_f._@n i terres ol pumn of products. In sddRlcA,

the ocutputs could be conditionally complemented when required. As PLAs and

“-‘l.f fied on “prpduct of sum (FOSMsum of product [SOP]” baded

+;:|1r i, the slganithma for the aplirum implemeataten ol fwo-level

TuhEEFs were developed in the fiftles 4T A T

i

So, I have already explained this one. Now, so in this case, if we in this example, so here
the number of findings is six, this case will become three and the name problem is with
CMOS. Now, actually that is what again if you see the in the if you see the early before
the CMOS statement was there, these some of line operation which is a more of more of
weakation ethnology and implementation technology is not related to digital CAD.

Before that, CMOS technology CMOS technology was not there.

So, you used to use I mean some kind of a other stuff like all use programmable logic
arrays or PALs or PALs, this is another way of representing. Now, what is we represent
CMOS gates representation or Boolean function, but sometime but we have also used to

use programmable logic array PLA or programmable logic array.

So, they are nothing but AND or PLAs, but speaking this arrays implementation of
combination of circuits, we can implement the combination of circuits. These arrays and
they actually have a programmable arrays connected to set of OR planes, this is the AND
or realization of the functions. So, we are not going into difficult of implementation of
PLA and PLAs. So, what is that is not much that is not much used mainly. In today’s

science, we mainly use what do you call CMOS gates.

So, in case of PLA and PLAs understand that they are nothing but there will be a plane,
there will be a lot of AND gates and lot of chain of blocks of AND gates so over here.
After there is a block of OR gates, so this is a AND gates and block of OR gates.

Now, so there only kind of architectures, so you can use some of the AND gates as
function. Finally, you can use some of the OR gates plane. Then, we then finally, we can
implement your sum of product form, you can directly represent the sum of product and
product of sum. If sum of product will be represented as by this way and if you use the
product of some actually OR plane or AND planes, thus the positions will be and then
we can represent what we can called this, then we can represent in the binary form sorry

Boolean function.

So, the and obviously, there are two level implementation already because it is a one set
of AND planes and there is one set of OR planes. There is no exactly gate level
implementation because assume that there was a set of analogs and lot of AND gate
array and there is a lot of OR gate arrays you can implement your sum of product and

product of sum from directly.

So, | mean, so these things were actually, they used to be developed some CMOS
technology or CMOS logic gates were not that popular. So, what people used to do? So,
they used to minimize the representation in two level like for example, as | told you so

like this one is the case like x y z plus x.

So, if | want to represent it in a two level, then what is my idea? Since, represent it in
such a way two level only that is sum of product and product of sum. So, only as you
represent because you have to represent in two level form, so it will be either sum of
product and product of sum. We do not have to think about multiple level, but still I have
to find out that what can be the minimum number of gates to represent. So, in this case, it

is equivalent to X, so just a single connection.

(Refer Slide Time: 25:46)

Introduction

b=,
r

YiWith the Introductah |:1I CAMOS based j_"d':-;l.;rrl S0 @il iemtwilom SEwgn
mathodologies, thens was SOEEne-w- i popiiaf by of PLAL and-PAlT—T

-~

“When implementing & cinoglt with viendard calls, B B customary (0 e maltl

level implementation becaase penenally a CAMOS gate has 3 masimam of 4 faning
sThe cowt i terms of area or speed of o mullk bevel implementation is sot directhy
relsted to the cout of an equivalent two-level droult. Howewer, the role of the
Pavo-irel Techeaguds B STl impoitent, Decsisse oplimitaton of o hlsve A
Invodees 8 networl whots nodes repretent TomETRSRT, WINEH §NY TERrFTETDRd o
Pano-fewel Cirouits

= Theredore, i this (briple) lecture we disouss twoelevel Boolesn o i, el

[Le., sptimized tveo level imple mentaticn of & circuftBor & pren Boole apl function)
Fedlinig that, latser in chis modube wie will 8o gicuds mailileyvel kgt synicheis

-

So, we see some other techniques of minimizing this. So, the main idea here was so PLA
and PLAs are developed long back. So, two level minimization was developed in the
early 50s. So, those algorithms are quite matured, so with the introduction of CMQOS, |
mean that these things were come declining in the popularity of PLA and PLAs, but PLA
and PLAs were continued to be used since long time. So, lot of algorithms for
minimizing the two level numbers of gates, if we have a two level implementation, so

PLA and PLAs were the most popular ones.

So, the algorithms have been quite good algorithms available or it has been these are
saturation given a Boolean function. So, you can optimize in such a way so that they can
be represented by the minimum number of gates in a two level fashion. So, if your
architecture is two level, so the algorithm will give you Boolean function representation
taking the minimum number of gates in two level representation. So, those algorithms
are very strong. So, we will see those algorithms. So, if even, so we go in a two state

algorithm basis.

So, given any number of Boolean function, so what do you do? First go for a two level
implementation and we minimize our circuits. So, minimize the number of gates,
minimize the number of Boolean functions such so that they require the minimum
number of gates to module level implementation and with this now arrival or not CMOS

is there is become more popular PLA and PLAs. So, what do we do? Now, again from

two level to multiple level implementation, we do as a second step, so and because of

CMOS maximum 4 input AND gates 4 input gates are already possible in CMOS.

So, what do you do? So, so what in this triple level, so we will see two level Boolean two
level logic synthesis. Further, in the module we will see how we can convert into
multiple logic synthesis. The basic idea because the two level logic synthesis algorithms
are very powerful, they still in first phase two round. If you say that my final aim is the

multiple level synthesis, since the process is two level, first we go for two levels.

First we go for a two level synthesis and then we minimize the function in such a way
that the minimum number of gates is equivalent to implement the two level
implementation. Then, from two level, we will go for multiple level implementation
because wherever you find the number of inputs in a gate, it is more than 4, you have to
break it up that is basically the idea.

(Refer Slide Time: 28:00)

Representation:Sums of Broducts and Products af Sums

We krow thal inputioviput of am ATL ooy can be repreiemied by & Boolsan
function 2

In logic wymithisls, we nesd (o delign & cital o implement the Bogless fumction, I
il e Noted - That Tane e number ol termee [(WHl be oelined precieely [aier) o
thié function, more the fimber of gated m 15 of cul

Theredare, the priman ohlecrine _:lf B SyviEsH 0 elerThing § minhTel HU\I-'
repretentatien od the functsn; !"'n. 1 e "ﬂ'l-ﬁ-ﬁ_-d‘-"!'ﬂﬂ: eran Hﬁtf!iﬁ'-_'.?,:f.:m-
the context of two lewel implementation, our objecthve is 1o f nd the simglest beso
level Tormula that frepresents § ghen lundtion. Smplicity & meadured, in tedmd of
this nambser of gatel and gats inputs ol the crousl —

e

So, that is | told about in this point because optimization of multilevel logic involves a
network whose nodes represent functions, which are represented two level circuits. That
is the basic idea because even if you go for multi level implementation, one of the

important minterm representation is two level implementation. That is the idea.

So, we will see we already know the so, from now on, this triple lecture, we are going to

progress on optimization of the circuits in two level form. So, assume that our circuit can

be implemented in two level logic, and then we will be minimizing the function, so that
the numbers of gates are equal. So, we know that the input, output of the R T L can be

represented by a Boolean function that is very very well known that in logic synthesis.

We will implement in actually in number of gates will be implementing in two level
gates format that is AND, OR gate or AND plane depending on the sum of product or
product of sum from. Our main idea will be that we have to minimize the number of
gates to for this implementation. So, this is actually called minimizing Boolean function.
So, whenever we say Boolean logic synthesis or Boolean synthesis or whatever, then we
have to our main goal is we have to minimize the number of gates equivalent to this

simplicity is measured in terms of the number of gates and gate inputs of the circuit.

So, obviously complexity is number of gates as well as the number inputs to a gate. So, if
you are using 1, 2 input and AND gates, so obviously, two input AND gate is lower in
cost and the 3 input AND gates because we are assumption is that we have, we can
fabricate n input AND gates. If we n can be as large as possible, so as for the current
time, so for the current triple lectures or assumption is that we are going for two level

implementation.

So, our cost of implementation of a function is number of gates as well as the number of
inputs to a gate because how we assume that gates n were n can be any large or any

arbitrary order and also be fabricated.

(Refer Slide Time: 29:45)

Representation: Sums of Products and Products of Sums
Mow wg lofmally delihe 8 Fo-leel bommiles Fofmidsa ool ol comilant

§ ¥ . K §
yurtables, pareriheses and opeemion A better iv b coeniasf or 5 vemable A liicral is a

lsiter o gisn compeemend For exampe, bor O f oy one et el O] 1,1 v e

Isternlds. 0.1 mee comissd [sSeral mnd 1) 5" vemsble Fernks. The following defmibom

Dufigition 1: A product term is a formaia of one of the following forms
LY . g f

1. avarabls Bers {

l"I.Li

= o - - ol
3. mconguncton of variabls Sheraly whesne no lelisr sppears more than onog
i

o

e —
\

Dafangpan I A e e i 8 ledmuds of ane of 1he lolowing forms L |

1L AN

v e - T N

o l,ﬂ ke Hlera ' v

3 R Fpunctsn of variable Ieral whHErs RO BT BPEEITT MOE TR one

.}_.

So, that is the primary objective of logic synthesis is to determine a minimal
representation of the function. So, what do you mean by minimal gate representation?
So, minimal or optimization gates is measured in terms of number of gates and the
number of inputs to the gates. That is what we are going to do. So, we all know that this
thing, so we can represent our stuff what do you can say that represent our Boolean
functions in sum of products or products of sum forms. Now, let us quickly see some

definitions. So, what is a product term?

(Refer Slide Time: 30:04)

Representation: Sums of Products and Products of Sums

L i L
oF e assjle v product term T =0 berss el X sth. Ui the othe
bor exassgile, X & product e, Foe §T S e e 6 i both. Uin the other
-H] — — — po—
a2 i merther procdct temms nor sum derm, bocaine the ke
L

6T X ppCay WG
] the ferm recduses 1l

_Definition 3: A Sum of Products (S00) harmuls i3 ane of the Pallowing
(a3

-t
JEF-H-\.-:; hewrm e f_'
§ dijunctian of prodect tedmi .
. &

Exmmple, [x)
_ y
The eoa alea }|[:II‘ formniils i dererminsd Iy e mimbher of JECT Eeri _il:.! i
e

i - "
pimndser of Litcrals. Broasdly, spoakimg, tmembsr of proschict form delorliTe the mambr

i I.l“,-\ gt med mmmber of hiemh dekersiie the aanlst ol gy ol a gaig
B
[

L T Baw Paro peodiact lorss sl fous haerals

So actually first there is something called a letter, ok , so what is the letter? So letter is a
constant or a variable. Let us now see literal; literal is a letter or its complement. For
example, zero, one, x and y are letters; zero, one, X, x prime, y are literals. In this case,
zero, one are constant literals; x and y prime are variable literals. Ok This is the
definition of literals and variable ah literals and letters. Now we see what is the product
term, so one is the product term, we have to standard definition, a variable literal so x is
the product term, y is the product term, x prime is the product term. A conjunction of
variable literals where no letter appears more than once is also a product term, like x y z
is the product term, by x prime y is also the product term. But x prime X is not a product

term, because the variable x is there is twice.

But a sum term, sum term is a formula where zero is the sum term; a variable literal like
Xy z, individual x comma y comma z, individualized term sum term. A disjunction of

variable literals where no letter appears more than once, like x plus y plus z this is

actually a what you can say X plus y plus z or x plus y or x plus y plus z plus appears on

like this are nothing but sum term.

So now we can see some example x dot y prime is the product term, x plus y is the sum
term, because you are actually have conjunction over here disjunction over here is sum
term and x is both, right. You have a x is nothing but a is variable literal, ok so it is both
a sum term and a product term. On the other hand, x x prime is neither a product term
nor sum term, because the letter x appears twice and the term reduces to zero, ok so that
is what is the example and the definitions. Some definition is sum of product term so
what is the sum of product term is called zero is the sum of product term; a product term
like X y z is a sum of product term. And a disjunction of product terms like x y z plus x y

plus x plus something like that you can say y prime or something like that.

So already we know that this is nothing but a sum of product term, this we already
studied in our under graduate course. So this is actually a sum of product terms. So the
cost of a sum of product term is determined by the number of product terms and the
number of literals. And again we have said that we have to minimize something, so have
to minimize this function, because if I want to minimize these function is we have to
minimize in such a way, so that the modified, so the modified presentation is equivalent
to s as well as it is, it will take less number of gates to implement it. So, what do you
meant by the cost of the function, it is the number of product term like here we have two
product terms. So if you have two product terms that means what you require one AND

gate sorry one OR gate to do this. This is one OR gate.

If you have two product terms here, that means what you requires two AND gates ok and
the number of literals, x y and y z. So the number of literals is x is one and y term you
have two and the you have two, that means you required two inputs get over and two
input | get over here. So obviously so if you look at the circuit for this one quickly, it will
be nothing but x y prime is an inverted and then now y and then z then the AND gate and
that we have OR gate in this case of SOP. So OR gate over here, so you have a OR gate
over here, this is the OR gate. This is X y, X sorry X y prime y and so, there are two
literals and two literals, so you got two input AND gates, two input AND gates. And
there are two product terms, so you have OR gates. So that when we are talking about the
cost of a function or that is means how many gates will be required to implement the
circuit, directly depends on the number of product terms and number of literals.

So broadly, speaking, the number of product terms determines the number of AND gates
and the number of determine and number of literals determine the number of inputs of
the required gates ok. This one has two product terms and two literal terms. So in this
case, we have already seen this one. Ok now a product of sum terms, in this case one is
product of the sum term and sum term. So what is sum term, x plus y the sum term. And
a conjunction of sum terms like x plus y x prime plus z this is actually a POS form, right

so this is actually a sum term, this is another sum term.

So, this is actually a sometime, these are the sometime conjunctive, so it is a product (())
product form. So, again in this case also what are the cost of this determined by the
number of sum terms and the sum terms are there any number of (()). These are the
same way SOP formula. So, normally speaking this number of (()) number of OR case.
So, how many sum terms will be there; in this case two sum gates and two OR gates, so
the number of intervals determined the number of intervals. So in case we have two sum
terms, so there will be two OR gate: one OR gate will be here, and one OR gate will be

there.

So, here and (()) two inputs OR gates will decode, and this will be corresponding to one
gate. So, now two level formula can be either sum of product term or product of sum (())
ok. So, in this lecture we will (()) sum of product form, because we know both of them
are dual of each other or De-Morgan’s theorem, so for this we are not going to discuss ((
)) both sum of product or product of sum there, (()) SOP form which is more populate.
So, if you look at this form to actually here AND OR (()) architecture we will be looking

into this one.

Now, we will see, we are now slowly going towards the case stand we have a function,
function like this. How we can represent using another equivalent function like 10 x y z
plus x? So, these are sum of the product form. This is equivalent to nothing but
equivalent to x. Our main goal is that how can you minimize this function that is how
you can represent the function another equivalent to the number of literals as well as the

number of sums is less.

(Refer Slide Time: 35:30)

Prime iImplicants

There are Pavo bats cteps far menimiring Boolean furctiont namely, determining
prime mplcants &nd 1hen finding subset such Implicantd that cover sl product
i ol wfunction. We introducd NS LoNeapt of prime mmphcents and schamel to
determine prime mplicants

Diﬂﬂl'l'l’ﬂul 5 An imglicant of & furttion B @ product term that & ncloded in the

Tsnction
—— - i P
% '-I =
For intmscd s is an Enphoni of [ix, r 20§ B o F¥E = B2
—— J - . y
' I
Definition & A prime leplcanl ofaTUnction is an mplicant thal s i'-r._', s | :_"'__.
iR I 3fy OTREF Tl of e PURCTRSA " a 1 L
. . = == -l [
“1 i B
For matance]| TyRf i nid & prome implicant of (s TR . el
e e— E - i
:r.d.u,-q;.' na v 1§ prame imphoant &l fir, v, 5) Faptguse 14 1 mad contamed m
£ g, m— T
I"’J;\- il B an esphcen 15 nof prese, then 11 B ppswble o oblam e
= " -
(BTl o by remsonving some liverads from L- -1-"'“
II

So, for that, we are going to look at some difference. The two basic steps are minimizing
the Boolean functions namely, determining the prime implicants and finding the subset
of such implicants, which cover all the terms in the product we saw the this is what for
the time being find implicants subsets covering etcetera may not be slowly we are

looking at the definitions things will start becoming more clear.

So, what is an implicant of a function? Implicant of a function is a product term that is
included in the function. That is the definition. That means, for example, x y is an
implicant of x y. So, if | say f of x y is a function, this is actually x y. So, what is x y? x y
represents the x y z and x y z prime because f is a function of 3 input variables say x y
and z. So, if you are representing a is equal to x y that means x the said actually is the x y
z and x y z prime. So, obviously, this is an implicant of a function x y because it is a part
if this function.

Now, definition six, so definition six it says that a prime implicant of a function is an
implicant that is not included in any other implicant of the function. That means, in this
case, let us see by an example. So, prime implicant is an implicant of a special type of
implicant, so that it is not included in any other implicant of the function. So, function

can have lot of implicants.

So, this is one implicant, this is one implicant and this is one implicant. So, in this case,

you can say that the two implicants of the function, so you can say when a function

implicant is a prime implicant, if a prime implicant, if and only if this is not included in

any other implicant.

So, we will see, for example, this x y z is not a prime implicant of this one. Why? It is a
new function? It is a new function like this. What is the new function? The new function
is say that f of x y z is equal to f of x y plus x y prime z prime because so this one is not a
prime implicant of this one because it can be expanded into x y z and it will become

primes of X y and z prime.

Now, this term, this product term can be represented. It comprises of two other
implicants, this x y z and x y z prime. Now, we can say that, so X y z is the implicant of
this function, but x y z is not a prime implicant of this one because x y z is contained of
this one because x y z is contained in this one. We saw if | say that x y z is a implicant of
this function because this is the function.

Now, x y z is an implicant of the function because it is comprised in this function
because X y can be represented as this one. So, obviously, this is included in any other
function, it is not a prime implicant, because x y z is included in the implicant x y of the
function. So, it is not a prime implicant, but x y is prime implicant of the function. Now,

you see X y is, X y is also a implicant because x y is included in the function.

So, obviously, x y is included in the function. This is obviously, its term, its product term
is also an implicant of a function that is very obvious because x y is included in the

function. This is a prime implicant because X y is not contained in any other implicant.

So, if you think that what is the function of three implicants x y z and X y z prime, sum of
the implicant function, so you can easily obvious that X y is not contained in this one. So,
in this term, so obviously, x y is a prime implicant because X y is not contained in any
other implicant. So, if | implicant this not prime and it is possible to obtain a prime

implicant by removing some literals out of it, that means, what is not prime implicant?

Now, if | remove x from this and still obviously, if you are removing some literals out of
this should belong to the function. So, in this case, if | remove X, so obviously x y
belongs to the function, it will become a prime implicant. So, that is what being told in

this definition.

(Refer Slide Time: 38:50)

Prime Implicants

Dafinition 7: M a primse inplicant inchudies a minterm that s not included in any
ather prime inplicant, then that prime Implicant s essemtist

For example, fix y,cl=xy+x"y'z" has two prase ymphoans namely, 5 snd
' "2 . Pieme imphcand IV 15 esseniral becosn TV comlain 17 mxl 03" wheth are

noi condmmed m sy other prme smphcas (e, &'7'2" In spother Demchion
FLE v o) = Xy & Xy & K5 | pieme imphoamts e IV, Iy and 52" Asong thess, ' b
ol enacrial bocnme 1 Iy & 'QT el Iy S Bom Ay Esd N3 s n

F . \ |

“f e T

it L 1
/\%‘h Ff P i "A-Jul J.

ol

® (Y) Zi/

So, next one is essential prime implicant. If a prime implicant includes a minterm that is
not included in any other prime implicant, then that prime implicant is essential. So, what
does that mean? It means that a prime implicant is what it is saying that a prime

implicant like in this case, in this function, X y plus x prime y z prime.

(Refer Slide Time: 40:56)

Prime implicants

Dafinition 7: o a prime implicant inchudies a minterm that i not included in any
ather prire Implicant, then that prime Implicant b exseriet

For example, flx y c)=xy+x"y'2" las two prome mphcani namely, 5 wnd
' 7' 5" . Pieme imphcaid IV 15 essenial becosn 17 contain 0] o5 whath are

noi conimmed m sy other prme mephcas (e, "7 In snother Demchion
T y. o)™ 5+ Xy + K5 | pieme imphcants &e TV, Iy and 52 ASong thess, ' b
e, — Ao
ok ennenhal becnme 1 o 2. 0" md IL'Tj| %N Ay el NE W mon
; N
#
i
r' -

m_\

So, why we call it as a prime implicant? It is because it is a prime implicant because this

is not included in any other implicants. So, that means, it is a prime implicant. Now, X y

z is also implicant of this function or of this function, but we call but X y z is not prime

implicant why? This is because this is comprised in one implicant of this function.

So, this is not a prime implicant. Now, we see what you mean by essential prime
implicant. So, the prime implicant that is included, some minterm that is not included in
any other prime implicant, then that prime implicant is called as essential prime
implicant. So, we will explain by an example. So, we say that for example, this is having
two prime implicants namely this and this obviously, there are two prime implicants

because neither included in this nor this one is included in this.

So, both of them are prime implicants because x y is not included in x prime, y prime, z
prime and vice versa. The prime implicant x is essential because it contains this, which
are not included in any other prime implicant. That means what this is actually having
two implicants that is x y say n x prime sorry X y z and x y and z prime. Now, you see

both of them are not included in this prime implicant.

So, that means, x y is have a minterm. So, that is actually, these are actually called
minterm. So, if you remember the digital undergraduate course, so all these product
terms are actually called as minterms in some product form. So, these terms are not
included in any other prime implicants. So, it becomes essential prime implicants. So,
why do you call essential prime implicants because this prime implicant has some what

do you call minterm or some product term not included in any other prime implicant.

So, to represent this function, always this prime implicant has to be included, but if there
is a prime implicant, which is not essential, it may be dropped like we will see in another
function like this one like x y plus x y plus x z prime, the prime implicants are this, this
and this equation is usually verified, because this is neither included in here nor included

here and vice versa.

(Refer Slide Time: 42:18)

Prime Implicants

Dafinition 7: i a prime implicant inchudies a minterm that s not included in any
ather prome smpidan], then 1hild prime mpicant o esseTA

For ex |-.,|-'_- iz, v, sh=xvex'yv's" has fwo prese mphoants namaely, 5 =]
' 12" Preme mephoant 1V 15 evsenteal becamme TVoontaas S mmd 7 whsch arc
i comismed m_gny odber prime i Lo I ¥ = In anoiher [wmctom

TLE v 2} fF X7 flawfe Ex | (Teme mmphcasts e v, Xy and 5 Voo thera) 12l ia

So, none of the terms can be included in one another. So, it is all these are prime
implicants, but some of them may not be essential prime implicants because x z prime, if
you represent see x z prime it is nothing but x z prime z prime and x y z prime. If you
can open this term, now you can see X y prime z prime is in X y prime. So, what is X y

prime? X y prime is nothing but X y prime z and X y prime z prime.

So, if I open the term, I will get this. If | open the term, I will get x y z and x y z prime. If
I open this now, you see x z, | am breaking into X y prime, X y z prime, you can see X y
prime z prime is actually included in this guy x y prime z prime, this one x z prime z

prime, this guy is already included in this and x y z prime is actually included in x y.

So, this guy is having two literals, what do you call? What do you say two minterms, we
one is included in this and one is included in this. So, this prime implicant is not an
essential prime implicant because | can be dropped because this. So, in other words, what
do | say? What they mean to say is that among them, this is not an essential prime
implicant. Why? This is because its components are evaluated in some other prime

implicants.

(Refer Slide Time: 42:50)

Determining Prime Implicants

Thawrem 1: If cost of 2 Boclesn function depends on lterads then 3 minimal 0P
it byl ©ONikY of b sum of prime mplicants

Pl‘mllf Lt en sonsune thad s SO which is minimal and one (prodact b ieem s noe

prume Anotber SOP fonoida U= f camds, Ut cam b obelamingsd ey ol e oo

fomaula b egenaleil W the onpinal o, 5o, we trach & conrabction e, [i e ST

For emmreple _..-"'\-..Ill'-'_l-.._.lr:--\. of izl be s=5"v. A prese impliceni of
v . The SOPF roprosentahion can be champed s 1=y, where wo e roplaced «' y wid

v o v ipchides 5y . So the new SOP i rewmien by saving ose liters -,
%)
[s = T, 41
| P JI F R
1
T | jq‘l r > '_'.
%, i L .

So, it becomes a small essential prime implicant and why these are essential implicants?
This is because they have some minterms or some product term, which is not included in
any other product term any other prime implicants. That means, what we represent the
function. So, we have to obviously have the minimum, we should have, you should have
the essential prime implicants essential prime implicants will have some terms, which is

not included in any other term.

If a prime implicant is not essential, then we can drop because its components are not
available in some other terms. Now, you see how long, now you can see that if you have
to about to determining a minimal representative minimum Boolean representation
function of sum of product form. Then, we have to find out the prime implicants. So, we
have to find first prime implicants. Then, we have to find out what are the essential

prime implicants.

So, if you find out the essential prime implicants essential prime implicants, they have to
be present. If you if you drop an essential prime implicants, then that means we are

losing something.

That means, essential prime implicants some term we product of which is not available
any other prime implicants, obviously that has to come into picture the implicants. Then,
we can find out the essential prime implicants, and then more or less your job is done.

So, because then you are finding out some terms, which have or some implicants, which

have product terms, which are not available in any other. So, they have to be included

and some terms like this one subprime implicants.

So, in this case, what happens? In this case, this is a prime implicant, but sill it is
available in two other terms part by part. So, you can drop it. So, our step is in two ways.
First, you have to find out what are the prime implicants. What are the prime implicants?
Prime implicants are the terms, which are not included in any other. See there is a term,

which is totally included in other like example, we are taking x y z plus x.

(Refer Slide Time: 44:37)

Determining Prime Implicants

Thaarem I: If cost of 3 Backean function depends on Kterals then 3 minimal S0P
ol eyl conaa BT I RO O privr el

Pl'ln"' Lt o snsaune thad /i s SOF which is minimal e cne {prodact b icrm is poe
e
prame. Apoileer S0P fonnich 1= F eusts, that can be obebamingd by replscang the o

prung imphoais b o pivine wmplecand that comtans 1L The oo doos Bl ncioms ans
[ormuds n ogevalen W tle onpmhsl oee. 50, we fesch 8 contrmbeton Lo i an S0P

w'hnch is mirmsal and sll boras are prose meplicanis]
T

¢ okl .--""‘\-|||".|-.-l.-||':-' of flewl b s=5"5y. A il of

v . The SOPF roproseniahion can b changed s x + where wa have roplaced =y wiith

v o voipchides 5y . So the new S0P is rewninien by saving ome liters

So, in this case, this is not at all a prime implicant. Why? This is because this is totally
embedded in x because x can be represented as X y X prime z prime and x y z prime and
X y prime z and then x y z, if you bring it up, it can be open up into four terms. So,

obviously, this is included in this one. So, this is not a prime implicant.

So, you can directly drop it. Then, you remain with only the prime implicants, and then
we find out what are the essential prime implicants? This is because essential prime
implicans are the ones, which has a term, which is not included in any other term. So,
you obviously you have to have the essential prime implicants. So, once you can go

about this, then we get the very minimum representation of your circuit.

So, what is the theorem? It says that if the code of the Boolean function depends on

literals, then a minimal SOP must always consist of a sum of prime implicants. That is

the proof is very obvious. Let us assume that if it is a SOP, which is minimal and one
product term is non prime. That means, what will we say that if you are going for

minimal representation of SOP form.

So, you should not have any kind of non prime implicants because non prime implicant
is what is already including. Now, so if you prove it in a formal way, so we will go for a
formal way counted logic proof contra positivity, proof kind of a thing, let us assume that

which is minimal and one product term is non prime.

So, another SOP will obviously exist, which is equivalent that can be obviously obtained
by representing non prime implicant because another implicant actually another prime
implicant will comprise the non prime implicant, which is equivalent. So, obviously you
can remove the non prime implicant. So, the cost does not increase and the formula is
equivalent sorry the formula is equivalent always, so it is a contradiction. So, SOP is

minimal on there in terms of prime implicants.

So, how the proof goes? The proof says that if you ever the minimal representation of
SOP terms, all the product terms should be prime. So, assume that there is a product term
on prime. Now, obviously, this function is extra term, which is a non prime. Now, you
can obviously remove the non prime term and should be still equivalent because how the
non prime implicant is included in some other prime implicant. So, obviously, you can
remove the non prime implicant, the function will become smaller in size. So, it will be

less complex and it will be easy to equivalent.

So, obviously, if you assume that SOP, if it is an S O P, which is minimal and yet one
product term is non prime is false. Let us see the example. So, let this be the explanation
the prime implicant of f is y for a prime implicant of f is y because there is no other term,
which there is no other term, which will there is no other | mean term in this case, which
will actually comprise of y. So, the SOP can be represented to x plus y x plus sorry the

expression is X plus x plus x prime y. So, you can be represented it in equivalently in x

plusy.

(Refer Slide Time: 46:43)

Determining Prime Implicants

Thaorem 1: If cost of 2 Boclean functon depends on kerals then a minimal SOP
] Bl Cona T T T TOTTo T T

Proo Lol o sosmme ihai /5 s SOPF which is minimal s oo {prodeci b eem is poe

prame. Aptleer SO formila (1= / cuists. that cam b cleasind by roplaang e pow
prang (iphoas by @ pivme mmphscaid that comtans 1L The oosl doos mif moives aixd e
[ofimula s ocpanalenl o the onpeial ome. 5o, we trachi 8 contrabction e, s an SO
w hnch os mimmsal and sll ormis are primse imephicants e
i _!
For exmple, let SOP repreventution of [is ||-\.-||:"|-'!-I A e implicant of (i
e
v . The S0P reproseniahion can bo chamged sl x+ @, where wa have replaced =° p with
-
v o vopchides 5y . So the sew S0P is rewmitien by seving ome liters

)

Why? This is because you can see that x prime y is actually included in this. So, x prime
y is not a prime implicant because y is a prime implicant because y cannot be included in
any other implicant. So, that is why it becomes a prime implicant. Now, x prime y does
not it is not a prime implicant because x prime y can be included. So, y can be

represented like this one. So, we have represented this one in this.

So, the new prime will be by this one. So, we are removing one literal like x prime is
been removed, so some expression becomes simpler. Now, it has two prime implicants x
plus y. That is what the idea is. So, that is | mean this is a definition obviously, which is

also simple or to understand that minimize your circuits.

So, if you want to minimize your representation, then what we have to do? You have to
find out the prime implicant, you have to take them. So, if n term is non prime, so that
actually will not form a minimal representation. So, that is what being what is being

understand.

(Refer Slide Time: 47:36)

Determining Prime Implicants by Tabular Method

Defomton X Given & Bookeam Banchion | 508 loem Ly s Xy abkte I ma

product term mod having vemabde v, then comsensus can be applsed on the fwo
= - iy

terms Ay, Xi' o generate X(= Xy« 470 | X s the consonsss form contammg

Both Ay, v Thas & also callod doence- | Seviang

In otfver words, pairs of berr that differ in exactly one letter, which must
Apnaar (ke renned o omsd term i on-complemanTed 0 TR ot Sl
used for Consens

- e W Tl |
[5) ol g =

Now, we have to find out some algorithm or some automated way where you can do it or
how can you find out; given a function, you have to find out the prime implicants. Then,

we can find out, how we can find out the essential prime implicants.

Now, we will go step wise. So, first thing we have seen is we have to eliminate out all
the non prime implicants whose having a prime implicants, which is already proved that
be problem be headed because | already having some terms already present in another
prime implicants. So, better remove all the prime implicants, then the question arises can

you do it? There are different ways of doing it.

(Refer Slide Time: 48:47)

Determining Prime implicants by Tabular Method

Giver @ Boglean formula in S0P fanm we need Do determine the pime
implcants. The Mepd of tebilsr method are gheen below,

L. Expredd the fanction in mivledm canoncal fanm

2. Contider all pairs of adjacent terma, Le., the padrs of terms b0 which
condendul Cn be ppleed. The condeniul Termi are implcants of the
fumction though not neceisarily prirsg. Al Derms that form thidks naw
consentus terma ane inchuded in the new terms, and hence they are
ot e, W mark the old termi @i hoA-prime and are not uled for
further condensisg

3. The new tefms @ e added 1o the SOF #nd aeps 1.7 sne repeated 111 o
PO COnEn LY Tereng Cln D Tound

.'io | perma that are abiorbed (or contamed)] by the new tErmE ofe
' ked 31 mon-priemes, Finally the terma thad we mol marked
HFTEpgntitute ol the prime impiicants of the function

So, today we will see the tabular method. What is the tabular method? The tabular
method what is like this, so if you have a SOP form x y prime and x sorry X y X y prime
where the x is a product term not having the variable one y. Then, it can be then can be a

consensus to generate this one.

(Refer Slide Time: 48:55)

Determining Prime implicants by Tabular Method

!
Now we ilhstrate the schomse uning an exmmple 4 4]
===) 0
Cionmidey e SO filw, v 2) e 2" ¢ vy + 5792 1 v,
- |.‘|] Ny
- Y | N
T het nmsctinots i smcmibern: Canonusal Bomm s m Jolkoan .-ll 1 Ib" =
1 L
e Y e e P rewnz ez o ey o 4 A
% i
L
“How we construct a table, where the minterms appearing in the canonical, |
lodm afe enbered q_r} g | E

+The codume b divided into four parts based on number of corplemented
betters of 1he terma
+Thi firss grous comsists of mirtems with na wh-Complemented Derak

i proeral, i6me froupd may b empte 50, o corendul. we 19 need 19
coenpare terms of immadiately successive proups

(4
gl be noted that we reed not consider the minterms In the iImmediabely
piEERding group, because this would only cause Us 1O repst comparions

So, we can have, so we say that x y prime plus x y, so does not have the term y. Then,

obviously, it will become a x common y plus y prime change to one. So, finally, we will

have this one. So, it is also called on distance merging because we have we cancel out

the y and y prime and we have this one. Also, this is called consensus.

(Refer Slide Time: 49:46)

Determining Prime Implicants by Tabular Method

Now we illustrate the schomse using an example
Doy i SIF. fiw bl ke way+5 121

Thet I :ql;-:.:: SR :u'_ri'u 1o En Tl

T R e e L
S pa—
*Move we consfruct & fable, where the minisrm appeanng in the canonical
form e enbened
«Tha codumn i divided mto four parts based on nummber of complemested
eqters of 1he berms

+Thi Tirst proup corsists of mirisrmms with nd un-gomplemanied Beral

i peneral, Soeme groups may be emety 5o, for comsensus, we 1o need 1o
CoEMpBae CHEMTS af immed Ately Uit Eroups

-
i e noted 1hat we eead nat coniider the minterma i the Imemediabely

Hedddirg Eroup, beceuss this would only Couss us Lo repEet compansons

Using this consensus, we will try to see how we can go about the finding out the primes.
So, let us see there is we will have a look at the algorithm. So, we first represent the SOP
form in canonical form. So, what is a canonical form? We have already seen in
undergraduate course. So, if you have a function like X y prime x y z, so this is a function
of four variables term x y z. So, somebody has written it X prime y prime plus w x y and

X prime y z prime.

So, what do you mean by canonical way? So, this actually represents by x prime y prime,
which can be if you have to open the term canonical means opening the term that x prime

y prime, then x prime y prime.

So, we will have w prime z prime and X y x prime y prime will be common, then it will
be w prime z. Then, also we can have w prime x prime y prime z, then you will have w x
prime y prime z. So, this x prime y prime is common. You can have w prime z prime w z
prime w prime z and w z. So, this is how you can open up. So, if you are opening, this
actually forms the canonical representation.

So, if you just look at this function, this can be represented in canonical way in this

function. So, we can look at these terms. So, we will see X prime y prime w prime X

prime z prime, then z prime w prime x prime y prime z, then w x prime this on and this
one this four terms actually coming from this. So, this will be giving these two terms and

so forth.

(Refer Slide Time: 50:11)

Determining Prime implicants by Tabular Method

Gaver @ Bogkean Formula in SOP form we need 1o determine l.he T
mpkoants. The iepd of Wbulsr method sre fhen below

Elp'f'-,'l'l‘l,.m;‘-- 0 menlevm Canorecal haim -":E

'H

3 Contider all pairy of ujuﬂ' terms, Le., the pairs of terms B0 -M' t'-"f':- 1
condeniul (a0 D8 kppled The canseniag Tefms are impacants of L k .'
fumction though not neceisarily prirss. A Denmg Chal form ks Had
consentus terma are incigded in the new terms, and hence '."'--.-r
Mot g, We mark the old tefrmd as Hoo-prme and are not uied kol
furthes conienist)

1. The new (e afe added 1o the SOF and Wepd 1.7 ane repeatied 18l i
Ol Condeniu (eens oan be found

ld dl pErmE INel ahe MDAOrDed (Of CONtESed] By the hew [ErmE afe
whed 84 mon-prenel. Finally, the ferma that we rol moarked
ronsituse 8l the prime mpacants of the function

So, these are we are actually representing in a canonical way. So, this is the first step
now, what will we do? We see all there adjacent terms that is the pairs of terms to which
consensus can be applied, we will see with an example. Then, the idea will be clear. So,
we take two terms of this consensus or two terms of the canonical form and then we can
find out if there is a consensus. So, what is the consensus? Consensus means X y prime
plus X y. So, you can cut this x and sorry cut the y, so will become a x and then we find

out if there is a consensus.

So, the consensus is the implicants to the prime. See, about that this is the next step and
then finally, we repeat this steps till no more consensus can be found. So, the idea is that
we may first canonical form. Then, we may take terms at a time or in a step, we try to

find out the consensus and we keep on doing it till no more consensus can be found out.

So, all the terms that form the consensus are included in the old terms as they as they are
not prime will mark the old terms. As they are not prime, we will mark the old terms and
non prime not usual for the consensus. So, we consider this example in more clear it says
that if there are two terms from which are the later consensus like for example, X y prime

plus x y.

So, you cut out this X and finally, it will remain as capital X. So, obviously this capital X
will comprise x y prime and X y. So, this will now become non prime and x will become
a prime that is the idea because this x y prime and x y are comprised in X. So, obviously
these things we can determine because no longer will remain plus only x y. That is what
is been called we mark the old terms as non prime and are not used for further consensus

that is the idea and we keep on repeating it till no more consensus be there.

Finally, you do all terms that are absorbed by the new terms are marked as non pairs.
This the terms that are marked constitute all the prime implicants of the function, which
ever terms are consumed consensus are removed and finally keep on doing it. Finally,
the terms which could not found out, find the consensus and they become prime

implicants because they are included in any other term. So, let us take with an example.

(Refer Slide Time: 52:04)

Determming Prime Imphcants by Tabular Method

Mmnserms partsonod bwsed on b of oampiemesiod alphabets
1 i .\..'r
RN W wh
- " § ‘“..*L ,‘ 4 - P A "'|.
%) B MBI AN, %l
! | . A o "

So, this is your example we saw. What we do is that first we divide, we make with the
table and it into four parts. So, here there is no primes w X y z, none of the terms is

having a prime here. What you are doing? Here only one term is having a prime like w x

yZ.

So, only one term is having a prime, here two terms are having a prime it is w x prime y
prime z. So, two terms sorry two what do you call alphabets or literals are having a prime

here w X prime z prime. So, here two literals are having a prime here three literals are

having a prime that is w prime x prime y prime z w x prime y z prime and here w prime

X prime y z prime.

So, three literals are having a prime here four literals. So, we are actually dividing it into
y. We are dividing it because you see in if it does, see those terms w x y z prime and w x
y Z, so in this case w sorry w X y z prime and w X y z. So, you consider this guy as capital

X and this guy as capital X.

So, it will be this x z z will be cut off and finally, will, this two will make a consensus
term will be w x y. So, that is why we are actually in this, we are dividing the table in
such a way so that if you just compare these elements from this to, you get a consensus.
Similarly, if you compare these two, we will get a consensus, but you cannot because
here none of the term is complimented, here two terms are complimented. So, if you
compare this one and this one, we never get any consensus because you are having w X y
z and here we are having say w x prime y prime z, so two terms in which there is a

difference in any terms of compliments.

(Refer Slide Time: 53:43)

Determining Prime Implicants by Tabular Method

So, there and here, you are having some say w x prime y prime z. So, you see there are
two terms in which there is a difference in the terms of compliments. So, there cannot be

any consensus.

(Refer Slide Time: 54:03)

Determming Prime Imphcants by Tabular Method

So, that is why the table is made in very intelligent way so that this table is divided in
such a way, so here we are having one compliment sorry zero compliment, two
compliment, one, two, four and four, four compliment zero, one, two, three and four
compliment. So, these two guys terms can have consensus. Similarly, this two and this
two, so we cannot have consensus from here up to here because here there are no
compliments, there are four compliments. So, what do you have to do that is let us find
out whether there are any consensus between this two terms or obviously, so it will
generate x y z prime. Similarly, you can have to compare this one with both of this. So, if
you compare with both of this, all we will get, so we have done w x prime y prime z and

here it isw X y z prime.

(Refer Slide Time: 54:49)

Determining Prime implicants by Tabular Method

So, these two guys will not have any consensus, but if you compare this two guys see, so
you have a w w x y z prime, which is this one and here it is w x prime y is not having
this and z prime is present. So, this one is not there. So, just if | take this term over here,
now you can easily see that | do not have a consensus over this. So, these two terms are
not having any consensus. Now, this two do not have any consensus. So, what we can do
is we can try out with terms for these two terms. All these two terms will have to be

compared with all the three terms.

So, you can very easily see that if | take this, so it will be w prime x prime y z z prime x
prime y z prime and this guy is having w x prime y z prime. So, this is the guy I am
taking. You can see that in this case, if you see very clearly, this part is actually x and w

and w can be eliminated.

(Refer Slide Time: 55:29)

Determinming Prime Imphcants by Tabular Method

In the example, 1F we coespase the term Froes the feml row [w"x' 5 with the log most

tarm of seoomd o | & 5 5 Beeir cormenisns. T i s

So, if you take this, so this w prime and this w can be eliminated because x prime y z
prime is also x prime y prime z. Finally, this will give you a consensus term of x prime y
and z prime. So, this how about we know about consensus, so this is what | have told
you. So, if you compare this with this, so you get the consensus term this. Similarly, this
are marked as non prime because now this two will be non prime, this will be non prime
and this one will be prime because his two guys are included over here. This second

column is created where this new term will be placed.

(Refer Slide Time: 55:50)

Determining Prime implicants by Tabular Method

So, if you look at this table sorry if you look the table, you will understand the terms. So,

what do we have done? So, we can we can start with this two.

(Refer Slide Time: 56:27)

Determining Prime Implicants by Tabular Method

= e)
'-I

X'y LS
&

A E l.:b'l
Vowr p s (ol prme) | ¥ a0 h__;
SN

= |'IT|._.-I.|. 2 W

So, this two will get as y. So, w x y z prime will be cut. So, this will be one consensus
stuff. So, now this will be a non prime this will be a non prime and this will be a prime
over here. Now, in this case also, we can see if you are having trying this two, so it will
be w prime x prime y prime. So, this will actually become your x power and this z and
this prime will get cut off. So, this is the new term available for w prime x prime and z
prime, this is the consensus stuff. Now, this will be actually your prime, this will be
prime and this we mark as non-prime. So, if you try out for whole thing, you will find
out a table like this. So, you can find out that we can have a consensus. You can just see

and try out, we get this entire thing.

(Refer Slide Time: 57:03)

Determining Prime implicants by Tabular Method
gy
[k prime} |_wCx medpramgedy 1 |
; ¥ a" [¥ .-""‘i E
'I F S |
= = (moheri] | —
= |

L
it

L) a LI R I oo LB P Vi
7

WA ey WX Y (ol e
1+

vy o e WY ol prsnh
' lewd pruezed |
i =
. " . oo
' " | W ol o I =3
1 L -
e
eyl 4 prime |
""'"";) | i it L I r
- L A
B e

So, we can find out all of these terms like this one with this one or this one with this one
or you put a find out the consensus. This is your new table, the next part of the table. So,
we can find out this term very included in at least one of the consensus. So, none of them
are prime and here everything is a prime for you. So, here also, you can see zero number

of negations or compliment, this is one, this is two and this is three.

So, again you have to repeat this schedule by taking this terms from this two rows, then
again terms from this two rows, then again we check from this two rows. Finally, you are
going to get as this two, you will get by you will find out this two terms could not have a
consensus because it is w X y and this w x z prime, this two stuffs could not have any

consensus.

Now, again if you try to see that if you have to find out that if you try this three elements
and try to compare this four elements, we can compare will get this two consensus term
that is x prime y prime and x z prime. So, all this terms are actually included in these
terms because we could find this terms by consensus having a consensus among this. For
example, if this one says that it is nothing but w prime x prime and y prime, so if we
have a term like w prime sorry x prime and y prime, so here you are having a term like
this term. If you take | is actually by x prime y prime and w, so this w will be eliminated.
Finally, we get the term as x prime y prime and x prime y prime this one actually this

two is generating this one.

(Refer Slide Time: 58:24)

Determining Prime implicants by Tabular Method
- e

¥)
"y " (el pamee x" oiprmmee | | Lx" i I:

¥ " (i rzl.-k'l
(ootpome) | ok
i
LY | O K LRE
1 1 pread ¥ ANl fErE L |
¥ i primee B preemey
= |l preme ¥
.-'..-:'\-;, F
1 o i —
PN |.- I;-"h.
{ prim = \
e | ¥
o g
i i Ik o
; ()

So, this we can find out that all this terms to take a consensus we will get the result the
final terms. So, all both of them are included over here, but these two terms do not have
any consensus anymore. So, they will still remain. So, this one is two prime implicants
and this one is two prime implicants. So, we have four prime implicants like this one. So,
you can see that now my function is, but the four prime implicants of these functions are
thing, but w x z prime w X y x prime y prime and z prime. So, this is my all the prime

implicants are here.

So, you can think that they are having at least some implicants or some mean terms or
some product terms, which is not available in any other like this. I will have some terms
this I will have some terms this guy will have some terms and this is having some terms,
which are not available sorry I mean this are all prime implicants because this guy is not
available here this guy cannot be included over and this guy totally marked over here.
We are not actually finding out the essential prime, we are only finding out the prime

implicants.

(Refer Slide Time: 59:46)

Determining Prime implicants by Tabular Method

Now wy ilhstrate the schonss uming gossaspls

Loy it S0 flerinflex'vemy+5 12

Tl lmsction @ Snnlenn cansanites-Lanh an i follonn—

® m 5 B R T
o ol Y FyIewy yI - i - L L= i i Y i3

~how we construct & table, where ihe mindterms appearng in Ehe canonical

lorm e pnbered

+«The codumn b divided inta four parts based on nember of complemented
ietners of 1he berms

+Thi 1irst group comssts of minEms with R un-CDmplemented Farsh

i general, 18a groups may be emeti So, Iof conteniul, we 1o feed 1o

CoEMpae EEnma af immed LRl LUCCEILAE Eroups
e

| -

wib el b Aoted 1Rt we reed nal consider the mintermd A rhe emedighely

piEERing group, becauss this would only cause Us 1O repest comparions

So, what are the prime implicants means? That means, this term cannot be totally
included here for here and this true for all others. So, essential prime implicant means it
will, it should have at least one term, which is not available in any other. So, that will
come in the next stage. So, first what we have done? First we have eliminated all the non
essential prime sorry we have eliminated all the terms which are non primes. Non primes
means what like this is a term, so it is actually included in this term. So, w X y z is

included in w X y, so this is not a prime term.

So, it can be eliminated. As of now in the first step, what we have done? We have taken
a function and by using the tabular method, what we have done? We have right to
eliminate all the terms or we can call the product terms, which are non primes. That
means, they can be included directly in any of the prime implicant. So, we are actually
having this set of four prime implicants. So, they are actually minimal way, then the
original function you see it was something like this. It was using canonical function that

quite a large, it is quite a large function.

This one we have reduced it to something like this. Now, what will be next step? Next
step, we have to find out what are the essential primes because if there are some primes,
which are totally includes say if it not an essential prime, that means, it has not have any

prime implicants, which not any implicant this is not there in any other. So, it can be

easily dropped. Now, here prime implicants, now to find out, which are the essential

prime implicants?

So, essential prime implicants are what there actually we will have term, which is not
available in any other prime implicants. So, they obviously, have to be there. So, then we
have to find out what is the essential prime implicant, then we will remove some other
prime if possible. Then, that will be the most minimal representation for finding what we

have to do.

First step we have eliminated all those product terms we said actually not primes. that
means, they can be totally included, they totally make SUM of the prime terms. So, that

can be directly thrown away, so that is what we have done.

(Refer Slide Time: 01:00:43)

Determining Frime implicants by Tabular Method

=it my be noted thai the funcion onsdered & the echmpss was compieiety

ipetifeed. 8. thére wiid 0 don'] Cafe Lermi

« the function is incompletely specified [then we foliow the same procedury
I 1

discuised abowe (for comphelely specilied FuniCORT], NDwWeTer, we drop the mels

terma that contsln only don't cane mingerma

shpeciically, & prodolt tefm i3 8 prime impleant of an incampletely tpecified

function if it & a prime implicant of the function and containg at kast one minterm

whih 1 not dont cafe

=Norat e will conader Che Toloeing suemphe, which Baytrates TaSular method for
incompletely speclied fundtions

%

So, this was about the, | mean determining prime implicants by tabular methods. So,
what was some of the steps you should observe over here? So, you can see that in this
case, the example was completely specified. There was no do not care term. So, what |
was do not care. So, even if this incompletely specified, that means, some do not care

terms are there.

(Refer Slide Time: 01:01:35)

Determening Prime Imiplicants by Tabular Mathod

oivadeT e Buncbion wiilten im SO fors s, v 2)= 82 "= ms b dilay 2= 5

1l it afi Diislermn Caancal foim 16 @a Dol ko
i T T y rl
— ——
Th I 5 = ol Ehe SO is shown in |
= {m priems (ot primme | =
L -
t
_."'* T i 1 e e
f ek g A “ar Py
[¥ &= |.-ll-:_l.l.ril.
o o Y
Y e -
a bz (st parimar)
I
N oy o "Bl prtiTec)
i
B 8) g
1 -
b
(AR B O B !
\

So, if the function is specified, so incompletely specified, then what we do so? So, we
have to go for same procedure, but the function is incompletely specified. Then, what we
do? So, basically you have to make it complete, so how to make it complete? Then, what
do you do? You have to put some do not cares. So, now the same procedure will follow.
Then, if we find out what is the modification, we have to do? So, if there is a prime
implicant, we find out any only comprises of do not care. Then, you can directly throw

away that.

So, that is what we are going to just see very small example like if you have a sum of
product terms like x z prime and X y z, so this there with specified function, so this be
told. Then, actually these are that say that do not care terms that is we do not know what
is the 1 mean you already know the concept of do not care. So, it is incompletely
specified say if say that for this obviously output is one and for this does not matter. So,

how do you know about it?

So, if you just compare little specified completely specified function, so it is bit it is
incompletely specified or if there is some do not cares, then how do you know about it?
Take this example. So, in this case, so this is the case, this is the do not cares. So, how do
you know about that we follow the same procedure like we actually make the canonical

representation.

So, in this case, if you can see it is the prime do not care actually this one and this case.
We have one x y z prime to explain x prime is broken down into x prime y prime z and x
prime y z prime and this is actually directly brought out and this will already in the

canonical representation.

So, we say canonical representation in this way again we may take up the tables. So, this
1,2,3,4,5terms, so 1, 2, 3, 4, 5 terms are there. So, we are actually one negation here
we have two and here we have three could not have any terms like x y z that is not
available here. Then, you could have a fourth column, but it is not there.

So, we have only the terms like one complement. So, here two compliment and there are
three compliments, to do that, so you paste it over here and then you do that same way.
You can try to find out if there is any consensus between them. So, in this case, | do not
think consensus because it is x x y z prime there is two terms, which is different
consensus, but we can very easily find out that they will be a consensus between this two
terms X prime y prime z prime and this x y z prime. So, you can easily delete out this x

prime and you can get y z prime.

Similarly, then do about with the whole stuff, and then you can find out which are primes
and which are not primes. So, there are same procedures you follow. So, you will find
out that all the terms here are included over here. So, they all will become non-prime. So,
only two stuffs will be remaining that is the final this one and one extra prime will also
remain and that will find that it is not actually included in any other.

Now, question is should I directly if you have taken a completely specified function, then
we could have said that x y prime plus z prime or X y prime, z, they both comprise a
prime implicants, but it is completely incomplete specified function and there are some
do not care. Now, what will be your case? Now, if you see that, what is this x y prime?

So, it is actually, it can be represented that X y, X y prime z an X y prime and z prime. So,
this is nothing but x y prime and x. So, this is also a term, which is also a prime. So, this
IS a prime because it is not included in any other because we could not find the consensus
for this.

So, this is one prime and this is one prime. So, you should take both, but now you have
to do very clear observation that x y prime actually it is a prime term, but it comprises

only the do not care. So, do not include it.

So, if you remember out Karnaugh map procedure, so what you do? You include the do
not care only. If we give some benefits, if we do not include the do not care, if they cause
some problems like if you include on do not care, so number of do not care terms which
will include the function size of the function, now let us forget it. So, in this case, there is
one prime implicant, which comprises one term which exactly contains nothing but only

your do not care. So, if you carry all this one, so you have a large size of the function.

(Refer Slide Time: 01:05:13)

Determening Prime Implicants by Tabular Method
OfateT [P Bom wrrlten ta S0P lors iy, v =)= #

I'he limsctics o DiiSiern Cciswdncal f0Pm 16 66 Lol o

iz
.|-.. [,
0,
- \
.". ' i{mest pri l,-‘,; r' o (msd prine] il |
f E——— B —
f - "}""!l b t
|
LR T o D o |
b ! ; B
" E # --_I-:.-r.-'ll:..'ll—r - =" (et i)
. . il
== L - — . i
& |
W dow F AN
e A =
i
1

So, you will be including one more term comprising do not care. So, directly you can
forget it. So, there is one prime implicant only that is z prime, which comprises also there
is non do not care terms, so that you have to containing, so in other words, so what is the
idea? So, we get one prime implicant. However, do not consider this because it only
comprises do not cares, so know that in appropriate specified function. So, completely
basic function you go about the same procedure, but one you have to do a small
distinction what distinction is there? If you find out any prime implicant, which
comprises only do not cares, then it is actually you are carrying dead stuff because that

person is not useful. So, we can directly throw away in this one.

So, but if you find out a consensus term like for example, if you are having a consensus
like x y z prime like if you are finding a consensus, this one is actually x y prime z and if
you are having sorry let us take this two. So, if | have this one like this two like X y z
prime and this one x y prime z. So, if you take this sorry if you take this two, you are

having x y prime z prime and x y z prime if you take this two.

So, this one will be cut and this one will be cut and you are going to get y prime z prime.
So, this is what is obtained come some this one and this one. Now, you see, we cannot
throw away this one directly x prime and z prime why? This is because at least
comprises one term, which is a, it is not a did not care and one term is a do not care. So,
this we cannot throw because it at least contains a one term which is a not a do not care.
So, we have to carry this do not care along with this, but this is a term which is having
both of them, all the components as do not care. So, you can actually throw out this one.

So, with this, we will close this lecture.

So, what we have essentially seen today that given a real circuit, so all the terms can be
represented with some Boolean function. Now, you have to minimize represent the
minimize value. So, what do you mean by minimal? Minimal means minimum number
of literals and minimum number of terms. So, in this case, we have said that we have to
first go for a prime representation of the function in terms of prime implicants because
prime implicants are the ones, which cannot be included in any other prime. So,

obviously, they are actually essential components of your function.

So, we have to find that of for finding the doubt, we are seen one example one procedure
saw that the tabular method that will actually give you the prime implicants. Then, prime
implicants we have to included in the function because they are actually none of them
can be included any other terms.

So, there is what you can call good important components of the function or essential
parts of your components of the circuit. Then, we have seen that if we have incomplete is
specified function, same procedure you have followed, but you do not have to take some
of the prime implicants. They comprise only the do not care term.

So, in the next class, what we will see? So, we will see now we are having the prime
implicants, from that, you have to find out that how we can find out the essential prime

implicants or among this prime implicants or subset of the prime implicants. So that fully

covers your function and still the number of terms is minimal that we will see, and also

we will then go for the multilevel stuff.

Thank you.

