Design Verification and Test of Digital VLSI Designs
Dr. Santhosh Biswas
Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 02
Scheduling, Allocations and Binding
Lecture - 04
Binding and Allocation Algorithms

So welcome to the 4th lecture on module 2, that is on allocation and binding algorithms,
so in the last couple of lecture what we have seen is that the high level synthesis problem
comprises of 3 steps scheduling, allocation and binding. Then we define what are the
problems in formal terms and then we have seen that we require some automated cad

tools or algorithms which can go on given a circuit and given some specifications.

So you can automatically get what you call schedule design, allocated design and binded
design kind of a stuff. So in the last couple of double lectures what we have seen, we
have seen some automate algorithms like what you call as soon as possible, as late as
possible then force directed least scheduling and finally, individually programming the
ILP based solutions or ILP based algorithm. All these days some algorithms were given
input specification they will give you a schedule design based on some timing constraints

or based on some resource constraints as in the case. \

So | mean then what do you find out that as already discussed in the high level synthesis
problem the after the schedule has been done then we have to go for scheduling, then you
have to go for allocation and then finally, we have to go for binding. So | mean after as
we were discussing automated tools or algorithms so we have given a input specification
you can either use the heuristics like FDA or as soon as possible, as late as or least
scheduling or even if you have enough time | mean it takes prohibitic amount of time for
ILP but, still you have time you can use exact algorithms. Then you can get a schedule
design based on your time constraints or your resource constraints now. So once this is

done...

(Refer Slide Time: 02:22)

Introduction
After the scheduling process, which sssigns controld steps to all the opevations, in
thie allocaticn #ep, ciitell modulel from the delign Brary ane deledted lor
sarcuting the operations. Oncg circult modulss are selected, binding & dome
which accompliches the following

sFumCtionsl undt Binding: All srichmstic snd lngic opevations are binded 1o ke
specific droult modulet slocated from the design Bbrary

sStorage to register binding: A itosage cperation & created for each data
transher that orowes 3 ontrol tep boundasry, Also, all inputs sre 1o be vioned
Iy afO s §ng Diged [0 FegiRbeTs

Dgta-transfer to interconnect binding: Asy data transier involbves a0
INErCORAECToN DEtvween ouce and 1ink. Theralons, sy dats renider & (D b
Eimded weth s inkerconmection (fram source to destimgtesn), In sddison, |8
right be noted that imberconnects are thared By data traneferi which leads o
e af ultolenErd @ the Wurces a0d deatnation

-

So this is the input to the next 2 step of allocation and binding. So now will be looking in
this lecture, we will be looking algorithms which will take you through other 2 steps of
the high levels synthesis procedure that is allocation and binding. So if you recall so
what is scheduling. Scheduling means you have given all the operations like addition 1
or 2 addition 1 addition 2 or subtraction 1 subtraction 2 kind of stuff. So all the
operations will be given some time, some steps of operation then there is actually this is
called scheduling. So after the scheduling has been done you have to go for allocation
and then finally, binding.

So what is allocation so if you remember what is allocation. So allocation means there
will be lot of resources in the hardware like hardware, Carrey adder, array multiplier then
some sequential multiplier so many so fourth hardware unit will be available in your
library. Then you have to allocate different hardware units for different operations which
have been already scheduled like for example, for adders you may require slow adder it
may do your function I mean as you have discussed in first lecture of this module. So
slow adder may do your purpose so you can use adder but sometimes we require a fast
multiplier you can use what do you call a array type of a multiplier that will actually give

you a very fast solution and sequential type of multiplier so that means in allocation step.

So what you do we allocate different hardware looking at the design library to all the

operations. So you can think that this does not mean it a independent algorithm study so

what the idea is even if there algorithms there will be semi automated type of an
algorithms so in which case some manual intervention will be equated because just after
if you just look at what is the scheduled stuff and how that scheduling has been done you
moving at all this things. You can decide what type adder what type of multiplier what
type of dividers or what type of hard ware function units are used in these operations. In
that case | mean there is no such direct algorithms which requires to do the mapping you
can find out what is the time taken, what is time step you know, what is delay of each of
the adders or each of the hardwares you know, then you can decide on the time step
delay or time given to each time step in the control structure and the time step 1 time step
2 what if you assume delay then what will be the delay amount based on that you have to

select what is the hardware type you want.

So, in the first lecture example we have seen that if we require fast multiplier but, a slow
adder will do the job for us so based on such type of studies we select the we actually
allocate the operations. So you can understand that we do not have requisites not a
sophisticated procedure neither it equates are too much of a algorithms automatic
algorithms to do it just by looking at the some of the parameters you can decide on the
allocation procedure. In other words I should not say that there is no algorithms if there
is algorithms they will actually aid the designer they can help to find out what is the
power requirement of the different hardware units available in the library. They can tell
you what is the delay of those stuff then what is the delay that is tolerable for each of the

control step and so forth.

So some of the information you can gather out from the designs using some tools and
then you can decide what are the what units are to be allocated for what operations. So in
this course we are not going into depth of such semiautomatic algorithms or what do |
say semi automated procedure. Rather we think that this is a easy type of a job and even
there is algorithms they will just give you information about different hardware units and
the delay tolerable in your design now that is your control step delays and all these stuff.
So information will be gathered by some of the tools and based on that steps designer
can do what the designer can allocate different hardware units from design library to
each of the operation. So what we see next that is the actually binding step so after there
the allocation has been done that is all the control steps has been given. Some operation
scheduling process allocation means allocating different hardware units from the design

library to this operations then we have to go for the binding step ok that is the binding

step.
(Refer Slide Time: 05:28)

Introduction
Alter the schedul ng process, which ssugns controd steps o all the opevationd, n
the allscaticn Mep, cintoll modulel froem the delign Brealy afe felelind for
eneCuling the operations. Onoe Ciroull modoies are selected, Binding 5 dore
which accompliches the following

P, S—
sFurstionad und :r]na-m; All grichmelic and lopic operations are binded o the
specilic droult r_!pqi-dl.-ﬁ allccated Trom the design Bbrary
| *Storage i0 regidec-bénding: A stomage operation b created for each data
tiasher that orgised & oonbrdl Heg boundary, Alia, all Inputs afe 1o B tored
in varipbies and binded 10 regiviers
B
| *Dusta-transfed to interconnect hinding: Ay data fransler Invobves an
| iFig L-cll"".rﬂ‘lz":r bEtween 1oUFoE §nd il Theralons, &y dats Feniter & D b
!h reded with an interconmection {From souwrce bo destimation). In addition, &
mght be noted that Wherdennacts are thaned b'.'-:l.ﬂ* trarihert mivkch leadt o
gl af Fultdleeiry o The G500 B0 SeTrmaTa g

.”:)

So already discussed in the first lecture of this module that we have 3 type of binding
that is functional unit binding that is addition or multiplication subtraction those things
has to be binded to different hardware units that are available because if you require 3
adders in 1 step so that is the maximum number of adders required in 1 control steps. So
you will have 3 adder units and all other addition operation will have to be shared within
those functional units like we have adder 1, adder 2 and adder 3 for different operation.
Say 0 1 0 2 0 3 dot dot dot 0 n so all these operations has to be binded to within these 3
adders. That is all this adders addition operation will be shared among this 3 adders so
that is how which addition operation you will bind to which hardware unit among the 3
adders you want to do operation this actually call the binding step or precisely functional

unit binding then we have seen the storage to register binding.

So, we will have some n number of storage elements or registers then you have to find
out which registers will be used to which variables this actually call storage register
binding. Then let transfer to interconnect binding that is because of this type of sharing
of resources we require some multiplex arrangements and inter connection between
hardware units, functional units to storage units. And so for this so this actually, that

actually control the data transfer that is putting up multiplex and wirings for doing this

function units, storage register functional units, data transfer we may require some
multiplexing arrangements and wire connections. Those actually comprise your inter
connect or data transfer for interconnect binding so already we have seen that there are 3
different types of binding now we will some general algorithms which can actually help

you to do this binding procedural.

(Refer Slide Time: 07:02)

Example: Binding of functional units, storapes and data-transfer
A schecdule of expressions “ouil=atbec and “ouiledee+l” B shown, Let the

allocation be st Toloras e ———

*Two [rpple caTy) kidern

«Four registers | D-flip-Nops)
We need bawd adderi becauie In contfol itepl [l In Mepld] o addition
aperytiont ke ichaduled snd sach Peed Bn SO0 O ORINE. A0 we heed four
registers because in siepl, we need Tour varkables (storage) namely, a.bc.d These
fouwr registers can be re-uled In stepd for vadlables templc templ J

o ﬁ ‘ '3
x 2
a '5 Tap I
gl 3 wmp! I
" ‘ Step §
|. =
u:-F."): + *’
wmt] il
(Refer Slide Time: 07:23)
Introduction

Alter the schedulng process, which ssugns controf steps o all the opevations, in
tha allscation lep, cindull modulel froem the deiign ey are jeledied lor
eneCuling the operations. Onoe Ciroull moduies are selected, Binding B dons,

Ay binded Lo ithe

n oo crgated for each data

| timnsher that :*u:- a -:l:wt'n:llptrp baundany, A g aljl u!:ﬁla B 3iGred
in variables and binded o registers. ot

o = |

.'q:l_ll'.:flﬂllfl‘_"l o nl:tlcmlﬁj_hﬂ.mn Adry data franider, Invobves @A

iﬂ!’m:fqr!ﬁ_ 1 BETWAREN 1OUTE l_[uﬂ.|.+k Therselons, By dats |.‘I.I'I1.'.I"I H D BE

bimded with an inEerconnection (From bousce to dgsimston) i, addition, it

'n:hr be nolted I-';;1. -1.r-vr'-:unn-'.~r|:: are ihaned by da ! tratehert 'A'i‘-lr.h leads o
Fnafmunnuqﬂ i the sources and destnaticns. ¥

So, now we before go to the automatic algorithms so what we will see first we take a
very simple example like out 1 is equal to a plus b plus ¢ and out 2 is equal to d plus e
plus f. So these are the 2 operations we want to carry out. So we will see that what do we
find out that these 2 different type of bindings you do for storage as well as these two
functional unit and storage register binding based on different type of storage register
and what you call the functional unit binding. We will see that automatically the third
part that is your data transfer or interconnect binding area changes that is very important.
So what is the goal? How to go generally go out to solving the problem? So what you do
you first go for the functional unit binding then we will say that we will go to register
binding. 1 mean you should not say that they all are separate actually they are hand in
hand so actually go hand in hand, let us see how it goes hand in hand. So for example,
we have to start at 1 point.

So let us start with functional unit binding then what we will do they will go for storage
register binding then finally, we will find out that once these binding are done
automatically this data transfer binding will come into picture. Because you have to put
multiplexer and wiring then we will to find out based on these two the area of third step
actually vary. So if you want to minimise these area then again you have to click with
two stuff that why we call hand in hand. Some cases the area will be very high in some
cases the area will be very low. So in this case you have to adjust this first two
parameters functional unit binding and function storage binding. So you have to adjust
accordingly so that you can get minimum inter connect binding. So we will see
algorithms that will actually take care of this procedural into picture this factor into

picture the arise will share.

(Refer Slide Time: 08:39)

Example: Binding of functional units, storages and data-transier
A schedule of expressions “outlsatbec™ and “oulledés+l™ H thown, Let the
sllocation be s follows — _— — = -

+Twd [ppie ciery) Baders

sFour regaters | D-flip-Nops)
We need two sdders because in contned stepl (ako in stepl] mwo addition
apiationd e scheduled and sach meed an adder Lo operate, Ao wie ned Tour
ragaters Becauns in Mepl. we need four varabiles (sorags | namely, ab.cd These
fouar registers can be re-used bn stepd for varlables fempl o templ f |

o b U | "

d * L]
, Fi Ay
. V1
{ 5 s) “{
pd ’ templ !
- - # L

'

wall il

So before that we will give an example a very small expression that how would exactly
happen and how based on functional unit binding and the register binding your inter
connect binding area will change. So let us think that a plus b plus ¢ and this is the case
so let us this be schedule based on these as soon as possible.

So whatever you take so 0 1 0 2 0 3 0 4 these are the schedule step it is done. Then you
get the allocation we use all ripple carry adders because the speed or time step for which
control the step. So the ripple carry adder frequency time taken by the ripple carry adder
to do the job is enough that needs this delay. So we have taken ripple carry that is
actually the allocation has already been done with ripple carry adder and schedule is 0 1
0 2 0 3 04 as shown in the figure. Now we have to go for binding so you can see that as
we have only 2 adders in 1 time step. So you can easily visualise that what is the idea
that to have to adder block maximum.

So 2 adders are required now you have to allocate bind actually 0 1 0 2 0 3 0 4 to this
adders. So you can think that I will do 0 1 0 2 here and 0 3 0 4 here. This is the new 1
binding actually we are doing functional unit binding as | told you we will do functional
unit binding because also we can think that way that we willdoo 104 hereando 203
here that is all possible permutation combination can be attempted because we have 2
adders and 4 addition operation. So these are shared between these 2 adders then you

have to see for we will take all the different difference binding allocations different

permutation and combination are possible that we will take and then we will see what is

the area over it due to it interconnect binding that automatically comes into the (()).

(Refer Slide Time: 10:22)

Example: Binding of functional units, storages and data-transher

Lt in oommpdor The fodbrwsig ojticn of landss
a Uhperabans o0, & bended o akbsrl
& Uhperamons o, 0, e ks o sdder]

w Vanshler o e ot [are bended to regpinger]
» Vanshles b ¢ wre bissbed 1o peginies]
& Vianehles d S ond) & Beinled B fepaler S
s Vanabks v arc bimdod to rogisterd
Some of the binding of the data-trantfers with the interconnects are 25

Peslicrers
=templ to regisier] (via Mux) b nded 1o dets tranater “templsasb”

sinput § %o regivter] [vis Mux) i binded to dats tranader “reading a from
input bus™

out b jand ¢] to register? |wvia Mux) 5 bnded 1o dats trassher “reading

r’ -
L1
"FTRE-from input bas® |“resding ¢ from input bus”)

(Refer Slide Time: 10:27)

Example: Binding of functional units, storapes and data-transfer

A schecule of expressions “outl=arbeC and “outiedee+l® & shown. Let the
sllocation b= & folioat Em—— —

o [rpple carry) Bader

“Four registers |D-flip-fiops)
We need two sdderi Becauié In contfel itepl [alo R Hepld] o addition
operatont e schaduled and each nesd an adder 1o operate. Al wie need four
reguters because in depl, we need Tour varadies (sioerage | namely, ab.cd [haese
fowr regisbers Can be re-uded A stepl for varlabled rempl c templ)

] d é
e

KL =

Y ¢ ey [

II. v

5 |empd I |i
& .'I II . .I'II Ay 4
.;-. .I'. i ‘r'f

wul] il

So, now we also have some will say now we take this 1 so 0 1 and o 2 are binded with
adder 1 and o 3 and o 4 are binded to adder 2. So this 1 is for adder 1 and this 1 and this
1 is for adder 2 so 2 adders are there so adder 1 will be doing this 2 operation and adder 2
will be doing this 2 operation. So this is about the functional unit binding we have done

now you can see that what are the variables and so that we can go for register binding. So

you can see that a b ¢ d there are 4 variables are there they are alive in 1 go so minimum
4 register has to be there you cannot use 3 registers because a b ¢ d they are all
appearing in the first time step. So there are 4 register to store that you cannot reuse so in
this case we have 2 adders in 1 control step.

(Refer Slide Time: 11:07)

Example: Binding of functional undts, storages and data-transier

A schedule of expressions "owtlsa+bec™ and “oullsdés+l™ K thown, Lt the
sliocation be s folost — — — = —

T [Nppis caery) sdders -

sFour regaters | D-1lip-Nops)
‘We need two sdders because in contred stepl (also in stepl] mwo addition
aprationd e scheduled and sach meed an adder o operate, Alo wie ned four
regaters becauns i mepl, we need four varakiles (sorags) namely, ab.cd Thess
fouar reglsbers can be re-used in Ltmi for varksbdaa fempl o templ ["

L{l_.lf."l un'."

So at least 2 adders max minimum 2 adders you have you need to have otherwise you
cannot go for this what you say execution of this circuit. So similarly, we have 4
registers over here 4 variables over here a b ¢ d so 4 registers minimum are required so
we can say thatr 1 r 2 r 3 r 4 minimum are there. And then what we have to do you have
to allocate you have to bind a b c a b d e to this things and what are the other variables
like temp 1 will be generated after the first addition is done c is another variable temp 2
is another f is another variable and finally, out 1 and out 2 are generated. So you can
think that a b c d are all alive in time step 1 so they have to be binded to be different.

Solsaylikethisrlr2r3r4isayabandlsaydandesothisislstufflsayabdeab
d e they all are allocated at two different registers binded to different registersab d and e
a b d and e. Because they all are felling in the first time step so you cannot share register
among them but now you can see that after this a plus b has been done then register r 1 is
free. So | can say that so I use it for temp 1 so | can bind temp 1 with that you will also
be free in the time step 2. So | can say that d and c | put it in the register 2 this way | can

do similarly, in case of this stuff you can see that r 3 will be free after d and e has been

added. So you can put temp 2 over here because temp 2 you can store in the register
number 3 and then what you can say that after first addition d plus ¢ that register 4 is
also free. So you can allocate f to this 1 right it is been done and then in the final step out
1 and out 2 will be ready.

So when out 1 and out 2 will be arising all the registers will be free. So you can store out
1 and out 2 anywhere excepting you cannot share them. So you can say that in register 1
I put out 1 and in register number 3 | can put out 2 so any of them you can try out. So
first you have to add 4 variable 4 registers so 1 2 3 4 will go over there then anyone of
them you can reuse for temp 1 and another for ¢ 3 ¢ because temp 1 and ¢ cannot be over
lapped because they are having same life time. Similarly, temp 2 and f they also cannot
be over lapped with this one so temp 1 ¢ temp 2 f they can be binded to different 4
registers as we have. Then finally, the second series of addition are also done then out 1
and out 2 will be ready so they can be again stored in two different registers because out

1 and out 2 life is not overlapping with anyone of these variables.

(Refer Slide Time: 13:29)

Example: Binding of functional units, storages and data-transfer

Lt in oo ider The ollowsig ojtion of bandug

i I
a Chperabens o, 0, 8 Bended o adderi '.

& Uperanans o, 0, e ks oosdder]

& Vanables g kg] o ...'- ary bendded to repinger|

& Yanabdes b oare |':'|.!:.-.| T pegnder

& Vanehks J &ep) ont) @i Beiided B fegianerd

o YVamsbles of s bimded 8o e sterd
Some of the binding of the data-trantfers with the interconnedts are &
Tebormr™ —

- —
feempd to regater] (vid Mus| s binded 1o dats transier “templleas)"
. oo
sinputt 8 to regivter] [via hux) i binded to deta trarafer “reading a from
ngAit [Bies-) .

r
")l';u,.'_ b {and €] to register? [via Mux) i Binded to dats trassher “reading
E-from input bas™ | “resding c Erom imput Bug |

So let us see first this one first what you call optional bindingo 1 0 2 0 3 0 4 have been
added have been binded to register 1 adder 1 adder 2 respectively. Now in register
number 1 they have done a temp 1 out and register 2 they have done b c variable d temp
2 out are binded in register 3 and e and f are binded to register 4 that has been already

binded. Binding already has been done so these are your operational unit binding and

these are your register or storage binding you have done. Now you see automatically will
be requiring some multiplex will automatically require to do the inter connections
because you can see in register a you will be storing a temp then out 1 in this case you
will be storing d c in this case you will be storing d temp 2 and out and so different

variables will come to the registers so again you require multiplex.

(Refer Slide Time: 15:00)

Example: Binding of functional units, storapes and data-transher

Cate 1 of Binding tor the schedula sbewe

W - |
| \] !

\".\,_ s e
e

So when you require multiplexes throughout channels different variables are expected to
arrive then use a multiplexer. So you can see temp 1 to for register 1 a via multiplexer is
binded to data transfer this 1. So what did you see that temp 1 is bringing temp 1 a plus b
a plus b will be binded to register 1 via some multiplexer so now why the multiplexer is
required because input a is also binded to register 1 that is data transfer what is data
transfer? Data transfer is reading from input bus and also same register r 1 temp 1 is
binded where the data is arising from the operation a plus b. So obviously we require
multiplexing over here that is what has been told over here so let us see the figure then
again will come back what you have seen telling you that eight temp 1 and out 1 are
binded to register 1 then b and c th register are 2 d temp 2 and out 2 this one is out 2 is
binded over this one and a and f are the register 4.

Whereas see what happens so when you say that first step that is a plus b now see that
this register is there what is going to register a is going to register that is some input bus

temp is also coming to here that is actually coming here output of the add here. So that is

actually said temp 1 and then find out the after all the operation out 1 will also go to
register 1 that is again temp 1 and out 1 is coming from temp 1 and out 1 is coming from
the output of the adder. So output of adder is one kind this one is register and a is one pin
which is connected to the input to the register so you accurate two in to one multiplexer
so had it with the out is arriving from some other place from other circuit and so for let
us assume so it could have been done is coming from this circuit and so in that case you
have required 4 is to 1 multiplex because of 4 will be not used in this case but, then 2
passes would not have been 2 is to 1 multiplexer could not done the job for you because
you required 3 pins i mean 3 input ports or 3 port from where data is arrived so in this

only 2 part i mean 2 connection from the data is arriving.

(Refer Slide Time: 16:32)

Example; Binding of functional units, storapes and data-transher

Cate 1 of Binding tor the schedula abewe

f
a-'*
1 !
[V~
i — ki S
S— Heginder b w
T preny 1 ”
wlddrr 2
_:'-" iy,
| v)
- e | ami | [-

(Refer Slide Time: 16:44)

Example: Binding of functional units, storages and data-transier

Cate 1 of Binding lor the ichedule sbow

3T ¥
» &
‘:.
1 Regienl il

i T | 1er.LI [_+i—|

i [== [

So you can thing that these 2 is to 1 margins is fine so in this case that is actually this
story 1 register is 1 this register 2 and see now how do you have not put the register b
and c over here i have not put multiplexer over here i could be b or ¢ here why i have not
done that i have directly connected b and ¢ over here the answer is simple actually b and
c are connected directly to the input port input port is directly connected and in this case
what you have done in the time step 1 b is available and in the time step 2 c is available
so you dont actually required to different ports to or 2 these available b is available and
in time step 2 c is available so we do not require a multiplexer even those 2 variables are

binded to this 1 similarly, in case of this register number 3.

(Refer Slide Time: 17:10)

Example: Binding of functional units, storages and data-transfer

Caze 1 of Binding lor the ichedule sbow

& F
Ii" '\.r.- o
v/
: " I-"'_"r::‘x
FA
1 1
I [[Af
Wegiser]
W= | B l I
et | et
= :I'#'. iy |
| *f)]
. Framg | g L g i §

So 1 port is d and it control step 1 where the data is coming from the control bars input
bars and then time steps time steps 2 temp 2 will generated by adding d plus e so you
require the where the data will drive here from another line that is the output of the
register number 2 output of adder number 2 so require a multiplexer over here and
finally, out 2 will be generated which is also be binded register 3 but in this case what
happens if you see that is the same output port of the adder is actually bring in temp 2
and out 3 so you do not have any third pin so 2 input 2 by 1 multiplexer is actually doing
the job so what you have found out so in this case at time step 1 a is going over here to
the register b is going over here addition is done temp 1 is generated it is told as by
marks is again stored at register number 1. After that what happens out 1 is adder to b

sorry out 1 is adder to c that generate out 1 sorry sorry.

(Refer Slide Time: 18:03)

Example: Binding of functional units, storages and data-transier
T
\¢ &

A
Cate 1 of Binding Tor the schedula sbeve

{
WA

X

B e
T

(Refer Slide Time: 18:56)

Example: Binding of functional units, storages and data-transier

1|.£|;."':I
I
Casa 1 of Binding har the schadule sbove M
'
N
|
Mr}n
I ¥
1 ;i, 1 l

& [l 152

Temp 1 is added with added in time step 1 you are adding a plus b and generated temp 1.
Which is told as the register 1 through the second pin that is through this pin stored over
here now in the time step 2 what is happen in temp 1 is added to this c plus ¢ and you are
generated out 1 so again the out 1 is generated by adder in time step 2 and time step 3
what happens the same variable this out 1 so actually come out of the adder and is being
stored in register number 1 by this multiplexer so this what is the 3 steps that is in the
being done so in this case first step b is there second step ¢ is there so that is
automatically happening form the input bus you don’t require a any multiplexer over

here so that is what we how the this sequence of in time step 1 and time step 2 what
happens we are actually generating a plus b and then temp 1 is added to ¢ to generate out
1 similarly, in this case time step 1 d is bring saved in register 1 by this port. And it is
adding the added p then e is coming from the input port by register port.

With e is coming from the input port wire is added and you are generating the value of
temp 2 so temp 2 is stored over here and in control step 2 temp 2 is added over f and we
are finding here out to again stored over register 3 by this output of the number 2 these

how you are generating what do you say

(Refer Slide Time: 19:26)

Example: Binding of functional units, storages and data-transfer

L&t s commiader fhe r.q_.,..,..-rrqﬁ-] .'\-:. b
- —= %
L] I-I'V e OO0 BPE Behided b5 st !| |

L _fi'pru!:\.l:n o o, e b eded o edader
. - |
w | Vanshles a wwge] ot [1r|_-i'i|..|.r.‘:r..'n_-r|..-;|l|

\ s
s Wanshles & ¢ are biesbed o repnier?
1
& Vaoabdes o e ont] s |-'||1n.':_!'_:"\" fegieer N
..\"\. - e F ._-"
v VandPewd ey ||'.i;'.=.:\.;ﬁ.;|-\.wrl.
Some of the binding of the data-transfers with the interconnects are as

-1 -
=templ 10 regater] (via Mux) 5 Baded 1o AFte raniber "empleaeh”

singpul § %8 regieted] [via Mux) b baded to data trandler "reading a from
inpurt Bus®

r--'.'
")r put b |and ¢] to register] [via Mox)] B bindad to dats transher "resding
TRE-fram input bes™ {Cresding © from imput bus”)

(Refer Slide Time: 19:29)

Example: Binding of functional undts, storages and data-transfer

Y
G—‘
|I{:

| _{J—""ﬂ'
Casa 1 of Binding for the schadule sbowe

f
w0
”"{,n

Y
LA

| Y

svam g | :I | L n.-.-\,.-E .--l--\liI

(Refer Slide Time: 19:39)

Example: Binding of functional units, storages and data-transfer

L&t s commiaier Tha !'.'\l_::.u.-l-rfﬁ:.'n.-: Ilr\-‘;q'h‘-\\
e T
s 7ﬁ o, e binded i sdder] !I
perdlarn

ALY \

- [_- e e e mckder |

. = - !

» | Vanables a el ot I are limded r.1'|:r|..-';|l|
& v ianatdes . e biedesd o0 regiier

L Il‘h].'..l.?'l.'l.l.' Nfigr, Onl, & |-:|||‘-.':_!'_:"\'I AL
. e =
- '-.'.1|'|J}-'L"r.|.:.‘ AL ||'_-b.'.=.:\.;ﬁ|..wrl.

Some of the binding of the data-transfers with the interconnects are as
Tl
stempl to regater] |via Muz) b bisded 1o dats trensfer “templeaeb”

sinpul § %8 regited] [via Mux) b baded 1o data trandler "reading a from
input Bus”

i
n e, <l
L pul b |and &) bo regiEterd I'-'—!'q‘:'lu_l_.r'-: birsdad to dats trasEhed "reading
HFTHE-from input bizs® |“resding ¢ From Imput bus®)

Temp 1 and temp 2 plus ¢ and in this case plus a and finding out 1 and out 2 so by these
bind we are actually having this binding so what are the interconnect binding used 1
multiplexer over here and 1 multiplexer over here so in an action what we have seen if
we are going for these type of operation binding the time what do you call the marks
required is actually 2 which is the interconnect binding over and some of the wiring
which come under interconnect binding now we will see other option because only 1

option we have seen in this case we have added 0 1 0 2 over here 0 3 0 4 over here and

then we have gone for a temp 1 out 1 b ¢ a temp 2 out 2 and a in this case and this is 1

option the later the area was with this.

(Refer Slide Time: 20:01)

Example: Binding of functional units, storages and data-transfer
-~

Cate 1 of Birding tor 1he whedule abowe

el il | P e

(Refer Slide Time: 20:04)
Example; Binding of functional units, storages and data-transher

n may Be noted that i Do data raneher (point 1 and poat 1, abowe) are
Bbinded [0 regiiler], we need § muitipleser that feedh 0o the inpul of regisier]
Shrdarky, we reguire @ mulipleser at mput of reglsterd

= sy b moted that even f Dwo date transfers “reading b from input bus™
and “resding © from input bus”™ are binded to regaterd, thene & no mulbplener
3% nput of regieterl. This B Bataute v connsit the ingut line to registerl,
wikers in shenl we have value of b snd in step? we Funoe value of ¢

affcd @ Similal fedon we do nol Feguiie & multiplexer Tor inpus of regitend.

(4)

2 multiplex at with this time of binding. And now late us take 1 more option 1 more
option in this case 1 another 2 3 options will see for different type of bindings and we
will see the interconnect area. So in this case whatever i have told you that why do you

require a register and all.

(Refer Slide Time: 20:33)

Example: Binding of functional units, storages and data-transfer

Lt us oo B sl bt opdaon of bnncing

Chpesraluie &, 0, are bisbed] v mikdew |

I I|'\.fr'||'..'... F 7 e nded o wdder

W arnabekes o el ot are bisded 1o repster]
¥ oaruatsien i) mre banded o mogialers

W anabdes .|'.'.,'n:||-| oui arg biaded 190 regaster ¥

Vansbles oo are binded o registierd

Trt ivtercomnects ane lystrated in neaxt figure and can be interpreted in a
srmilar manner a5 discussed for the last case. 1t may be nobed that in this case
B0 wee Fequine bwd muiplexsri in the hoel

9,

(Refer Slide Time: 20:46)

Example; Binding of functional units, storages and data-transier

-~

Caze 1 of Binding lor the ichadule sbhow

-.. L
Hepuer? [
Larmpt A

| .

1 l..:lu-.l.u -| | -.E-..‘
.#1.-. B l
2o

WED [

vy | g

N [[

So why do you require multiplexer at some points and like why do you require

multiplexer here and why do not you require a multiplexer over here etcetera written in

this is i mean written this s slide you can through this go to the slide i have told you the

same thing is mention in this slide. Now we are going for another option of binding so

what is the next option of binding so in this case we are actually saying o0 2 and 0 4 in

adder 1 so in this case it is 0 1 and 0 2 now we made here 0 4 and in this case it is 0 3 and

0 2 so this 4 has gone there and 2 has come over there that is what we have done over so

you can see there you are seeing that o r and o 4 are binded to either o 1 and 0 2 and 0 3

has been binded to adder 2 so that are some different.

(Refer Slide Time: 20:58)

Example: Binding of functional units, storages and data-transler
Eat s oosmiackes B sl bt opdacii of !-ll:.ll.'._;

& Ulpembsosi o, 0, @ bzl fox mdder |

» Ohperateosn 0.0, & binded o sider?
& Vanabdes o & "'l. ot are lymded B pepsier |
& Wanables &) s bended o regialerl

s Vanables d L ai,) are bvaded 1o repsier ¥

» Venabdes ¢ c are binded ro registerd

T imtercomnects ane WBurtrated in naxt figure and can be ivberpreted in a
simillar manner a5 discussed for the Last case, It may be noted that In thils case
slso wee regquire two multipleners in the clooelt

®

(Refer Slide Time: 21:40)

Example: Binding of functional units, storages and data-transfer
i

*..“-1. Al e
et
"y a
Y "
i K E ad
¥
= [=]
wdden i
o

Stuff we have done and again some permutation combination also have done over so
variable a templ and out 1 stored has so initially it was step 1 now a may be temp 2 here
binding to register 1 b and f has been binded with register 2 so initially we has b ¢ now
you have made it b f because actually 4 is coming over here in for adder 1 4 over in

adder 1 4 in the now we are actually doing operation 0 1 and 0 4 so 0 4 is actually taking

temp to plus f so we are actually allocating binding temp to register 1 and f 2 register 2
kind of a thing and similar by d temp 1 and out 2 adder by set register 3 and e and c are
binded to register 4 now let us see in this slide i mean the slide how we what we have
done so in this case initially in the adder 2 now it is adder 4 operation 4 so operation 4 is
actually takes temp 2 and f so instead of having temp 1 here and ¢ over here we have
made in b and made it temp 1 because if it is adder o 2 then is actually add temp 1 plus ¢

so that would have there was the previous.

(Refer Slide Time: 22:09)

Example: Binding of functional undts, storages and data-transier

=
#
| e .Jl' Ty

rmplaa!

Case now we have put o 4 over here so we are actually we have put in temp 2 over here
and f over here similarly, we have taking o 2 over o 3 over here so, in this case if you see
so it is 0 3 over here so, if you take a 0 3 over here so in this case o 3 will be actually
temp 1 plus ¢ so that you generate actually output 1 so in this case instead of having a
temp 2 in the previous case and f over here so we have replace with the temp of 1 and ¢
so by doing this step of we are achieving by doing this what we have achieved this that

we have actually broad this o 2 over here.

(Refer Slide Time: 22:35)

Example: Binding of functional units, storages and data-transier

o

J-.:I.ni.'

pealae!

So o 2 will be adding temp 1 plus ¢ some allocation sorry some binding we have
reshuffled here . Now if you can also see in this case also, so our multiplexer require the
2 as will very shortly see so but, 1 thing i should tell you that we are not i mean in this
case we have just starting some arbitrary bindings not that we have saying that o 1 and o

4 and o 3 and o 2 have been done here that.

(Refer Slide Time: 22:58)

Example; Binding of functional units, storages and data-transher
a— e --""\-\._ -

(Refer Slide Time: 23:47)

Example: Binding of functional units, storages and data-transier

F

Caze 1 of Birding lor the ichadule sbow

S
Wegindei L y
| i 1?" . | A

"'“""-I wller]

s |

i, e
: b.) r"""A' I— o | g | i |_ e o

:

Is why we have replace temp 1 temp 2 and in this case you have replace temp 1 temp 2
that i means we have just swapped this values correspondence to the compare to the
previous example previous case of by binding example so we just swapped it. So that is
the 1 of the modification of doing what is the general speaking case it could be other way
round also we could have puto 1 04 03 o0 2 here and if you have put it f 1 here and
temp 2 here that is also possible so that is i mean very logically speaking if you are
moving 1 o 4 here so we should also bring temp 2 over here and if you are putting over
here so we should logically put temp 1 over here because they are mean they are binded
2 0 2 but, actually very generalise case you can try also with this 1 like you can keep this
what you call this register binding fixed and we could have say that 0 1 04 0 3 0 2 that is
also possible then it will started d the area that is why i told you that different type
options are possible different binding types of option will be.

(Refer Slide Time: 23:57)

Example: Binding of functional units, storages and data-transier

There and then you have find out that which 1 is actually giving you the minimum
possible area so that is the core idea of the algorithm that will be developing to solve the
problem so in this case we have put some because we are not trying at present you are
not trying some algorithm we are just thinking on are range as a human being like just
looking at the diagram and trying to find out which allocation which binding give you a
less area kind of a thing so we are actually putting temp 2 over here temp 1 over here that
was swapping and all those things there but, you have remembered that in a general case
all these things may be you can again having a permutation and combination like we
could have b and c over here and e and f over here we could also made b and c over so
we could have done this way also. So we could also put out instead of this we could also
put out 1 here also you could have put so in any type of permutation and combination are
possible so all things are actually the algorithm which will try to do the best binding for
us we will try to have to see all the permutation combinations possible among this then
they have to pick up which is having the least area so you can understand how pick up

the problem is so if you recall i always.

Telling that all the understand that all the v | s i design problem has design problems are
harder and complex so very quickly we see that this is also n p complete problem that is
which will not any good polynomial type of we are not doing in polynomial tonal time
algorithm which is solve the problem so you can see that you try all permutation
combination that is 0 1 0 4 0 3 0 2 then the all different permutation combination like a

here temp 2 here out here out 1 here and may be other combination so all possible
combinations of both registered as well as operation binding and has to be tried and then
you have to find out for each of this binding what is the area required in case of
interconnection and then you have to find out which one it will be the least area of which
case the area will be the least that you have to consider as the best and you have to say
that this binding is taking the minimum interconnect area and this is the best binding
what you can understand by permutation and combination there can be so many different
the number of different type of permutation possible will be very high may be
exponential or may be much more than exponential number of different permutation will
be possible in this case and in as general case there are the hundreds of registers and

hundreds of functional units so.

This may grow up like anything and we will not get any feasible number feasible
solution in a very reasonable amount of type and again for each of this shed the binding
what you have do you find out the area that is again another cause that is coming in to
picture so what you have to do so you have to see that our state is first try each of the
permutation and combination possible so the combinations are very very high in number
and for each combination you have to find out what the is the area over it for the
interconnect then you have to find out which is the least and you have to do so you can
find out explntial problem and top of the there is another some module that is coming in
to the picture that is actually we have to find out the area over it because of the
multiplexing arrangement for the interconnect for each of them so that is why again you
is in practical solve this using what you call a exponential algorithm or what do you call
a exact algorithm so what you have do we generally go on for about heuristic to solving
the problem and then we can find out that this binding is the near optimal kind of binding
may not be best one the time required will be very reasonably low so again like our

scheduling case is also see different algorithms today so which.

Will actually a binding solution but, that may not be the best now let us see over here so
in this if seen so 0 1 0 4 0 3 0 2 and this is the binding which is written atemp toout 1 d
n f d temp to out 2. Temp 1 out 2 and e and c so first case you see a will be connected to
the this register through input 4 and then o 1 so a plus b it will generate out 1 so if now
here actually we are using o0 2 so 0 2 operates on temp 1 plus ¢ so in this case this

interconnect will going over here it will not go back to here as in the previous case. Now

so in step 1we have generated a 1 plus b and we generate temp 1 so this temp there using
temp 1 the register 3 ok. And then in this case if you see it is adding d plus e actually
temp 1 temp 2 this is the temp 2 that is been now come coming over here because 0 4 is

there so 0 4 is not 0 4 is adding temp 2 plus f over here so again.

(Refer Slide Time: 28:50)

Example: Binding of functional units, storages and data-transfer

P i
-gj_a.-lf

The output of this adder will becoming and this temp 2 is binded to register 1 so this i
mean to a marks so you require a marks over here as in the previous case. In the time
step 2 what is happening we are adding temp and f and then you are finding generating
the result which is actually out 2 so again i mean out is binded to third 1 so in this case
you have to have the same output of the same adder which actually feeding over this
mark where this marks will register 3 and out 2 is coming over here and in this case also
you can think that o 2 is actually and in the second step taking temp 1 and it is adding
with ¢ and it is generating the value of out 1 in binding into register number 1 so this is
interconnection that is the term over here so as in the previous case you require to
multiplexer because e and c are different control steps are directing to the input bus in
the first step you will get e and second step you will get ¢ and that can be binded register
for in this case also it is b n f so first type be the is b second type variables are binded in

to register 2 a 2 different.

(Refer Slide Time: 29:39)

Example: Binding of functional units, storages and data-transier
~

Caze 1 of Binding lor the ichedule sbow

bt widrr 3

W | [L Rk

(Refer Slide Time: 29:47)

Example: Binding of functional units, storages and data-transfer

Moo, bet e comader the Band opeon of besckng
& Dperabions a0, &0 imded 1o abder]
& | l|l|.'rrn.l|u:- _- v bundad e adder)
= Vanables o bemgpr] oni] are binded o regisier]
s Vanahles & Fare .|- whed b pomeiien
Vaziahles d '-.. e, oml | e Denad o regisier
Vanahlos i |r-.'Tl|'-'.'\-.| s o meTd

Control step so you do not requires to do that but here you require a multiplexer because
you are having a from the input bus and in the second and third time step is it is temp
two and out 1 so you and this coming out from output and adder number 2 but, to solve
two ports different ports so you require a multiplexer and for the similarly, is in here also
you require a multiplex. So 2 multiplexers are required over here but, you can think that
the number of multiplexer is the same but, you can see that these are some (()) where
you so there may be some more area required because of the routing of this net so this

option is actually taking some more area compare to the previous one in terms of

interconnect area and it will bit because in this case you can see this was a very neat and
local type of connection this was one local connection area this was local connection so
the interconnect area would have been less compare to the so, the number of multiplexer
equal to 2 and 2 and which is which is similar now let us take the third of option. And
then see what happens in the case of interconnect area so we are again taken the o 1 and
04 0 2 and o 3 actually same thing we are doing so 0 1 and o 4 is binded over here 0 3

and o 2 are binded over here.

(Refer Slide Time: 30:22)

Example: Binding of functional units, storages and data-transfer

: ?) AL FEE;.A"’

So that is the end thing of the last example and now we have seen that a temp and out 2
and binded to register 1 temp 1 out 2 are binded to this 1 in this b n f that is same d temp
2 and out 1 are added over here d temp 2 and out 1 are binded over here and e and c are
binded over here. 0 3 binded here now let us see what is the area requirement now let us
see how it will do you can see over here that i require 2 multiplex additional multiplexer
over here so how we come over of let us see so in time step 1 so what is required you
required to do a plus b and in this case you require do d plus e you generate temp 1 you
generate temp 2. That is the what required so same multiplexing arrangement will be
there so it is taking a here and that is taking b here and what it is doing it generating
value of temp 1 so in this case temp 1 binding to register 1 so you have to take this at an

your writing it over here so not a problem it is done.

(Refer Slide Time: 31:39)

Example: Binding of functional units, storages and data-transfer

|
B [mald

=N
] i

o)

e
|-' -—-,.:"III L TS
I | 1
| <= Y . } o & " =
) A Y gL

so temp on is done over here right and in this case also you have taking the b plus temp
in 2 so temp 2 is binded over here so you take d over here d over here the addition is
done the output it is coming over here and temp 2 is binded here and this is connection
for this one you require a multiplexer over here because d and output from the register
they are coming to the register 3 and here also a and e output at that is the input bus and
output of register adder 1 is i mean register number 1 so you require a multiplexer this is
the same reason the last 2 example give. Now let us see second control step for which we
require 2 more multiplexers here and here so what is the second control step second
control step we has doing as temp 1 plus you require ¢ to generate out 1 and temp 2 plus
f you generate out 2 now you can see we have done a mistake so here we have temp 1.

And what do you require more so temp 1 is available here that is not.

A problem so temp is our is temp 1 is available so this temp 1 so i should not write here
temp 2 here i write temp 2 . So now temp 1 is available so temp 1 is available at this port
you can understand so this is nothing but, temp 1 in the control step. And what is
available at this port so at port if you can think temp 2 is available so temp 2 available at
this point and here temp 1 is available so now i should right this temp 1 so temp 1 is
available is over here and the time b. Time in temp 1 is a available and here actually for
the time temp for the time being let us not see this temp 2 is available at this port now
what happen so you have to add temp 2 this is temp 1 you have to add along with this
you have to add ¢ . And then you can generate the value out 2 out 1 it will be you get the

value of out 1 now you see what is the big problem where actually having o 2 over here
so if we are having o 2 over here somehow this temp 1 you have to bring this to this

adder c is available.

That is not a problem so ¢ will come over here but, now again this temp 1 to bring this
adder so we bring this temp 1 form here to here to this also this is the where this is the
actually bringing temp 1 . Through this so this is actually temp 1 this temp 1 is brought
from this register by this 1 and again you can see 0 4 is here so in this case what happen
you have to add temp 2 plus f to get an out 2 so f is available over here not a problem
but, again this temp is not available in this register temp 1 temp 2 is require for 0 4 temp
2 is not available in register 1 so temp 2 this is available here that has to be brought here
and you have to bring it over here so there is some cress cross connection over here so
you require and a multiplexer over here that is actually making the problem so if you just
look at the last figure what is there so 0 1 for o 3 not a problem so what was there if you

remember so in this case.

(Refer Slide Time: 34:03)

Example: Binding of functional units, storages and data-transher

£ i
ropiowd A

(Refer Slide Time: 34:46)

Example; Binding of functional units, storages and data-transier

e el

Was available over here 0 4 is here 0 3 is here so 0 4 requires temp 2 plus f 0 3 requires
temp 1 plus ¢ so temp 1 was available in register 3 and temp 2 was available in register 1
so we do not require any kind of cress cross here or here that are not required but, now
what you have change in the next example that is temp 1 we kept a temp 1 here
allocated over here and we have made temp 2 so that is critical problem you see o 4
requires temp 1 which is available in register 0 4 equals temp 2 0 4 require temp 2 which
available in register so you again bring it over here. And you see 0 2 requires temp 1
which is available in register number 1 so that again has to be brought over here so but,
in this present case this is not required because temp 1 and temp 2 are store very near to
0 4 and this one will store very near to this 1 so if you require any multiplexing over here
but, in this case as that is that has been done so you see so what you have to dosoo 30
3.

(Refer Slide Time: 35:02)

Example: Binding of functional units, storages and data-transfer

e
e B 2
" d)
P |
- y i
sigder?

O 3 actually o 2 require temp 1 which has been brought by this pin and o 4 actually
require 0 2 which has to be again brought by this 1 so you actually require two
additional multiplexer to do this kind of interconnection binding so if you take this type
of a combination so multiplexing arrangement requires 1 2 3 4 multiplex are required
and along with that you require see the complexity of wirings over here so that means
what in natural for this type of a binding you get an area over here which is much higher
than the first 2 cases so what i mean here we are taking some arbiter some small arbiter
example and we have tried the different combinations because that how it has differs but,
but i wanted to tell you is that in real case when you have to solve the binding problems
so we have to try with there are the different permutation and combinations for these
what do you call this register storage unit binding as well as adder binding kind of that is
the adder of the function binding kind of a case now we have to find out the most

optimal 1 so that interconnect binding.

(Refer Slide Time: 36:04)

Example: Binding of functional units, storages and data-transfer

(Refer Slide Time: 36:19)

Example: Binding of functional units, storages and data-transfer

St My be noted that in this caie we Maguine four multiplewsrs in the
cirouit. Twao rrultipleners at inputs of register] and regivter 1 are added for
Ehe same reascn o dacuised in 1He ladt two Cases.

=M wee see whny tao more multipleners at inpats of both the sdders are
reguined. It may be obisrwed from Che fgare thal dats trandler “a 0o
cparend of sdder]l”™ i binded 0 IWbevcomnect “regater] (tource)-<lel
input of adderl (destinaticn]” and “temp? to cperand of adderl™ i
binded to interoornect “registerd [sounce]-left nput of adderl
[destination]”, As there ane two different interconmects for the left input
of adderl, we reqguire 3 multiplener. Similarky we requine another
rsultiphensr &t nput of sdderd

=50, it can be concluded that depending on binding, the anea Laken by
lnrﬁf)*rﬂ:llﬂtludmi millipheaei) varied
1

HFTEL

(Refer Slide Time: 36:52)

Binding wsing cligue partitioning

1 chgue paifwonng bared Dinding the Sperslont and variahiel ahe MOgeied in
tarre off § grash. Each variable [piorage binding i dong, o operation, i fusctana
wnit binding is done| s modeled by & node in the graph. There is an edge bebaeen
two noded only B the fetime of the varabled (oF opbrationi] dodd not ownerlap

d & d f
H—H
wmpd * L TR g
| |
1 Ly
warl] -y

Magng thel e time oaly itepl. Similarky We time of variables

FT oy be moted that varmables o.0.0d are regured in stepl oaly, Thereby
:2]’.1.-‘:"4-"._' i stepl and oull ool are alve ondy i Repd

In terms of this wire and this multiplexer and the multiplexer and this type of wire is you
can see that has wire is and that has to minimal so that is why if you now if find out the
algorithm then which will do in example which is do it existed search for you and then
tell you which is best 1 is going to be a very very difficult problem then we will take
amount of time so you will not be able to do it so we will some kind of heuristics first
will try to put formally that is this is the n p complete problem that is very difficult it is
not well known polynomial time solve the problem then we will find out some heuristics
to do that so. I mean whatever i told you that why do you require 2 multiplex in 1 case
and why do you require multiplexer in the other case and so for written over in this
slides so you can go through this slide to find out whatever i have told you that why this
is they actually taking 4 the other 2 cases where have you taking 2 and so for so the
whatever i told you are and whatever i explained you in the over slide so you can go
through this now we are going through algorithm so till now again we are reemphasis

the problem of binding so in the first.

Lecture of this module we have given you the idea of scheduling allocation and binding
problems now again in this case you are again reemphasis the binding problem and we
have shown that for different types of what you say different type of storage you need
into and function unit binding to make a different area in terms of interconnect binding
S0 you have to take the best 1 way the interconnect binding is least. So that is will be the
solution now we are going to see algorithm which can automatically do it for you. So

again as in seen in last case scheduling case like in the scheduled case we have mapped
and problem to 1 you mapped or problem to a integer linear program zero 1 i help to
know this n p complete problem so here we are trying try to match our problem to map
out problem to very well known np complete problem the clique partitioning to so what
do mean by clique partitioning i mean if there has to under graduate graph theory
because course even in graph you have to find out sub graph in which all the nodes from
each node to each node there is a path. So that is actually called a clique so if do not take
very formal definition the formal definition go to under graduate that you recourse

what the basic idea is.

Graph if you can that is call the max if you go for the maximally so given the graph can
you find out a sub graph which is taking the maximal sub graph that sub graph which
is having the same number of nodes possible from the graph thus that from the each node
to each node of the sub graph that is the clique there is a path or there is the edge. So let
us now try to do this so in this case what we do so here we have actually Joe this type of
control step and then we draw the variables as some vertical line so, what is the vertical
line vertical lines are actually saying that how long is the life time so a is require only 4
time is step 1 so its life time only in step 1 similarly, for b d e temp 1 arising after this
step first initiation first initial combination is done that is a plus b temp 1 is generator c is
generator and d plus temp 2 and f is the input so in control step after control step 1 we
required temp 1 ¢ temp twelve so its life time is actually after time step 1.

(Refer Slide Time: 39:24)

Example: Binding of functional units, storages and data-transier
i

A schedule of erpressong 'r.ur'l---bvg' and “oulledés+l® B thown, Let the
sliocation be s folows = — -

T [rippis carry] sdders

sFour regaters | D-flip-Nops)
We need two sddert because in conthed stepl (alo in stepl] mwo addition
apeationg e scheduled and sach mied an adder o operate, Ao wie nded four
ragiaiers beckae v siepl, we need Tour verables (stomges) namely, ab.cd Thess
fouar registers Can be re-used i stepd for varlables templc templ f y

(Refer Slide Time: 39:43)

Binding wsing clique partitioning

I gligue panitioning baed binding. the operations and variables are modeled in
tarre off § graph. Each varisble (¥ piorage binding i dong, or oparation, § functanal
wnit binding is done) ks modeled by & node in the graph. There is an edge betaeen
two noded only B the ketime of the varablsd (oF opbrationi] dodd not owerlap

d & d f
H—H
gl L T A -y
[| |
] 1
warl] oy
i |

I..--"r #y be noted that varables 0000 are requred 0 stepl only, thereby
n'h?

ng thel e time oaly #tepl. Simileck, He time of varkables
Letempll b stepd and oodl oot are alive ondy I 1tepl

So after time step 2 generate out 1 and out so when out 1 are generated you do not
required temp 1 ¢ or temp 2 f or rather of this so these actually horizon line are
representing your life time see for example, if you have something like say just i mean
go back say if you could have thought over something like so if you should if you what if
you have said that my expression is a plus b plus b so let us think about this a plus b plus
b kind of a thing so would have written over this that is a plus b temp 1 then again add
with b so in this case b is requires not only control step one but, also in control step two
so in this case what would have been you line diagram so in this case your line diagram
will be something like this case b is also required over ¢ would not have in this case so b
is required both in time temp 1 and 2 and then you actually generate temp 1 if is 5 so first
temp 1 will be there then temp 1 again this b is used to generate output so that is b

required in 2 time step so.

(Refer Slide Time: 40:21)

Binding wsing cligue partitioning

In cligue panitioning based binding. the operalions and variables are modeled in
tarrer off § graph. Each verisble (¥ porage Binding i dong, or operation, § funstanal
wnit binding is done| ks modeled by & node in the graph. There is an edge between
T naded anky @ t:lr_ll_fg'..'_":p-u“ht- wastaghln} !.u:' aperationt] doet not owerlap

j'l'"l | d|"F |
(Gim t]
b= T dmmpl T p— § i
[(-
= .
i) .l oy £
: If"' - .

ing thelr e time only dtepl. Similerk, e time of variables

|,.-"l' #y be noted that varabkes o b.d are rr-q-\.\‘rrﬂ-'r'-'l:un: only, therebey
ﬂ
mp e templl B stepd 85l sodl ool are alve ondyin Bepd

(Refer Slide Time: 40:57)

Binding wiing clique partitioning

In cligue panitioning bared binding. the operationy and variables are modeled in
tarre off & graph. Each y iorags Binding i dong, or oparation, § funcbanal
unit binding s donpfs modeled by a e in the graph. There is an edge betaeen
te fdded -\:|_r.:|.-1 lj.:illft_'.l_'l_"l:_li:l'ﬂ'_".ﬁ" b [0 apprationt) doed not twerlan

L] [

L3 FH ES
:)\‘\h Ry '""‘ﬁ'hf | o
;I III .. - IIII ;
J..l _-'_,r - :
[puz | B

|,.-"l' #y be noted that varables o0.C0 are nequired i stepl only, Theneby
-_n'-lir'g thel e time oaly itepl. Similack, We time of varables

Letempl | B mepl and ootl ootk are allve ondy 0 stepd

M

So what in the other way this vertical lines are representing how long how much how
many control steps this value will be alive so this is the what is the case now you think
how to mapping to quick partition into a problem so you know that a and b cannot share
a register because they are all allowing control step 1 similarly, temp 1 ¢ temp 2 f all
required in the step so you cannot share their live and similarly, out this 1 up to 1 and up
to 2 so they control cannot share a variable they cannot share a register because they all
are alive in this out 1 and out 2 are alive in a common time steps but, a and temp 1 can
share a register b and c can share a register that is you can think that 4 register are

required over here as already mentioned but, this 4 can be shared by any 1 outputs but,
again among the temp 1s temp 2 they cannot sharing in between similarly, out 1 and out
2 cannot share anything in between that is what is the now what you have to map to a
quick problem so we have we make notes for all a d b e temp this 1 this 1 and this 1 and
this 1.

(Refer Slide Time: 41:22)

Binding wsing clique partitioning

In chgue paltionng baug_ti-_l;l_r_-;__lﬁ- cperatony snd variablel pe modeled in
terren of a gragh Iul;.r:l':hz;_r_ -, 3E 4 dane, of aperation i fursctaang
wnit binding s f;rl*l__u—-np-il:r:: by & node iR f"gt..‘l_-pl' There is an edge betaeen
Wi naded ﬂﬂ-“r‘:'_,b'r'l:'_.i-lil"!-ﬂ o 'I'qlr'_l.d-q;l—:jih}'ll:r F 'a\.g_:n'.l doad ot overlap

i .I' | |'| AT \ %\ 1

[LA | A

r.--'!' a-.i'l:ur mofed that varables o b.cd ":,LE{IM n stepl only, thereby
b ™)
-n“-i?r: iy il time ooly 3tepl _} flarky, e time of varkables

5 l]'.l..fr'n::-.’q.-."‘-‘) stapl o oot LeetT are alive ondy in tepd

Now you say that temp 1 share that register that you may join that similarly, this 1 can
share register and this 1 and this 1 similarly, a and temp 1 can share similarly, a and ¢
can share a and e can share again a and d can also share similarly, now if you look at d
and all these stuffs so again d can share between of these so we have this in between now
you also know that b can share b cannot share in between in this 2 so you do not have
any ages so over here so again so this a can share with the this a cannot share with this
thing there will be no line from this 1 to this 1 only we have some lines from here to here
because as a and b cannot share a variable so there is no ages in between in this
similarly, a and d cannot share so there will be no ages in between similarly, d and a
cannot share registers so there is no need connection between similarly, a and b there is
no connection but, a and temp 1 can share so there will be hyphen b and temp 1 can

share so there will be a age a and ¢ b and ¢ can share

(Refer Slide Time: 42:39)

Binding wsing cligue partitioning

b chgue paifofeng baved Dindsng, the cperslon: and variabiel ahe mModesed n
tarred off § graph. Each varisbls (¥ porags binding i dong, or operation, § Funstanal
wnit binding is done| ks modeled bry & node i the graph. There is an edge betseen
i noded only i the Efetime of thie varabled (or opirationd] doed not overlap

a & F

}

| falng thel e time oaly #epl. Simllarke e time of varlables

|,.--".' #y be noted that variables 000 are requred in stepl only, Thensby
__ﬁjrf.l..fl"ﬂﬂ‘.’..' i stepl and ool ool are alive ondy i 1epd

(Refer Slide Time: 42:50)

Binding wsing clique partitioning

The graph representation of
thee variales. in tevr of
- ifevime o Autraned

So there will be an age b and temp 1 can share so there will be a age b and f can share so
there will be am age similarly, for this cases there will be ages so for but, there will be no
ages in between similarly, a and out 1 can share an age share a variable register so there
will be a array ageing between a and out can also share something so there will be no
age there will be no age between this similarly, there will be no ages in between this .so
in other words make it a big need so if you can see so there be ages between all the nodes
and accepting there will be no ages from this 2 no ages in between no ages in from this 1
accept in this there will be ages in all between now this is what your graph will look like

see a b ¢ d there is no ages in between there is no ages but, from out 1 you have
connection to a b ¢ d then from out 1 you have to temp ¢ and this 1 so this is what is your

graph.

So your graph connection is having between this 2 if and only if they do not life style or
they can be shared a now what you have to do now clip partition will tell you how you
divided into maximum clips that is you have divided into several some maximum size
sub graph such that they are the clip the clip means so from this node you can go here
from this node you can go here from this node you can go here so from each node you
can go to any other node all the other node in the graph so that is actually a clip now in
this case we have to find out the largest possible sub graph of this so directly now how it
is actually solving your problem how it is actually solving your binding problem because
say we find out if you can solve the problem that is largest size sub graph from where

you can reach your node.

(Refer Slide Time: 43:53)

Binding wsing clique partitioning

O
=l X
&) /N

|'... :
\ ‘:) T
= "L}
L Ol
A ®

So actually you are getting 1 solution so that can be multiple solution to this what is
mean by multiple solution? solution that can be multiple different permutation and
combinations of this nodes like For example here it is finding out 1 and so this 1 b and ¢
1 clip this is 1 clip so you can also find out the another possibility will be that is a in this
case it will be say b in this case it will be say a out 1 draw in another can solution like a

this out 1 in this case instead of temp 1 you can have temp 2 and you can have this 1 so

let this be b c in this case then it will be out 2 in this case it till be d in this case temp 1
joining and in this case e and f so this is one another solution so there can be lot of the
solution for this clip there is a unique solution there is 1 solution but, what you mean by
maximum clicks? That is maximum number of nodes possible in a sub graph is 3.

(Refer Slide Time: 44:56)

Binding wsing clique partitioning

e“'@ L
"-.

=

(Refer Slide Time: 45:20)

|n-.1|n W \|Ii,'||_.||¢" P |r1|1||:|r1|nr

) +0

So we cannot have another sub graph having 4 node that you can reach node to from here
we can go here you can go hero and you can go here so what we have found out we have

found out there is a maximum of this 3 nodes can be possible in a sub graph that is

actually where exactly that is going from each node 1 another now the algorithm which
can find out given a graph like this any arbitrary graph we can find out where is a
maximum click of 3 whether what are the maximum clicks that exist in the graph that n
p control problem that is very well knows n p complete problem clip partition that
whether given graph with k n nodes k maximum clicks possible is whether k clips
possible is also n p control problem there is n number of Solution for this the most these
n p completeness and definition and keeping a bit super facial or you can call not formal
quote on very form in the lecture because this is the course on cad so and just dealing
you what is the problem and how it is map to this 1 but, for very formal motion and how

the click max click problem is a a n p control problem and the other wise it is.

So we required to go for any theoretical complete science book or any complex analysis
book any way we have to find out then there is a idea here than so the any algorithm that
gives a graph of this can tell you that there is only 3 nodes possible in max click is n p
complete we do not have any permanent algorithm for them so say i have a very long
time possible with me so what i can do is that i can pump in as many times as possible
and then i can say that this 1 is i can available how does it solve binding problem? the

answer is that it is saying that this is the number of clips possible.

Now you say that this is for register 1 this 1 for register 2 this is for register 3 and this is
for register 4 how is that possible? because you see we have said that we have
connection between these 2 if and only if the variable of output 1 variable of this life
time of this variable this variable and this variable do not overlap if the variable life time
between a and b overlap we do not put age over here so there is no age between a and b
so that is why we do not have any connection in between a and b that is the reason why
They will never come in 1 click so we have an age only in between the variables whose
lifetime do not overlap that means this is finding one click right that means from each
age node to each node we can traverse that is life time of all of them are not common that
is why we can easily have one register which can share this similarly, they can have the
age i mean what their lifetime do not overlap.

(Refer Slide Time: 47:52)

Binding wsing clique partitioning

The graph representation of
the variables. in terrm of
iferime o dutrated

(Refer Slide Time: 47:59)

N Binding wiing dlique partitioning
. 1
. - (&
'\. |‘1 3 |
I'

)
R ___.-""

LT »

2o

-

(L)
-“_"?5

So we can have 1 register here similarly, how to be an this 1 and this 1 to go for which
node to a each node that means there is an age that means their life time not overlap so
there is a register for that similarly, for the last case there is age between e and f that is it
so there lifestyle not overlap you can have register no 4 so that is how if you can have
exponential time algorithm and there are lots of heuristics algorithm sub click
partitioning problem so in this case you get the answer now you saw that the problem
therefore, the clip partitioning problem is a n p complete problem there is no polynomial
time solve version for this but, then what you have then what is there idea is here that

you can look to any theoretical computer science book here are lot of heuristics to solve
this quick partition problem that is they will take much less than exponential time they
will try to generate maximum size clips but, here the solution may not be optimal always

that is many time be may not be getting the largest possible clips out of it.

(Refer Slide Time: 48:59)

Binding wsing clique partitioning

ot gy Be nobed thad there i two varables sty whose Betime do mof
owerlap, then they are connectid by an edge For ensmple, out! and o are
canmedied by an edpe while o 5nd b angé nol

'NGA‘,‘EF bersdling, W meed b0 SEbeEnming Manimdl Chguet im e E'Tlp"

* The cligus problam i © find complste wubgrapha [“cliques™] in & graph,
Le., sety of slements where esch palr of nodes s connected

For esch masimal clgue we need & herdwere rescurce of the
corresponding type. Al variables (or operstiors) cormesponding to the
mades of the maximal chgue ane Binded 1o The Raerdware module selecned
fior the cligque

HE TR D AOSES TR & MEaDimel gl COMpT il Mlinmumm PodiileE Dol
wheng each of thewm ks an interconnecting edpe. Variabley [or cperationa)
in gaige can vhare a recguarce. If we havwe maximal cliqoes then we can
h.h;c Pg-r:'a by of modubes &1 more veriables (of oparatont] Bhars a
ungkFardware modile

-

So what you can get here is you can get some clips out of it that is sizes of the clips may
not be maximum if that is not the case now the solution is optimal wise because say the
maximum clips 4 nodes could have been added to 1 actually then 4 variables could have
been shared registers 1 but, the solution will given in very near optimum that is it may
say that will give you some 3 nodes which can be possible in a click now this 3 shared
by the stuff 1 but in the true case or in the best case 4 variable could have been shared so
that is sometimes you may get such types of non optimum solutions so but, any way but,
that heuristics algorithm will be much faster than the exponential time algorithm for

solving the clips algorithm partitioning problem.

So i am not going to tell you about the heuristics that are available for the this clip
partitioning problem because they are very well known in computer science so we can
see any heuristics which is available for quick partitioning and any of them size so what
you have done in this class is we mapped the well known problem of clips available in
the binding problem to clip and then we have shown that it is a n p control problem and

there are very largest well known heuristics solve the clip partitioning problem so we can

apply anyone of them at least all the variable in the scenario click and share a register
but, the taken that problem is that if a solution is sub optimal in most case of heuristics
then you may not have all maximum possible nodes actual possible variables in a clip
for were in the place of n variable could have been shared where registers and minus
case variable should be shared by the register that is actually will be happening so
whatever i told you now in my lecture is actually written over in this slide that how the
clip partitioning problem is or how the scheduling problem is by binding problem is
mapped to the clip partitioning problem and what are the optimization and what are the

max clips etc.

(Refer Slide Time: 50:11)

Binding useng Left-Edge Algorithm
“in ledt edge agorihm, we first abort, n ascending ordes, the variables o«
speration) stcarding o the (1arting step of Ehetr [he-tames— —

= i thre ahe maoce Ehan ane variable 31 the tame level in the ordér [becauss of
this Jaimes SLRTUAE Control dtep), then (o TRIEER Se Srdered bilied on the
laest conbral yieg. =

& For sipmpls. o 1sere §fe thee wiliibled ab.c wherd o had e e Tiam
stepl to stepd, b has e time from stepl T0 stég? and c AT TIE TR from
#epd to epd, then the order i a<b<c. o there are some warlables with iame
Rt @ @nd control shep hen They a0 odersd ariinrily

[
I

So you can just go throw to the slides now we will take another algorithm which is left
stage algorithm to again solve the same problem so in this case what we do so in this
case we actually first step is that we arrange the light variable in sub in ascending order
of their lifetime so a b ¢ d so they are actually arising in the first step so we put it there
then terms 1 temp 1 ¢ temp 2 f they come inside the second stage so we put it over here
and then finally, out 1 and out 2 we put it over here we first arrange in this 1 and then 1
more thing that if there are more than 1 variable at the same level and then actually then
order in the last control step let me just tell about this in the ascending order say there is
some variables like this say let us assume that b is like this it saying if they are more than
1 variable at the same level in the order because of the same starting control step then
those variables are ordered based on the last control step that is very important so it is

saying that we are arranging all the variables in the order of the start of the life cycle like
the left stage algorithm is first sort in ascending order the variables according to the

starting steps of their life time.

Soabcdand e they all start their life time in 1 cycle so they are arranging in 1 now if
the some variable are that this is actually random in 2 line temp 2 then some variable
ordering in the value of ordering in the chain like how for example, if there are 3
variables ¢ and ¢ where a has a life time from step 1 to step 3 let us do that so this is
steps 1 to steps 3 kind then b as a life time to step 1 and step 2 and c as a life time from
step 2 to 2 step 3 so let us not forget this let us think about this so if step 2 to 3 something
like this then the order will be a b and ¢ so in this case what happens to the longest 1 this
is second 1 and this 1 is third 1 so we will be arranging like this one so we start the
arrangement start the order from the life starting of the life time and then in this same
level if there are more than one variables then they are order based on the last control

state

(Refer Slide Time: 52:41)

Bending U'!.lnu]_n,.-ﬂ- Eﬂ.l.’.k .l'l,!;c.rnhm
=i ledd edge aigonthm, we first short, I ascending ordes, the varables (o«
Gperationd) Modrding o the (larting itep al thair e et —_—

= If there a6e more than ane warlable at the same level in the ordér [because of
chik 1aimee SLEFURE Control itep), then THOSE TIRERER Sis Srdered Esad on the
laest conbral tiem, —

& Fof ginmpks. i 18ere §fe Thees viaable o brc whires & had e tirme Tram
stepl to stepd, b has e time from stepl B0 stepd @nd c TS T ofe from
#epd to whepl, then the order B acb<c. H there ard some varlablés with iameé
AEET il @ngrTaninol she then hey §fe Dfdared arbitnarily

s #
-!_ i
15 1

WE

ST

So in this case if you see this learning for the maximum this is running for the maximum
amount of time that is end life time 3 and in this case 2 so you order a b 4 b that is what
being said we say so in other words very simple words you say that we arrange all the
variables in you start we arrange all the arrays in some order based on the lifetime so we

start with the these starting point of the lifetime and then you arranging and if in the

same level say there are this type of staff so we are very long shorter and this may be

shorter for so in this case what you do again via longest one will be in the first.

(Refer Slide Time: 53:15)

Binding useng Left-Edge Algorithm
i el edge aigorihm, we first abort, I ascending ordes, the variables o«
sperationt) scoanding 1o the (larting atep of Eheir [he-fmes— —

= i thosre ane maoce Ehan ane wariable 31 the tame level in the order [becauss of

chis S SLETURAE COnErol tep), thien TROREVIRERER Ss Srdered biied on the
il i

larst convbral 3ieg.

& For gipmiphs. H 1here §fe thiee vidiibhled ab.c wherd o had e tirme Tam
stepl to stepd, b has life time from stepl o stégd and c TS T TR from
step? tp stepd, then the order i a<ber. B there ane some variables with 1ame
1!-:[:!";':1 :'q.j control shep [hen They e oddered arpitraridy

b » 4t

| L i
: O I I O =
1 — r"‘uhlr .
o E ,:, i 4
(:j | |
s i TrEm
] | |'

So this is going for the maximum length of time so we put it over here then this is going
on 2 literal this third this is going to the third taken longest one so you put it over here so
maximum is the lifetime so it will come before the 1 this is having the lower life time
that is the idea so 1 having the life time of temp starting at point will be higher in the
order then the 1 having life time of 3 and also starting from 1 so that is the idea and if c
is having lifetime of plenty after a because we start with the starting point of the life time
S0 a is starting at the 1 and running for 10 unit say c is running from 2 and from twenty
life times a will be first and ¢ will be next because we start with the life time starting

point there is something like a and b but, in this case ¢ will be later

(Refer Slide Time: 53:54)

Bindimg uiing Left-Edge Algorithm
uin ledt I"ﬂgE Iﬂﬂ"l-""" we first short, i sucending ordes, the varabley (o

cperationd) scoanding to the artng tep of their - —

* if there sne mare than ane wariable 31 the same level in the order [because of
thit 1amss RO Control 1tep], then Thops VISR SE8 cadered based on the
okt comtral tieg. —

& For gunmphe. | there arg thies vanablel ab.c where, @ had Iie time from
step] ko stepd, b has e time from stepl 10 theng and c AT T TIE from
itepld bo thepd, then the order i s<b<c. B there are tome warisbles with 1ame
it and #&nd Conirol siep Dhen (hey e ordered arbitrarisy

i ly g
] Lt [e T+
0 I M) 1
7 wapy ¥ emp s | I,#
[2 |PIOT e S B
: T T T
| 1-) s o -...1',- l
T | i L i |
| [= J

c is starting at point 2 but, if there is something like a is running 10 and b is running for
twenty then b will come ahead of the a so that is what is being told in this life time now
what we have to do now it is very simple now we actually take some buckets and some
registers and keep on filling it so this is the very simple algorithm we will see so in this
case we have bucket like this empty bucket and then we start from this side then we

select a fill it a over.

Here next you go for b cannot filled over here because this part is already allocated so d
also cannot be filled over here because this part is already booked e is also filled now we
go for temp 1 easily temp 1 can be filled over here because this part of bucket was
empty then ¢ temp 2 and f cannot be filled because the part of the bucket is full but, very
easily out can be filled over here now this bucket is full now what we do now some
iteration is complete that is step 1 step 2 step 3 so now again you take another bucket
now a is already gone so b is there so b will be over here d and b cannot be filled because

this part of the bucket is full then ¢ temp already gone so you will fill a ¢ over here

(Refer Slide Time: 54:41)

Binding using Left-Edge Algorithm

Once the variables are I"-I’n'lfd. wE SLart wilh a3 |E"L|f" and traene Ehe
varablei (arranged i coder) Inam el 1o fighs

“Wikke travening we start Filling the register with variables such that there i
o oveTlap in Che register. Onde the reversdl b5 comphete, we delets the

vriabdet feom the srrenged B3 thal are fied in the regivte:

s therd Bre vaiiabhid femamang & the L wi 18k avathed iigater 59 resiat

the procedure
El 2/ Hi
LN T
d & d #
—t— —-r= —— | Lo |
o N L M F
= Kreg 2
r ln-) wal'l
. el

(Refer Slide Time: 55:05)

Binding using Left-Edge Algorithm
*in ieft adge algorithm, we first short, in ascending order; the variables (oo
operatiand) scoanding to the Rartng itep of their he-hmes—— —_

= if theere sre more than ane variable 21 the tame level in the onder [becaune of

thi 1amee SEaiOeg control seg), then T VIERES ics cadered aed on the
Lokt cionbral Ligg,

i For ganmpls. i there ore thies varablel ab.c where, @ had e time from
siepl to stepd, b has e time from stepl to siepd Shd ¢ T T T " from
stepd to wtend, then the order i a<boc. M thene are some varlables with 1ame
#5ari § > Qunrml Ehegr thien Thay ae ofdered arbitradily

fa o V@ =
sy f)
/'ll "-"I :-'"':-_' i Wy ! '. =
s ol A ¥ l"if !“

Al |]
r") l‘xiflf/ u — . o

.
s

So this will be ¢ and so for and this is how your bucket looks like you start u with a you
fill up a then in this bucket i you cannot fill with the ab c d or e b d and e cannot be
filled so you can filled only temp 1 can be filled so we have to fill temp 1 over here and
then again in this case out 1 will be filled now this bucket is full so youtaker1r2rto
be the filled in the first and e cannot be filled ¢ will be filled out will be filled now in this
case Now in this case what will going to happen is will be over this 2 as will over in third
and 4th bucket you will have 3 and temp 2 and e and f in the 4th bucket in this case you
can fill and then you are done.

(Refer Slide Time: 55:12)

Binding using Left-Edge Algorithm
(nce the variables are I"In[fd. wE Siart wilh 3 |E"L|E" and EraeTe Ehe
variablei (arranged B coder) lnam el 1o fght

“Wikde travening we start filling the register with variables such that there i
g oveTlap im Che register. Onge the reveridl & comphete, we delets the
wariabdet from the srrenged B thal are (ied in the regivte:

s thierd Bfe vaiiabhis femamasg & the L wi Taks avathed iigate 5 resnet
the procedure -

& @6 &

=
=
B
Y

L1

r_.f Srep 2
8 = e
il

(Refer Slide Time: 55:58)

Binding using Left-Edge Algorithm
We take register R1, and In the process of traversal we first start with warisble
o, variahle o 4 filled i R] and A occupies Bepl o Rl Following that we
traverss vanabdes bood but cannot put them in K1 a5 they would overlsp with
. Wariable rempl] can be filled in R 3nd It occuples stepl. Finally wariable
oull i put | R1. Al there &g mond vidrablel, we Hnr_-!r\rc:l'.Ff' reghteT AL and
repeal e procedure »

. F ol
e

Circuit for the binding

Now what are the c all the buckets are nothing but, then you register in this case you
have 4 register and the variables u take it so this is very simple algorithm solution these
also solving your left algorithm this also solving your binding problem and here you can
find out the solution is not at all exponential it is a very polynomial time problem
because you have to just take a bucket and everything will be filled up so i am not going
to the formal lessons but, you can very easily find out it is much very procedure we just
check some wires in the bucket required have to fill up some variable in the buckets so it
is very simple problem very simple solution so you can get your solution. If you use this

a temp on temp 1 b ¢ out 2 the temp 2 and e and f we take this so you are going to get
this type of an arrangement so you can see we require 4 multiplexer so you can just study
and find outatemp 1 out 1 b c out 2 d temp 2 a and u this is your binding this 1 so this is
going to be your architecture.

(Refer Slide Time: 56:45)

Binding using Left-Edge Algarithm
We take register R1, and in the process of traversal we first start with variable
o variable o 4 filled n Rl and B cccuipies Bepl m Rl Following that we
traverse variabders bo d bt cannot pot tham in B] as they would overlsp with
2. Warlable rempl can be filled in Rl #nd it occuples stepl. Finally variable

cull i put ks RL A3 thare he mone virbles, we taie snother regher A2 and

repEal e procedure Ny .a;§l
J'J.-’-'.)
“E’T

I
1
L)

.

r—

Ix'?“
Circuit das the binding k:j

So you can see that we require 4 register that is you see you require 3 multiplexers so in
the best case fund that we required only 2 multiplexer and adding was very simple in this
case there is your actually also crisp cross among the wiring as well as we require 3
multiplex so this solution is not an optimal solution so in other words why do say let us
see actually you see so this left is algorithm is the this is taking a simple procedure we
just taking a buckets and you are then finding out what is the area required so in this case
you find out the area required is 3 what you say is equal to 3 multiplex so that is a big
problem for you

(Refer Slide Time: 55:12)

Binding using Left-Edge Algarithm

=Once the wariables are I"-Ir"m. we siat wilh & |E‘l5|f" and treneree Eha
variablei [arranged B coder) lnom el 1o right

Wil traverting. we start filling the register with variables such that these i
o overlap in the register. Onde the Dreversal

wariabdes Trom the arrenged B3 thal are ied in the reghter

sif thets ane varabhes fema rang & BN LT el Targ @AGthe fegater S8 FEDRaT

the procedurng, —,
|

1V
——

-
| B3
—

i
il

=

=

i

L i

:r 1-) warl

"

ainl)

So the area is not optimal so we can see that binding a what you call say left algorithm is
also heuristic algorithm kind of thing again come in more elaborated say in question and
answer session that why it happened that you are getting a 3 variables in this case that
what is left algorithm is not given the very optimal solution now we will see what
happens but, you have to understand here that the algorithm we are using to solve left
problem is not a heuristic it is a very exact because nothing to do we are not taking any
kind of randomization we are not taking anything that we are not trying such whole

substance or so for what we are doing is that we taking some buckets we are trying to

fill it out.

§ comphite, we delets the

(Refer Slide Time: 57:42)

Binding wiing Iterative Refinement

BEinding using iterathe refinement, 2 the name tugpests, starts with an
arbitrary "tesiible” bindiyg &nd 1 each ep ol DeEtion, verabled (of
coersins] are swapped in Boatwern the reg berg (or operations) such Ehat tha
new bimding remains featible. If the new binding comprites ket interconnect
Bred than the previoul one, the new binding replecel the old one. [Terelion
confinges waitld the Inferconmect ares reachas the dedred level or new
[herations are not able 1o mprowe the anes

For exarmple, we may start with the binding phven in Rt figure. Thin we may
vwap varisble cwr? and "NULL™ betaseen B2 and B3; this schedule |s better than
thé ol Org & T requined Two multipleces, while the old one reguires thies
mrltipleasin. Smilarky, we carry oa with the iberations by yespping varlsbis
untll we pet the desired interconnect shea or we find that there has been no
HRproyETRNL FN0E MY bew wiach can b @ uier defingd threshald) ierasond

(Refer Slide Time: 57:47)

Binding using Left-Edge Algorithm
We take register R1, and in the process of treversal we first start with variable
&, varishle & 4 filled i Rl and A occupleid Bepl] o Rl Following that we
traverss variabdes bord but camnot put themn in K] as they would overlsp with
. Warlable rempl can be filled in B and it occuples ssepl. Finally wariable
cutl i put b RL. A thare she maone vadiablel, we Take andther regiver Al and

repeat the procedur e \‘. -I'FE?E

So this filling of buckets but, you are not giving optimal solution so why is that because
the left age algorithm is design is a actually not very powerful algorithm for solving the
problem in most optimal today so what we will do today sometimes people will do that
type of algorithm is iteratively so iterative actually merge with left algorithm and then
try to solve the problem so what they will do now you find that multiplexers for this now
they will iterate is what they will do they will they try to shuffle out from here to here

and then they may try to say that i will bring out this algorithm out to from here and put

it over here these one you are doing here so that another combination try they know try

to say that i may try to put b and ¢ over here and e and f try to re shuffle.

(Refer Slide Time: 58:53)

Example: Binding of functional units, storapes and data-transfer
>~

Cate 1 of Binding tor the schedula sbewe

S |0
1 i/

el J wldden /
; ¥ .-__-"r

: *) Df_lk l;-v-f-m “‘ £4 - -l'_'#f o

So in this case we can try to 1 with variable we can try with 2 variable all the re shuffle
we can try over here you have temp a 1 out 1 b ¢ how taken move over from here to here
this is 1 we can do or wecantry out also with the also take out from here to here out 1 we
can take it from here to and try some re shuffles we can do then you can find out what is
the area over it because of a multiplex arrangement and keep on doing it and if you find
out that if i you can easily find out and easily out 1 from here to here then actually we
take go to the very previous i mean this stuff will go up to if you do that you will go to a
first this thing we will go to this thing the first thing so in this case a temp 1 out 1 we see
here we have out 2 and this is the first very simple structure you will get multiplex and
original example start example if you say that will be landing up to we just re shuffle the

from here to here.

So the idea is iterative refinement is that you get the solution from the left edge and then
keep on iterating with these values by reshuffling the different permutation and
combinations of this allocation binding and then if you find that new shuffle resulted
over the computer previous 1 you retaining it we keep on doing it as long as you and i

want to try with thirty deviations whatever is the best solution we will take you.

So those things are actually heuristics that is iterative refinement along with left edge
with mix up you will get a heuristic solution and then what is the idea you keep on
doing as we as i said lot of time i will give 5 days to solve the problem and it will be
explore or very large number stage space of this binding problem and then try to give a
better solution but, you have very less time then also you will get a solution in case of
iterative refinement class left stage but, the solution may not be optimal if you try with

the first step.

(Refer Slide Time: 60:04)

Binding wiing lerative Befinement

Ending using Merative refinement, 2 the name tugpests, starts with an
arbitrary “teaiible” binding and @1 esch step ol eration, verables (o
cperations] are swapped in Batwesn the regters (or operations) wuch that tha
new bimding remaing featible. If the new binding comprices. ket evterconnect
B Than he pieviods one, the new binding repleces the okl one. |erstion
continges unill the Inferconrect area reaches the dedred level or new
[herations are not sble 1o mprove the ses

For example, we may tart with the binding gheen in st f gure. Theen W mnay
waap varisble cwt? and "NULL™ betaeen B2 and R3; this schedule is better than
the old one &5 .'!:r:uiltj v miultipheseey, while the old one reguires theee
mailtipleasy. Smilarky, we ciiry oa with the itérations by yeapping verlsbls
wntll wee pet the desired interconnect shea or we find that there has been no
HRproYETRNL Bn0E LY bew wiach can b @ wiar delfined (hreshald) teratont

®

(Refer Slide Time: 60:16)

Binding using Iterative Refinement

= =

So without any iterative sediment your answer is 3 which is not iterative optimal solution
but some kind of replacement you will get a you will get the most optimal solution in this
case but, for a bigger example it may happen that you may take n number of time steps
required or n number of iterative the required to go optimal solution or near optimal
solution what in case of that what you call the clique partitioning the problem is that the
problems in clique partitioning in the whatever you do mean if you are going to get an
exact solution for clique partitioning this going to be explntial time requirement and you
will get the best solution but, the time required will be very high.

So what you will do if you will go for a heuristic functions of clique partitioning to get
the solution so that is 1 area so you can solve this binding problem in two way so 1 is
you can do in mapping in the clique problem clique partitioning problem and do not use
a exact algorithm use some heuristics for solving the clique partitioning problem so we
get a solution which will be the near optimal solution otherwise what you can you go for
iterative refinement then keep you go for left as and keep on doing it iterative refinement

as long as we have time you also get a solution in a.

(Refer Slide Time: 61:30)

Cuestion and Answer

. Uﬁ_t .
Cusrtlom: We bnos that - okt optimal binding solution i P
time wivere bs chgue I:-I-".":-l;:'\l'-'lﬂ_-l:';-'ﬂ expneitial time fod the Leme "'\
auality of iodgtion, Wivy, 31l cligos partitioning B nof condidersd cbiclete?
npwnan

Whila list scheduling prosides optimal wolution, in terms of resource wiilation
of warlables (L& regicters) and oparations [Le, operatars), in pobenomial time
thede 5 no prowidion of iNCorporatng ared of INlErCoRnECT due 0 & Ehven
binding Into the algorithm. Howsver, in cale of chigue partitiosning baied
wolution weights can be assigned to the edges based on area that might result
by binding 1he two operationd {of wariablei] corredpanding to the two noded af
the edpe under guestion to a single opevator or register], So most of the area
aware binding techmiques contider cligue partitioning [with reguined

il erTenita]

e

Reasonable amount of which may not be the a best one but, it will be near optimal 1 so
we have see to i mean 2 different type of solutions i mean 2 different algorithms to solve
the binding problem so as i told you if you go for this refreshment that out 2 with null

that is where we have actually in this we have out 2 over here so this out 2 you are

moving it over here so it is a very simple structure you are going to get in this is the
small examples so in the first itself in will refinement itself so getting the best solution so
all as may not be the true 1 before you closed over so we are going to the question
answer session now we know that list scheduling provide optimal binding solution and in
time as clique partitioning requires exponential time for the same point quality of a
solution why then clique portioning is not considered obsolete now we have to
understand what is the minimum so the clique partitioning as you already know takes a
exponential number of time exponential solution to get the correct answer but for clique

but for what you can call is list scheduling the solution is in p so what does it.

mean list what you can call the list what you say list scheduling if you do not merge with
this it refinement that itself is algorithm or you say this is a solution it will take some
buckets try to fill up the variables over there then it will give you solution so itself be the
solution if you merge it with it will refine in a then you can get better and better solution
and that in all becomes a heuristics but, if i become iterative refinement list partitioning
stands itself is a solution and you can understand that the solution is very simple so what
it does it actually does fill up some bucket and gives the solution then it is done in very
less amount of time but then why you are going for clique partitioning based 1 or why
we are actually merging iterative refinement why do you want to merge iterative
refinement and with this least scheduling what do you want to do then the answer is list
partitioning list scheduling this is not list scheduling with this is actually not least
scheduling that is the actually left edge so the problem is we know that left edge provides
optimal binding in p time in clip partitioning the exponential time so it is not solution in
this solution this is actually is an issue algorithms so it left edge we know that left edge
over optimal binding in p time where as the click partitioning request exponential time
then why it is so as i told you left edge is nothing but, it take some variables and put it in
some the buckets that is how it is done but, , still we can see that does not give an
optimal solution because in all case it given a solution of 3 multiplexers so and if you
merge it with the iterative refinement then it is heuristics point but let us look up but,
you see why you need clip partitioning so in clip partitioning you can increase that you
can and its very popular algorithm and only the one which is mainly used because some

weights.

(Refer Slide Time: 64:01)

E,J-II'I-dII'I_P. BEINg ;I|i.'||.||,= p.|r1|1|ur||ni.;
o~

Fas I;.‘. Y
1‘,:“ 11 /%)
- _..;::'?’;-‘
:'-V,.:: s

So what is the weights like we can see here that we having r 1 r 2 and r 3 so in this case
also showed about that there can be different other solutions like a then it was out 1 and
this temp 2 kind of a thing and collection some other this is the 1 solution we say that
another solution whether you take this solution and whether you take this solution that
means in case of temp 1 let us see this is temp 2 and temp 1 this is another solution so we
can put some weight in the areas like you can say that if i merge out 1 with temp 1 then i
can say that put a weight 2 so we are get some so in case i put a out 2 with temp 2 if i
merge i say where from this weights will come the weights desired by another heuristics
mechanism or another any mechanism saying that if i merge out 2 with temp 2 then what
will be the requirement of multiplex or how many more additional interconnect binding
interconnect what do you say interconnect area in terms of multiplexers are over here
binding this 2 similarly, if i can bind this 2 with another thing that means if i bind out 2
with temp 2 more area will required kind of thing so that type of weight you can put over
here whether i merge out 1 with temp 1 or out 1 with temp 2 so interconnection of here

also.

So you can thing that whether out 1 with temp 1 is better solution or out 1 with temp 2 is
better solution we can put some weights so that is if you merge with out 1 with temp 1 so
if you do this which is going to a better solution so those weights that is if you merge
these 2 nodes what in that area over it because of interconnect binding so some weights
you can put then you can get on the algorithm so it will try to find out the solution which

is actually the quick partition solution the weights and edges will merge and will be
merge only in the cases only the weight are very less that means you can embed some
into your clip partitioning solution that is when you are and how it will do this merging
so that you get the more optimum solution compare to some other venue of the solution 1

2 3 50 we can put some weights in the edges so it can be automatically guide.

(Refer Slide Time: 66:14)

1 u‘;l-'u-ﬂ-.-rr'r"n. SAWET

|
Quattion: l.".rl-'mrn'hal: et optimal binding sobution I;-F'
Rime wihere i (Sjue par 115_| t.-"-‘.'!-flp-:!rr\-l 3l thme for the seme
guality of solution 'I-'i'r'r 1l chgue partitioning B not consadered chsclete !
Angwge

While |ist wcheduling provices cpiimal solution, in Terms of resource wiiaation
of wariables (Le, regabers) and opeatons [Le., operators), i polfynomial §mee
there [o pronviaon of inCorporating el of INIEFCORNECT due 10 8 Eheen
Binging Into the algorithen. However, in case ol cgue partitioning bases
oiution weights can be assigned o the edges based on area that meght result
by binding the Pwd Sperations |or varishled] correipanding 1o Ehe bwd roded of
the edge under guestion to @ single operator or negister]. So most of the area
aware Dnding fechasques Conjader Cgue pariRionng [(weth requened

o Rl e 2)

%)
Some solution in 1 is good whether it solution 3 is good all this weights excetra can put
here. But you can think left algorithm is very simple you just you have to fill up the
bucket so there is no option and no choice is in the single solution, and that may not be
optimal solution and that has been in the case of something so in this case you also put
some purity define to make it a better 1. So with this we stop the discussion algorithms
for scheduling allocation and binding is high level synthesis in the second module so in
the next module. What we are going to discuss that once our high level synthesis is done
you are get design or black box architecture design now how we can use them to get
level design that is called the get level synthesis so in the next module will be focusing

on that.

Thank you.

