Design Verification and Test of Digital VLSI Designs
Dr. Santhosh Biswas
Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 2
Scheduling, Allocation and Binding
Lecture - 2
Scheduling Alogorithms

Welcome to module 2, let us check 2 and 3, this is a joint lecture, | mean the combined
lecture. So, what is the last lecture you have seen, the last lecture you have seen that high
level synthesis is basically comprises three steps scheduling allocation and binding. So,
in that step we have seen what happens in scheduling what happens in allocation and
what happens in binding. Then, actually we did not give any kind of algorithm to do
these steps, but actually we have told that the main emphasis of this course is that we
will be learning automatic algorithms or automatic tools which will help during the

design process.

So, in the last lecture we have seen some examples like a plus b plus ¢, how you can go
for scheduling allocation and binding of this specification. We have seen different
options everywhere these will have their requirements where there and so forth, but we
have not given any kind of automated algorithm which can automatically scheduled
allocated and buying these steps given the specification. So, in these two lecture series
what we will try to do with this or in module two on three, four more lecture, I mean

two, three more lectures on this.

So, in this case what we will do, we will learn automatic algorithms which will do the
scheduling allocation and binding for your automatic staffs given the specifications
automatic, it will be done for you. So, in lecture two and three, first we are going to see
scheduling algorithms, some automatic algorithms where you have to give the

specification like a plus b plus c plus d.

Standard example is which you are using on any other specification and then if you are
going for a resource constrained, if you are going for unconstrained, if you are going for
time constrain, if you are going for time resource constructs. You have to give the

constructs and then automatically we will get a scheduled output, if the schedule is

possible, but if the schedule is not possible we will say that it is the algorithm, we will

say that it is not possible.

So, you have to | mean some of the constructs, so over here what you are going to learn
given a specification and the type of scheduling we want to do outputs. If the scheduling
was possible and if not it was their problem, you have to do that, so we will see different

algorithms which can do it for you.

(Refer Slide Time: 02:14)

Introduction

High Level Synthesis (HLS) invoives three sub-parts namely,
scheduling, allocation and binding

in this lecture, we will discuss scheduling algorithms, which automatically assign

control steps to operations subject to design constraints.

Scheduling problem can be of four types namely, unconstrained, time constrained,
resource constrained and time-resource constrained i :

-

&,

So, | have already told you high level synthesis, this one in this lecture we are going to
see, | mean the scheduling algorithms which automatically do the steps for us. So,
scheduling for unconstrained time constrained time resource constrained and time
resource constrained. So, they are the four problems already we discussed, now we will
see algorithms how which we can solve the problem now before going to this algorithm,

so in in VVLSI, as we prove in the scheduling procedure in the heart problem.

(Refer Slide Time: 05:40)

Introduction

*There are many aigorithms proposed in the literature that solve these four types
of scheduling problem

*Now, these aigorithms can be classified into two types & heuristics and exact
Exact aigorithms like Integer Liner Programming for scheduling, provides cptimal
schedule but consumes high processing time

*in practical cases, these exact algorithms for HLS take prohibitive amount of
execution time. To cater 10 the execution time Bssue, several algorithms based on
greedy strategies have been developed that make a series of local decisions,
selecting at each point the single “best™ operation-control step pairing without
backtracking or look-shead. So they may miss the globally optimal solution,
however, they do produce results quickly, and those results are generally be
sufficiently ciose to optimal 1o be acceptable in practice. Such aigorithms are called
heuristic algorithms (for HLS). Examples for heuristic algorithms for HLS comprise
As As Possible [ASAP), As Late As Possible (ALAP), List Scheduling (LS) and
g‘ml Scheduling (FOS)

If people’s exponential time complexity, so if there are same operations or if the end time
slips for time, | mean the best file of the best possible schedule the complexity will be in
the order of 2 to 3 power a. So, you can assume that your specification if they are having
hundreds of variables or your steps may be say hundred of steps you required to do a
practical schedule. So, your complete, it will be 2 to the power of 100, so are they
actually very infeasible to do this, so what do we do is that these are actually called exact

algorithm.

So, what do you mean by an exact algorithm in exact algorithm, so given a problem, so
even if you take exponential amount of time on or double exponential amount of time,
but we will get the exact minimal. That is exact optimal solution that we actually tell you
that this is the best solution possible for a given constrained, if the constraints can be
satisfied, if it is not satisfied, you will not get the solution. It will say that and change
some of the constraint or relax some of the constraints, but in the constraints if the

constraints can be satisfied.

So, the algorithm will tell you that this is the best possible solution, but it may take
horrible amount of time because all the problems. As we are seeing there to start with
caviling problem is a mp or you can call a difficult problem or exponential amount of
problem. So, | mean because of this, so we can prove that actually this scheduling

problem can be mapped to a individual linear program ILP problem which is known to

be an complete problem. So, the time taken will be exponential so that we can
theoretically show it in the end, so you require exponential number of steps if you want
to find out the exact base solution. So, that is infeasible many of the time because of the
time limit sometimes you go for what do you called as heuristic.

Now, what is the heuristic, so heuristic may not give you a best optimal solution, but the
time taken is very less compare to the exponential time. Actually, if the numbers of steps
are end, so you may get the solution in n number of steps, but you may not get the best
solution, but your solution will be very near to the optimal solution. So, you call that near
optimal solution on near optimal solutions, you will get, so that is actually called
heuristics, so heuristics will be trying different ideas. So, you can think about that to try
to get the best solution, you have to try all possible possibility, so this will take a huge
number of times to do that, but we can say that in other in broad constraint of heuristics.

So, here you will not try all the all the possible solutions here, we will try some of the
which we are tend to think that these are very good solutions and we are trying to put
into it by which means you are trying to remove that all the solutions. These are all the
possible solutions where we will not try to file out all the possible solutions, we get the
time, but we may know that this is this is not of good solution. You may not try, this is
also may not a good solution not try this, but we will try we will try some of the

solutions which we may feel that are good solutions.

So, that is actually a heuristic, but in that process we save time, but sometimes we tend to
find out that we have missed the best or the optimal solution, but in majority cases we
will get a very near optimal solution and the time saving will be a huge. So, we will be
using we generally use heuristic algorithms for solving this, so for scheduling first, we
will see lot of heuristics algorithm. Then, we will see that what is the exact algorithm
like the individual program which can give you the best solution or the most optimal
solution, even the constrains if they are satisfiable and then we can also show that this

actually which will take a huge number of time.

Actually, it takes a huge time to find out the solution to this one, so it is a difficult
problem and so is working with heuristics and slowly we are trying to improve upon the
heuristic. So, with less time they can get or a reasonable amount of competition time,

you can get what you call reasonably near optimal or solutions near the optimal. So,

there are different examples of heuristics algorithms like as soon as possible as late as
possible list scheduling force directed scheduling. So, there are many more, so we will be
mainly beginning the lecture some of this heuristic algorithms which actually do not take
which actually do not give can guarantee to give the most optimal solution.

(Refer Slide Time: 06:22)

As Soon As Possible Scheduling

As-Soon-As-Possible (ASAP) scheduling is ome of the simplest scheduling
slgorithms used in HLS.

In ASAP scheduling, first the maximum number of control steps that are allowed is
determaned

Following that, the algorithm schedules each operation, one at a time, into the
earliest possible control step

In other words, ASAP agorithm schedules cpernations in the earliest possdble

control step, subject to satisfying the partial order, Le., an operation b scheduled if
and only if all its predecessors are scheduled in earlier controlsteps
’ i

| Cish
—

i ASAP algorithm can schedule all the operations withiTthe allowed number of
control steps, scheduling is successful

&
i m-nr) noted that ASAP aigorithm does not consider amy resource constraints

They will give the near optimal solution or the time taken will be very less compared to
your exact algorithm which is the integral program algorithm. So, we will start as soon as
possible, so what is as soon as possible as soon as possible, as the name suggests, it is
nothing but you have to decide on a number of time steps a four time steps or five time
steps. Then, you actually schedule all the opposite as early as possible, so obviously like
you know if you look at the example in the last lecture like 0 1 plus o 2 plus o 3 actually

will be multiplied by I mean o 4 that is the multiplication.

So, here you have seen that 0 1 0 2 and o 3, they cannot be done together like example
was a plus b plus ¢ plus d and you have to multiply with e. So, a plus b will be together ¢
plus d will be together they knew this in an attempt one and this is in attempt two, and
then they have to do that in a separate step. So, this can be done in step one and this can
be done in step one, but attempt one and attempt two generated by this one cannot be
done in step one. So, that has to be done in time step two, so even if you take the as early

as possible condition.

So, here we have to decide what the maximum number of time steps allowed, then what
we will do? We will schedule as early as possible, but all the operations cannot be done
in time step one because of the dependency, but still maintaining the dependency to find
out as soon as possible we can do. So, in this case you are going to get, so you can think
that here we will be able to minimize our time requirement, so that is basically one kind
of a schedule. So, as whatever | discussed is written over here, so first you determine the

maximum number of steps.

Then, you schedule one operation in one step as early as possible, but here you have to
satisfy the partial order that is already we have seen because there should not be any bi
logical or data dependency. So, you have seen all the, | mean if all the algorithm, all the
operations can be allowed into that time steps. So, if we say like 3 time step or 4 time
step, then you can see a time constrained schedule. So, your job is done, so as soon
possible, obviously we do not consider any resource constrains because we are doing
everything as soon as possible, so obviously we may land up in taking a huge number of

resources.

(Refer Slide Time: 08:07)

As Soon As Possible Scheduling
Algorithm 1: Ay Soon As ponible

|nf.|.: Operations O, Maxisnum sesnber of control sicps A J
Outpat: Coatrol step for each operations, Stanues of schodulmg A V
L™)
S Ve ‘\. f:,/ A%
for cach operatiofh o ¢ O) 7D
DO ._--'
if @ has no immediate predocesson (1 ¢, computation from inputs)

control stepl o)= | /" contrad stepl 0) IncBcales control dtep
into which operation o,is schadaled *
elwe

controd stepd o) = macmemd control sicpy ¢,)+ | where

[=

' [» | @ 1s immediate prodeconor of o)
)\'n

I valee of control stepd o) < Mo, ¢ O then Status of schadaling s Sucosssful

Now, we will first see the algorithm in a more formal way and then we will see the
example how we will actually operate, so what is the input, so 0 a number of operations
has got maximum number of control steps. So, you can take 3 or 4 or whatever, then

what is the output control step will to be given to the each of the operation and status of

scheduling. So, you say that the status is non fusible and if it is possible, now what do we

do each operation o ¢, so you take each operation, one at a time you have to do.

So, you have to find out o ¢ O has no intermediate immediate predecessors, so to first
find out all the operations which do not have any predecessor that is they can be
computed from inputs itself like our previous example a plus b plus ¢ plus d. So, a plus b
and c plus d can be done in time step one because they do not have any predecessor, so
these are the actually o 1 these as 0 2 so 1 0 2 can be scheduled in time step one because
I mean 0 1 and a b and c d are taken from inputs. So, do not require any predecessor, but

multiplication you require tenth 3 that is actually o 1 plus a plus b plus ¢ plus d.

That has been multiplied by c, multiplied with e so I mean you cannot schedule the
multiplication operation in the first time step because operation has some predecessors.
So, what is the predecessor, it is the answer of a plus b plus ¢ plus d, so in the first time
step what we do we allocate control step one to all the operations which can be confident

for the input.

So, it saying that if o i have no immediate predecessors, then you do that, otherwise what
you do otherwise you assign control step say element or say another operation. Actually,
operation has a predecessor, so you have to first schedule the predecessor, so it says that
for a, o i, we will have the predecessor. So, you say that control step o i is equal to
maximum of control step maximum of control step of g, sorry control step plus one

where 0 j is the immediate processor of 0 i.

(Refer Slide Time: 09:06)

As Soon As Possible Scheduling r
Algorithen 12 As Seon As ponible \)
1 0
Ispet: Operations O, Maxisnum sesnber of control steps A (HL\ \
Outpat: Control step for cach operations, Status of schodulmg "_/ : |
’
< [

e o J.\ W\)
for cach operatiof by O) P L
DO N \u:{- 5

V]
| if o has no immediate predocesson (i ¢, computation from inputs)

—_— —

comtrol wtepl o)= | /" contrad stepl 0,) IBates comtrol dtep
into which operation o iy schodaled *
ehwe

controd stopd 0) = Enaou control viepd o,))* 1 wheere

-
7 ¢)| 0 1 kmmodiate prodecessor of o,)
{ v) -
ND
- 7\
If value of control stcpd o), § '.fi y ¢) then Stabas of schaduling is Sucoesful
v J
/

So, it says that this o i and so there will be an immediate predecessor predecessors 0 j, SO
this is a capital o j. This can be also o j it is the different procedure like o j belongs to
immediate predecessors of a, so | mean what you have to do you have to find out which
is the maximum one. So, it may depend on this it may depend on this, so it may be in
time step two it may in time step two, so it may be in time step three, so what you have
to do? So, obviously you cannot schedule it in time step three because it is dependent on

this element which is nothing, but time step which is nothing time step three.

So, you cannot do it in this one because o i actually depends on the value of this note, so
what will be the time step here it will be 3 plus 1 here we will say. So, we have to find
out the maximum of the controlled step for all the predecessor of o i and you have to add
1. Finally, you have to repeat this for all the elements, so what you will do for schedule
for all the elements for time step one which can be directly computed from the input.
Then, we will find out all those operations whose immediate predecessors have already

been scheduled.

Then, you have to find out which is the maximum amount, then you have to add 1, 2, and
then that element is also scheduled. You have to keep on doing it till all the operations
are over and if in the end you find out that you could do everything within m. So, the
maximum one step of o j 1 that is the last element is less than equal to a m, then it is

scheduling

(Refer Slide Time: 11:14)

As Soon As Possible Scheduling

L = £
o > tﬁ
d \.,.'f/ﬁ "

[f(o + v

war] Qs afy oatl

"TREAP scheduling for “outi={{a® bmc“'ﬁnjc‘mr 'qurb@
——

So, we will take this example and do this, so these are the different example which you
have considered in the last lecture. So, it is what a star b by ¢ star d minus a minus e star
f by b this is one output b expression and this is single output. So, we are taking bit
complex one because you have to illustrate the cases, so in this case you will see a star b
c star d. So, and we have taken say m equal to M equal to 4, so we can see that it cannot
be done anything less than 4, so it is four, now we have to do what now you have to

schedule as soon as possible.

So, you have to schedule elements which are actually, so we can say that this one you
can say as 0 1 ¢ plus d we can say as 0 2. Then, what we can say let us go through see
that little more clear, so a plus b is o 1 if ¢ star d is actually is o 2, then divide by this
actually o 3 then what is o 4. This whole staff actually subtracted becomes o 4 and then
actually e star f is 0 6, this divided by d is 0 7. Then, finally, you subtract this whole star,
it becomes o 5, so actually these are some of the names, we have given for the out 2 g

plus b is actually o 8 and finally, the addition of this o0 9.

So, this expression we have given the numbers in the slide itself, now you have to find
out as soon as possible and n is equal to 4. So, you have to find out which we can
schedule immediately at step one it is possible only when the variables or the operations
who do not have any predecessors. So, a plus a star b can be done because they can be

computed from the input c star d can be done. They can be computed from the input, but

this one a star b by ¢ star d minus this subtraction operation cannot be immediately

because it depends on the output of this two.

So, this cannot be done immediately at stage one, now also e star f can be immediately,
so they put the star f 0 6 to be in time step one because they know you will get
predecessor, but this by b also you cannot do it. Now, because it depends on the output
of e star f, now for this other expression you know that g plus b can be done in time step
one because the variables are directly as input and o 8 can be scheduled in time step one.
So, these are the variables operations like 0 1 0 2 0 6 and o 8, so we can schedule them in
time step one because they do not have any predecessor their values are directly from the

input.

Now, you will see, now we will find out that a star b ¢ star d is division operation can be
now scheduled in time step two because it requires a star b and c¢ star d which is already
been done. So, these are of 0 3 0 1 and o 2 which is already been scheduled in time step
one, so just add 1 to this one so that the time step of o 3 will be 2. Similarly, for o 7, the
predecessor is tenth five which is the output of o 6 which is already been scheduled in
time step one. So, you can easily schedule b in time step two and time step will be time

stepofo6pluslo?.

Similarly, for this case like for this addition operation you know that g plus b g minus b
already scheduled in time step one and o 9. That is this addition operation plus f can be
now scheduled in time step two because it depends on 0 9 depends on o a as it is already
scheduled in time step one. So, you add one to time step one, you get time step two, so 0
9 is scheduled over here, so actually we are pushing everything as hardly as possible.
Now, this thing is done, now if you look at the output is generator, now the path is over
that you know that o 4.

You have the observed that o 4 that is subtraction operation with this one tins can be
done in time steps to because predecessor of 0 4 is 0 3 because o 3 has to be done before
0 4. Now, as already o 3 has been schedule in time step two, so in time steps three we
can schedule o 4. Similarly, the last stuff that is the subtraction operation o 5, this can
already be done in time step five that is sorry four that is 3 plus 1 because o 5. We have

two predecessor one 0 7, one is actually your o 4, so you have to take the maximum one

because 0 7 in already schedule in time step two, but still another dependency of 0 5 is 0

4 which is the done in time step three.

You have to take the maximum one, you have to add 1 to it, so 3 plus 1 is4 and 0 5 is
scheduled in this one, so in this way we get as soon as possible schedule. Now you have
to compute how many resources you require, so you see that 1, 2, 3, so in this parallel 3
multiplies are required. So, 3 multiplied would be required over there, once subtracted is

required over here, so here two dividers are required over here.

So, two dividers required over here one adder is required over here, so these two
subtractions can be used from here. So, resource you can multiply one subtracted to
dividers and one adder because whatever is in one step you have to do it in parallel. If
you look at | mean register you are not consider here, but a number of registers will be 1,
2,3,4,5,6, 7, 8, eight register are there. They can be all reused in the other time steps,

S0 now we go to another schedule as already said.

(Refer Slide Time: 16:51)

As Soon As Possible Scheduling

In this case, it may be noted that operstions a,,0,,0,.0, do not have any diwect

predecessors, ¢, they depend on input values So these operations have the control
step &5 | (comtrol step(o)], i=126,8) Operation o, has a0, = predecessors
s0, control_step(0,) = maximum (control step(o,).control step(0,)+ 1+2. Similarly,
control step asagnment for all operations can be explamed

Thas schodule 1s complete within 4 stcps, thereby making it successful. The resoarce

roquarcencnts arc— = \
o Step)S Multipliers + 1 Subtractor
= - /
o SiepR: 2 Dividers + | Adder
CF :’//
o Stepl pbtractor feerf Stepl can be used)

79 Stepd: NIL (subtractor from Stepl can be used)
|)

So, what are the requirements over here, so requirements over here three multipliers and
one subtraction over here in first time step two is second step two divider one adder and
third step addition. They can reuse, so at in all require is the resource, so whatever we

have already told is actually listed out in this line you can go through it.

(Refer Slide Time: 16:56)

As Late As Possible Scheduling

*As-Late-As-Possible (ALAP) scheduling is almost similar to ASAP, but instead of
wheduling operations to early control steps, in ALSP, first the maximum number
of control steps that are allowed is determined

*following that, the algorithm schedules each operation, one at a time, into the
latest possible control step. In other words, ALAP algorithm schedules operations
in the latest possible control step, subject to satistying the (reverse) partial order,
Le., an operation is scheduled if and only if all its successors are scheduled in
latter control steps

*if ALAP algorithm can schedule all the operations within 1 control step (as we

move backward), scheduling is successful It may be noted that like ASAP, ALAP
sigorithm aiso does not consider ary resource constrants.

-
l_o)

-

Now, we go to another extreme mode of schedule, so that is actually called as later as
possible, now in this case what we have done is as soon as possible what our idea was in
as soon as possible. We have tried to, | mean what do have done, we have tried to
schedule as soon as possible, and we have taken m equal to 4. We have try to push
everything as possible or in the first time step, but you have to observe here that if you

say that our time step would have been 3 over here.

So, it would have resulted in a infeasible situation because this o 5 cannot be schedule
over here because it depended o 4 which again depended on o 3. So, 0 3 cannot be done
in one, it is done into of our 0 4 cannot be done to 3, so if you make that a or | mean time
requirement this 3. So, this would have led to a infeasible situation, but now we have
taking m equal to 4, so we get a perfectly correct schedule and in case of as late as
possible what we have going it is very similar way. You have to get as soon as possible,
but what we do again, what we have said that we actually take the maximum number of

control steps.

Then, actually what we do we tried to one at a time in the as late as possible in this case
what to do, try to push, earlier case we are trying to push as early as possible over here.
In this case what we are going to do, we will try to take things as less as low as possible,

we will take this aim as what you call the maximum one.

They will be try to keep the elements over here as slowly grow over here that is we try to
push the elements in this direction. This is the lower, now again one when you consider
it will successful, you will find out that all operations has been scheduled in within the
first control step because we are going reverse, then it is done, other wise this not done,

so we will see it again.

(Refer Slide Time: 18:20)

As Late As Possible Scheduling

Algorithe 2: As Late As possible

Inpet: Opcrationn O, Maximum sumb<r of coatrol steps A
Dutpat: Confrol slep for each operations, Status of schoduling
SMepn
for cach operation o ¢ ()
DO
if © ha po immediate sECOeOn (1.¢ , Compulalion gencrales cutpuls)
control step{ o)= M . ™ control_step{0) s smsignad the
bt contaod shep ©
clse
control stepl 0,) = control stepd e)= 1, o, is immodiste sucoessor of o
END
-

4 ol
[U) dl o « O are scheduled within control step |

| FTE then Stafus of sehoduling v Seccesalul

Look at the formal algorithm and then we will see with an example, same thing the
operations same thing as the algorithm operations will be given maximum number

control steps will be given and output is the control steps for each operation and status.

So, again like the earlier case for all operations what you have you do now you can have
to we are going as late as possible, so we have to just find out the all the operations o i
which do not have any immediate successor in this case. So, if you look at this, we which
do not have any immediate successor 0 9, so 0 9 is actually an output o 5 is actual output.
So, they do not have any kind of a successor, nobody depends on them, so what we can

do, we can schedule them as late as possible, so that is what they are saying.

So, you can see a if 0 i have no immediate successor that is computation gene that is the
computation generated outputs you schedule at the last step. In the previous case, what
we were doing we were trying to find out all those operations which do not have any
predecessors. We are trying to put it in the first time step, here we are doing this thing

reverse, we try to find out all the operations which have not any successor and we have

putting in the end next. What are you trying to do, then you are trying to find out, I mean

all the elements and you say this is 0 j has been schedule over here.

That is last may be last step or some step, you need to find out all other elements,
actually whose successor is 0 j, so o i actually is o j is the immediate successor of o i, so
all o i's will find out whose immediate successor is 0 j. Then, we try to schedule it just
one step will before it, so it control step 0 j minus 1 o j is the immediate successor of o j.
So, o j is scheduled, now find out all o j is scheduled in the onetime step, now you will
find out all o i's, sorry these are not o j's, all o i's who actually need immediate

predecessor of 0 j.

You just schedule it one step behind this before this, so it is 0 1 minus you have to do
this for o j, then if all o j are scheduled within the first control step if everything in first
control step. Then, this schedule is successful, else it is not successful is very similar, so
you will just see this and then will take same example. So, again same example is like
this, so in this case you reverse way, so you know that o 9 that is this addition operation

and this subtraction operation o 5.

They are just that generate the output, so you not need to worry at all about anything, so
what you can do you can schedule at number 4. We already we have seen that you
should not consider time step 3 because for this scheduling problem three in result with
infeasible state, so in last step allocating 5, 6. Now, what do you have to do; now you
know that already this has been schedule, so we are putting it as late possible.

So, we have try to push in down, now you see that as this has already been done, now g g
minus b that is 0 a. So, immediate predecessor of nine is 0 8, so you can schedule it at the
time step three that is 4 minus 1 is just you put it over here. Now, in time step, this case
you see what is the immediate predecessor of 0 5, it is actually o 7, so o 7 is what 0 7 is

this actually this division operation.

That is e minus f by that division, this division operation is actually o 7, and now what
happens, so one, just one step which before this o 6, you just schedule at time step three.
Similarly, o 4 this o 4 this o0 4 is what this 0 4 is actually this subtraction operation is
whole stuff minus that is also the predecessor of o 5. So, just schedule it one step before
this that will be time step, so in time step three you are scheduling o 4 and o 7. Now, if

you go by this, similarly if you go so what is 0 7, 0 7 is actually this division by b 1 step.

Before this, actually e star f, so this is actually e star f that is 0 6, so the one step
predecessor of 0 7 is 0 6, so you can you just schedule just one step before that
scheduling time step two you have scheduled. Similarly, for o0 3 and 0 4, 0 3 is
immediate predecessor of 0 4, so just schedule it one step ahead, so it be an o 3 will be
here. Similarly, 0 1 and o 2 are the immediate predecessor of 0 3, so you have to

schedule them over here.

Now, you just look at this situation, so this algorithm is very simple, just the reverse of
as soon as possible we have done. So, let us see how many requirements are there, so we
require two multipliers immediate here, same multiplier can be reused. So, you require
one divider over here, you require two subtracts, these divisors can be reused, here you
are requiring one adder, and so this is what your requirement is. Now, you see an interest
thing so in the old case we require three multipliers, but now we require one multiplier,
two multipliers. So, we have saved one multiplier is very important, but on the other

hand we have actually lost one subtraction.

So, if we just look at it, so we required one what you required we required three
multipliers from sub tractor two dividers, one adder. Now, in this case we have done a
great deal of saving, so in this case what you have to save we have saved one divider we
have save one multiplier. We have saved and one subtraction we have lost, but you

already know that subs tractor area is much divider hardware or multiplier hardware.

So, we have we have achieved a great deal of optimization by going for as late as
possible schedule, so in this example, you have scheduled everything below the end. So,
we have got a very good schedule where you have saved some element, now what you
have lost, so you have lost one subtracted. So, let us see one we can do to actually save
of subtractions, so if you remember that that these case the two subtraction case, we got
one subtraction when our solution was as soon as possible. This, this and this at this
things adder, we multiply those, this multiplier and divider is saved when you are going

for as late as possible.

(Refer Slide Time: 22:45)

As Late As Possible Scheduling

u b ¢ P /0
7 ALY /
Y
emp2 .
’ -
temp } temp £
a
o v
rowpd =
B

{‘) 2 ¢

- _ ¥ scheduling for "outis({a*Bb)/[c* d))-a-{[e*1)/b)" and "cut2s(g-bls"
NPFTEL - - v

So, let us try a bit different heuristics so actually what are you doing there are heuristics
algorithms nobody will guarantee that you are always going to guess this. If you going to
use as late as possible for all examples, you are going to get the best solution and for as
soon as possible. For all cases, we are going to get the best solution heuristic means for
some cases solution a will be put algorithm will give better result than algorithm b and

situation will change in different example.

(Refer Slide Time: 23:18)

As Late As Possible Scheduling

In thes case, 1t may be noted that operatioms 6,0, do not have any direct saccesson,
ie., they gencrase ousput values. So these operations have the control step as M <« 4
Operation o, is the imsnedsate successor of o, | so, control step(o,) = comtrol stegp(
o, J-1=3. Similarly, control step ass: t for all operations can be explasned

This schodule is complete within the 1% control step, thereby making it saccessfial
The rescurce roquircments ane

e Stepl: 2 Multipliers

e Swepd | Dividers + (mubtiplier from Stepl can be used)

e Siepd: 2 subdractors + (divider from Seep can be used)

o Swept: 1 adder + (vultracior from Step3 can be wsed)

NFTEL

So, in this example, let us divide it into two, we will see that, so in this case what we
have achieved that is written that two multiplier one divider and two subtracts and one
adder. So, this is these are the great saving, we have only one subtracted has been
required, one more subtracted. Now, we will see what we can achieve more because you
should not have the feeling that as soon as possible is always very bad and as late as

possible will always give you a better result.

Had it been the case, we should not have lost one subtracted over here which should
always have been the gate. So, in different example, one will give a better solution, then
the other and so we will try to make a high bid of these two and see we can get anything
better. So, heuristics like this, you are not exact algorithms, so always at for different

examples you may get different solutions that different solution in terms of quality.

(Refer Slide Time: 23:57)

ASAP versus ALAP

If ALAP is compared with ASAP, it may be moted that we have achseved the following
o Saved | Multipbier by delaying o, from stepl to step2

o Saved | Divader by delaymg o from siepl to stepd

e [lncreased | subtractor by delaying o, from |T-,‘j‘| [\‘-qlt
So, it may be observed that for the subpart of the expression, “(e*)b™, ALSP i better
comparcd 10 ASAP. However, for the expression, “ou=(g-b+{" ASAP » better

compared 10 ALAP. As already mentioned, ALSP and ASAP are heunstics and mav not
generate an optimal solution. By applying the scheme ALAP for “(e*f)b™ and ASAP

for “out2“{g-b) 1, the schodule we oltain for A I »s shown next

-
(%)

So, if you are comparing as soon as possible as late as possible, so we save from one
multiplier and save one divider that increased one subtracted, this is what has been

happened, now what we are going to do, so whatever is written over here, let us try.

(Refer Slide Time: 24:10)

Lo
lfo) \“i‘-r- = | \L’ / \\‘,:

NPTEI ALAP scheduling for “[(e*f)/b]" 3nd ASAP for “out2a(g-b)+#~ .

So, let us try to separate this, so you see that multipliers and dividers are actually already
in curve for this part or this problem like if you see that two sub parts as out 1 and out 2.
So, you can see here that out one actually is involved with in adder and sorry multipliers
and dividers, but out 2 is involved with subtracts and adders. You saw that the adding
subtracted requirement was increased when we gone for as late as possible and divider
and divider and multiplier. We got better solutions when you gone for as late as solution

as late as solution possible algorithm.

So, let us partition this into two and let us try to apply as late as possible so when here as
soon as possible, over here this is one another type of heuristics. We will see what did
happen if you do that, so in this case, let us see this as late as possible, so obviously this
structure will be similar. So, these two we could have put it over here and here that is as
late as possible, so you are bringing in towards the down and if you observe that as late

as possible, so we have the adder over here and the subtraction over here.

Now, we are going for as soon as possible, so we moving in towards the towards the
upper end of it, now we require the first requirement what happens. So, you require two
multipliers, one subtracted in the first case and then one divider over here, you can use
multiplier, you can use one adder, you require one adder, you require in this case and
here the multiplier subtracted have been reused. This can be reused over here, the divider

can be reused over here and subtracted can be requirement. Now, this is your

requirement resource requirement s, these two multiplier one subtracted one divider and

one adder, so this is the most optimum solution we have got.

So, you see that as soon, as late as possible if you apply over here and as soon as possible
if you apply over here you are getting the best solution. So, most optimal solution for this
example, so what is basically you are essentially you want to show you are that as soon
as possible as late as possible are actually heuristics algorithms. They are not exact
algorithms, so for some example one will give a better solution and from, some give

other will be giving you a better solution.

So, next we try to design a heuristics which will actually take high bred of as soon as
possible and as late as possible. So, | mean it is very difficult for us to first try as soon as
possible in one part of the circuit and then try as late as possible in the other part of the
sub circuit. Then, find out which one of them be give a better result like in this case we
first tried as soon as possible, then we tried as late as possible, then we found out for this
part of the circuit apply as late as possible. We apply as soon as possible is a very

difficult way of solving a problem, so next we will see another heuristics.

(Refer Slide Time: 26:54)

ASAP versus ALAP

It may be noted that the resousce consumption n thes case 1s as follows
e Stepl: 2 Multiplers + | subtractor
e Stepl: | Dwader ¢ (multipher from Stepl can be used) + | adder
e Stepd: | subtmactors + (subtractor from Stepl can be used) + (dvider from
Step2 can be used)
e Stepd: (subtractor from Step3 can be used)
So it may be noted that a schedule which is a “mix of ALAP and ASAP” provides
betier solution than by the individual algorithms
Now we will see FDS scheduling algonthen which is motivated from above fact of

combining ALAP and ASAP

)

This is actually called first step of scheduling, this is actually high bred of as soon as
possible and as late as possible. So, what it will do as we will see in the heuristic, so it
takes ideas from both of them and final solution will be automatically wherever possible,

it will be good as late as possible will be applied and wherever it is bad. So, | mean

appropriately things will be applied, so what is the resulted, I mean effect of the
heuristics. So, which part of the circuit if in a part of circuit, it as soon as possible is

better than as late as possible.

So, automatically as soon as possible will be applied and vice versa for the other case, so
that will be happening automatically, here we have that to as soon as possible that you
are gone for as late as possible. Then, you have tried the high bred of both, we are one
part we applied, so it is very bad way of doing algorithm, now we will see the algorithm
in which case that automatically taken care by the high bred nature of the algorithm. So,
automatically for which part of the circuit it is required that heuristic in between as soon

as possible and as late as possible would be selected.

So, this is what our discussion was about as soon as possible and what is as late as
possible, so finally we achieve this one which is the best solution one adder one
subtracted two multiplier, then one subtraction. So, multipliers 1, 1 subtracted, so these
are which was the requirements are actually reused, these are all reused. So, that is what
we have said; now we will be combining as soon as possible and as late as possible so

that the algorithm is called forced directed scheduling.

(Refer Slide Time: 28:13)

Force Directed Scheduling

DS starts by first Tinding ALSP and ALAP scheduling for all the operations
Operations whose ALAP and ASAP schedules are same (Le., same control step s
assigned by both ALAP and ASAP), are not considered to be re-scheduled by FDS as
there is no llexibility in their positions

*Following that, all operations are listed whose ALSP and ASAP schedules are
different and the flexible range for such an operation is “ [control step assigned by
ASAP =t0=- control step assigned by ALSP|"

*Now, we ichedule these operntions in one of thewr flexible steps, such that total
count of operators is minimal

*To accomplish this, operations of each type are considered one by one. For a

given type of operation, we analyre the total requirement of the number of

operators (of the type under question), by considering the combinations of

placing the corresponding opentions in the steps within their intervals

. select the combination that leads to minimal number of operators.

*Ogte we are done with the operation of one type we move for the other
NE¥Pes, one by one

So, what is that, so what do what do you do in forced directed schedule is in forced
directing scheduling. So, what will do so first take will be actually go for as soon as

possible schedule once and as late as possible schedule once? So, we will in large, also

you have been see in last case also what we have done what we have gone for as soon as
possible. Then, we have gone for as late as possible, then you are trying to find out that
which part of circuit which is better. That is actually good, I mean what you call a fussy
way of stating something may be find out which part of circuit or which sub part of the

circuit of the better.

So, here actually you have to going the way very clips steps of the algorithms, so what is
a idea or idea we are basically trying to find out which in which the part of the circuit
which is the better algorithm. So, obviously what you have to do you have to apply first
as soon as possible and as late as possible. Then, try to choose some high bred amount,
but the high bred nature what we are trying the last example was not good that is
manually we try to find out that this part of the circuit. This is good that part of circuit
that is good that is not a very good of good way of doing that, so what will doing force

directing schedule we start by as soon as possible and as late as possible.

So, we do that, then what to do, then we find out some flexible operations like what do
you mean by flexible operation like if you look at this if you look at this this thing. So, if
you these are the only operations where there is flexibility that is you can move this two
steps up or two steps down. Similarly, this can be move on the here or the here, but this
part of this that is what you call schedule is almost as soon as possible and as late as
possible. So, there is no flexibility over here, so either you apply as soon as possible or
either you apply as late as possible with this sub part nothing is going to change because

you cannot move any of the operation.

So, your aim is given to that is as show, so this with this aim is equal to 4, you cannot
move this operation to this operation, so we this is actually either like as soon as possible
and actually you can either as soon possible or as late as possible and fix it. So, that is
what that is actually saving sum of a computation effort, so if you think that in the whole
circuit first I will try as soon as possible. Then, I will go for as late as possible, then |
will go for some high bred in the whole part of circuit that is will actually computation

time they will take more computation time.

So, what do you have found what is the first step of force direct f d s schedule if you first
as soon as possible that you gone for as late as possible. Then, you will trying to find out

which part of the schedules is fixed that is there is no movement, so in as soon as

possible or as late as possible nothing could be move. | mean some operations, it will be
same that means what means there is no change in the schedule if we apply the as soon
as possible or as late as possible. So, both them were give equivalent results and in other

words they are non flexible you cannot move they cannot move from their position.

So, you better fix them and try their heuristics with these type of notes or this type of
what do what do | say these type of operations where there is flexibility. Now, what is
the first step, so you say that we give a actually a range, so what is the range the range is
actually control step assigned by as soon as possible to control step by as late as possible
like for example, in this case this guy can be scheduled over here. This guy can be
scheduled over here, so it is range 1 and 2 and 3, so this guy can be scheduled over here

or this guy can be scheduled over here to its range 2 and 3.

So, this subtraction operation can be scheduled here or here, so its range is between 1
and 3, similarly this one can be scheduling 2, 3 and 4, so ranges 2, 3 and 4, so you just
find out the range first. Then, what do you do, then we take each type of operation this
one at the time like addition operations multiplication, then subtraction, then division
something like that and then tried to freeze one at a time because you see what is the
basic modification here. So, actually adder cannot do a subtracted that is the assumption
so in a very | mean advance praline adders and also do subtractions subtraction can be

there.

Actually, same elements and also you can think that multipliers are multipliers can also
be treated as dividers and divider can also be treated as multipliers; sometimes we have
general purpose blocks. So, for the simplicity, you have been assuming that adders can
do all the addition and subtracters can only do. So, what you are trying to do, so if you
are parallel scheduling one addition one multiplication one subtraction and one division,
we are not have any problem because you require one block each, but if you subtract in

one time step you are parallel assigning.

If you are parallel assigning two multiplies or three multipliers in one, then you are had a
problem because then only you are going to require more number of other harder
element like in time step one. If you scheduling three multipliers, then you require three
multiplier block, so I mean you can understand that the heuristics f d s things in this way.

We take only multiplier operations in a time optimism, then go for as subtraction, then

optimizing then go for addition, subtraction am optimization. So, for every broad sets, I
mean you can think that the optimization of the dividers will not have much impact on
the optimization of the adders, but obviously there will be some impact that we will see
in the end.

If you fix one operation in one step, then actually flexibility of the other operations will
get change because of that there can be some problems so that will be looking at the
questions and answer session, but broadly. You can think in this way that if you are
talking about optimization of adders just think about adders, if you are going as multiply
let us think about multipliers. So, for that we have to think that of because if we
consuming three hardware multipliers the one time set, then you require actually three
hardware three multipliers, but even a single step you add schedule one adder one

multiplier one subtraction, one divider.

Then, that one is not of a concern, so to do this operations of each type are considered
one by one for each given type of operation the total requirements of the operation under
guestion at the minimized. We select the combination that lead to minimum numbers of
operations and when you are done with one type of operation we for another. So, what
basically says that we first take multipliers and then we try to make a schedule such that
multipliers minimum number of multipliers is required. Then, once the multipliers are
done then you go for adders, but actually I mean this will not always require optimal

solution because sometimes when you are thinking about the multipliers.

We schedule some multiplication operation, but based on data dependency the flexibility
of the adders or the flexibility of the subtraction also may get chased change as of
sometimes you may not get the most optimal result. So, that we will be very much clear
when you will take the example in case of the question and answer session, but for the

time being just think of this heuristic idea is something like this.

(Refer Slide Time: 34:17)

Force Directed Scheduling

Before providing the algonthm for FIS shoduding cortaan notations are mtroduced
e ASAP: Control step scheduled by ASAP algonithe to operation o
o ALAP : Comtrol seep scheduled by ALAP algonthm to operatson o

o INTERVAL: | ASAP wALAP)

o RANGE - ALAP - ASAP +1

o [FROB Probabuhty of scheduling an opemabion o m control step
j & INTERVAL ;. PROB (RANGE)

o LIST, .: Set of all operations of type k in step 4, Le., set comprising all
operations o of type b such that j ¢ INTERVAL

e COST, Number of operators of type & roqured n sicp

£ .
\ °)('U.‘\'f‘ =) PROB

Then, go for the other and before we go to the exact algorithm and the example | mean
examples. Let us define some formally you have to define some variables like as soon as
possible that is the actually control step to operation by as soon as possible algorithm
ALAP i. So, what does it mean control step assigned to operation i by ALAP algorithm
what is interval i that is as soon as possible to as late as possible because say as soon as

possible to operation one is one and as late as possible to operation 1 is say 5.

So, interval i is equal to 1 to 5 kind, so what is range as late as possible i minus as soon
as possible i and 1. So, if it is actually as late as possible is 5 this is 4, so what is range
this sorry this is 1, so 5 minus 4 plus 1. So, range is actually 2, sorry 5 minus 1 plus 1, so
range is actually 5 so that means range says that within what is the distance or what is the
boundary in which an operation can be flexibly scheduled. Then, probability i j is
actually this is the probability of schedule operation i in step j in step j operation i in step

j and what is step j.

So, step j should be in internal i that means what actually so if there is this operation o i,
now we says that the time step three, now it is probability i j says that what is the
probability of scheduling operation two which is this operation two in time step three.
So, that is what actually, then | mean then what should happen that time the operation
two intervals should be within 3 should be within a interval of o 2 because 3 should o 2

should be feasible. We schedule in time step three so that it says and then what is

probability of this one is actually one by range, so in this case we assume that as soon as

possible schedule was 1 and this was actually 5.

So, range is actually 5 minus 1 plus 1, so to 5, so what is the probability that say this
operation is schedule in a time step between 1 to 5 is actually 1 by the range that is 1 by
5. So, itisactually 1, 2, 3, 4, 5,s0 1, 2, 3, 4 and one step is 5, so it can be scheduled from
here and here. Anywhere it can be scheduled, so what is the range is actually 1 to 5, so
that is range is 5, so what is probability that will be scheduled in any time step between 1
to 5 is actually 1 by 5 that is what the probability it is saying. Now, what is about the
probability of i j, then finally we have another thing is call the list k j.

So, what is the list k j is say that set of all operations of type k in step j that is actually
say in this step. So, you can schedule say one multiplier operation that o i is multiplier
operation, and then you can say that o j is actually addition operation. So, it says that in
time step j set of all operation types k that is it can be multiplier adder, subtracted,
divider whatever is possible in that time step. So, that will actually call the list j and
obviously | mean that that says that that is set comprising all operations of type k such

that j belongs to interval i.

That is what I have told you that in formal was that it says that list i in a time step we say
what the different types of operations are which is possible to be scheduled over there.
Finally, the last is actually its cost i k, so that is number of operations of types k required
in step j that is say for a example in one step you require say two multipliers. So, | mean
cost will be actually two of type multiplier, so that is actually because and this is actually
the formula of calculating this one that you have to submission all the probability values.
So, | mean just take this expression whenever example, this mathematics will become

very clear.

(Refer Slide Time: 37:44)

Force Directed Scheduling

Algerithm 3: Force Directed Schedaling

laput: ALSP and ASAP Scheduling

Outpat: Coatrol step for cach operations, Status of scheduling

Steps

Fromm ASAP and ALAP schoduling for sl oporstions (Le, o € Q) compule
INTERVAL , RANGE,, FROB,_, (for all j). LIST, (for all). COST, (for all /)

for each rype of operation | ¢ K

Do

BEGIN *loop fimds best steps for all operations of type & *

Sy ™

best_1ep =0
for each operation o of type k whose RANGE > 2
BEGIN /loop finds best step for o, ®

‘C foreach je INTERVAL

NPTEL
BEGIN

Now, what is actually force directing scheduling will do so what I feel that I will first go

to the example, and then I will come to the algorithm.

(Refer Slide Time: 37:52)

Force Directed Scheduling
INTERVAL,[LT] INTERVAL, (1Y) pxyesvAL_ i3] INTERVALL [LY]
-,l . I | . I L7 .y Swp i
RANGE, (1) AN
INTERVAL, [0L1) NIV AL (1. bl
1. ’ oy 2
RANGE, (1) AN, (1)
INTERV AL, {L1] .-
= Sap 4
RANGE, (1)
RANGE. 3y "ANE
INTERVALL[L1)
= -
* RANGE,_ [
AN, (1] INTERVAL. | L4)
1 -
I AL and RANGE for “outl=((a*b) (c*d))}-a-((c*)b)” and “out2=(g-b)+{~

Then, it will be algorithm and the steps to otherwise | mean the algorithm is being more
mathematical, so first example ex explaining with steps is a very good idea of doing it.
So, this is whole example we are going to take and so what is the thing we already saw
that operation 1, 2, 3,4 and 5. So, these operations have no flexibility in as soon as

possible or as late as possible, they are actually hardcoded in that. So, what range of one

and range two is one why because itisoneand a 1 and 1 and a 1 for o 1 and because they

cannot be shifted.

So, in case of range two what is the interval, so interval as actually s, sorry the range is
one in this you can write 2, 2, | am sorry this three, this is very this is 4, 4, sorry there are
some issues over here. So, it is from one and a 1 and a 1, so what will be what will be the
range, so range in this case will be 1 minus 1 plus 1 kind, so this is one, so in this case
you have to 2 minus 2 plus is 1 is 1 whatever what do you mean by range equal to 1. So,
range is equal to 1 means they are any kind of movement for this one interval.

So, as soon as possible type and as late as possible type, so in this case it is fixed, so this
bothered about one because nothing can be done over here. Now, let us look at the o 6,
so we saw that o 6 can be scheduled over here also o0 6 can be scheduled over here. So,
actually o 6 can be scheduled over these two places, so it as soon as possible range is one
as late as possible value is true. So, what is the range 2 minus plus 1 is equal, so range is
2, similarly o 7 can be scheduled in the time step 2 or time step 3, so it is 2 or 3, so what

is the range it is 3 minus 2 plus 1 that is again nothing but 2, so the range of this one is 2.

Now, if you look at this operation a, so it could be schedule here or here, so this as soon
as possible is one as late as possible is a 8. So, if you make a difference, so it is 3 minus
1 plus 1, so it is range is 3, so range is 3 about it and similarly for the 9. So, this is your
range, so this is actually different ranges we have computed over here, so that is actually
the four combinations of the range one different time steps.

Next, we are going to see what is your list, so if you look at it so what will be list over
here, so in in this case the list will be multiplier and subtracted, what will be the list over
here. So, list over here will be multiplier, divider, subtraction, so this way you can find
out your lists, now what will go we will go for optimization one step other time. So, this
we have found out, now what we are going to do we are going to take one operation at a

time, so what is the one operation time is say it has start with the multiplier operation.

So, what is the multiplier operation that all the mathematics will come back and will and
tell you, so what is the multiplier operation, so the multiplier operation is actually this
one. So, what is the probability that it will be scheduled over here, it is the half, so what
is the probability that is formula, let us what is the formula for this, so what is formula.

We have to see this formula probability of scheduling is here is actually 1 by 2 that is the

range. Again, this one will be range, so it will be actually 0.5 over here and 0.5 here is

scheduling property.

That is the probability of scheduling the multiplier in this step is 0.5 and this is because
and the divider is also 0.5 over here 0.5 over here the subtracted is 0.33. That is very
obvious is 1 by 3, again this one is 0.33, probability of scheduling this over here as all
have the probability, actually you should also count the probabilities will be 1. You do
not have any flexibility, now we will take the case of multiplier and see where the
multiplier is to be scheduled.

Then, you can forget about the all others, so you see the multipliers can be scheduled
over this multiplier scheduled here and it can be scheduled here to here. | put the
multiplier, so the probability is 0.5 this is the 1, so if | put the multiplier over here, so
what will be the probability, then it will change from the 0.5 to 1 and the probability and
the numbers of multiplier required will be 1 plus 2 plus 3. So, it will be 1 plus 2, 1 plus 1,
so it is equal to 3, so initially it was 2.5, so 1 plus 1 plus 0.5, now it is become 3 over
here, so it change from 2.5 to 3. If | schedule the multiplier over here, so if I schedule the
multiplier, initially what is the probability here it is 1 plus 0.5.

So, initially it is 1 plus 0.5 is the probability, now if | schedule from this multiplier from
here from 1 to plus 2, 2, so it will be 1 plus 1 over here. Then, it will be time step is
actually equal to 2 and there is no other multiplier over here, so this actually stops of
computation of multiplier. Now, you see if | schedule a multiplier here, then the
probability cost | should tell about the cost because actually the summation of the
probabilities. So, cost in this case is 1 plus 1 plus 0.5 which has changed to 1 plus 1 plus

1, so it is 3 and here if | schedule it here, so what will be the case it will be 1 plus 0.5.

It will be changed from 1 plus 1 plus 1.5 to 2, so you see in this case it is 2 and this case
is 3. So, in this if I schedule this in time step one be maximum cost will be 3 and in this
case cost is 2, so obviously I will go for scheduling this guy over here because the cost
will be multiplier to the 2 over here. So, multiplier case is done and this is scheduled
over here, now if | schedule the multiplier over here. Then, a very interesting thing will
happen then this guide will be fixed over here. Then, the flexibility of this divider is no
longer here, so it will be actually fixed over here and it is range will be fixed, you cannot

do any kind of changes with it.

So, that is actually there, but in this case you could because you are schedule you what
you call this multiplier over here. So, actually it is pushing down this one and you also
saving on the divider range, but this constraining that you are scheduling this first is
actually constraining this way of may not sometimes give you a advantage here to
getting a very good advantage. This multiplier you are scheduling it over here, so divider
is pushed over here, so you can you can reuse these dividers what had it been for some

reason this is scheduled over here.

That may that may lead to other case that will see in the example in the question answer
sessions, but what essentially has happened that this you have scheduled over here to
reduce the probability. This is actually pushed over here, now fix this is range will be

one, its range will be 3, 3 and it will be 1.

(Refer Slide Time: 44:23)

Force Directed Scheduling
\lgerithm 3: Force Direcied Scheduling

laput: ALSP and ASAP Scheduling
Outpet: Coantrol stop for cach operations, Status of scheduling
Steps
From ASAP and ALAP schoduling for all oporstions (Le, o ¢ Q) compute
INTERVAL,, RANGE,, FROB | (foc oll). LIST, ,(fox ol j), COST, , (for all /)
for cach tvpe of operation 4 ¢« A
Do
BEGIN “loop fimds best steps for all operations of type & *
\‘ -
best s8ep=0
for cach operation o of type & whose RAINGE =2

BEGIN /*lovp finds bewt step for o *

A
| =
forcach jc INTERVA!

BEGIN

-

Now, we can take another operation which is the sub divider operation and finally we
will go for the adder operation that is the basic idea. So, we will go for the formal
algorithm, now what we are going was the formula algorithm, so what are the inputs as
soon as possible and as late as possible. Then, control step you have to give in the output
and you have give the scheduling, now what you do using the as soon as possible
scheduling for all operations. You compute into the range probability list and to cost, so

whatever variables you have already done where to do that, now for each operation k.

Now, here the actually operation type is very important, we are going of a type of a

operation like adders then multipliers then subtracted divider.

In other way, you go for a multiplier subtracted and divider and now for each operation
you repeat, so what you do first you set that the best case is here, best value of the cost
basis in infinite, say for example the cost of some resource you consider to the infinite.
Then, you initialize the best step to be 0, so this this is the initialization step to
initialization, we say that cost require is very high and the base step is 0, this is no step 0,
this is the initializing operation.

Now, for each operation of type k whose ranges is greater than or equal to 2 because if
range is 1, already we have seen that there is not flexibility in movement. So, you should
forget about them, so wherever they scheduled their probability is 1 and there scheduled
over there. So, you can just keep it over there, so you need not bother about this, so were
where have you bother, so what where you have to bother in case of operation whose
range is greater than equal to 2. Now, you begin, so this move actually find out the best
step for operation o i like we have already done in the multiplication operation already
we have seen that that this o 6 the best step was here.

That is what will found out by this algorithm and in the first step we actually this each
type of operation here with started form the multiplier example if you consider, you start
for the multiplier for each operation which have to do in this. You have started with the
multiplier operation, the example then for each inter for each j in the interval i, then what
is what did you say to do we have taken this operation. Now, you have to see if each step
which is in the actually interval of this operation in this case there is 1, 2, so in each that

IS what we say that e each in interval each j for each which is the interval of i.

(Refer Slide Time: 46:27)

Force Directed Scheduling

Tempomanly schedule o in step j and compute the vabee
of cost (= A, ...) & 10 fixing the schedule of o and
changes of schodule of other operations due to data
deprenadency
If A, ., <A, then sugn valee of A, __ oA, . and
het siep=)

END

Finally schodule o m step best step and other operators due to

data dependency.

Update for all oporations (1e., o « O) INTERVAL . RANGE

PROB | (forall f), LIST, , (for all), COST, |, (for all /)

You temporarily schedule o i in step j and compute the value of cost due to fixing the
schedule of o i and the changes of schedule of other operations due to data dependency.
So, what does it mean it means that you schedule, so you take this one take o 6 multiplier
that is the first operation, like then you actually in both the ranges, so you schedule this
guide over here. That is what been say that use temporarily schedule in the o i in this and
compute the value of cost due to fixing of o j and changes of schedule of other of

operation of data dependency.

So, if you schedule this over here, so this can be scheduled over here or here no changes
here is also no fixing and no fixing. So, this one will be there that you have scheduled it
over here or sometimes it may happen that if you schedule a operation in a time step
other things get may get constrained. It may be a hardcoded and then we have to find out
the cost, so in this case what is the cost over here it is 1 plus 1 plus 1 instead of 0.5. It is
now become 1, so this cost is actually 3, so you have to record this cost, so we have

record this cost in some variable that is k n u, now if k n u is less then k a.

Then, assign the value of k a u to k m n, so initially we have started with k best as
infinity, so k best was infinity and now we have got the value of 3. So, obviously this is
the k best, so you have to apply k m u which was 3 to k best and time step as j. So, in you
apply find out this is the and you schedule it over here, so this is the first step, now again

you come back for each interval, now what you do now again you have to repeat because

this is also in the interval. Now, you forget about now you schedule it in this interval
now what will cost is 1 plus 1, it will be actually equal to 2, so from 2.5 which have not

become into initially it has 2.5.

Then, if you scheduled it becomes 3, now if you schedule guy in this second place in
disposable in this rate, so it will become to and this one also become 1 plus 1. It will be
2, S0 again we are actually scheduling in this interval initially in the term going at stage
2. Now, in this case what is going to happen, sorry in this case you are temporarily
scheduled o i in step j. Now, it is 2 and computes the value of this one, so in this case the
computation value and you have k m u equal to 2, so k m u is 2 and k best is 3. So, we
have if this is the case sorry k m u is 2 and k best was 3 in the earlier case, now what

happens, so if this is the case assign the value of k m u to 2 k.

Now, your k best is 2, actually now here you will find out then again will go back to this
look then you have to find that the interval has only 1 and 2. So, your case is done, so
you find now you what you do, now you finally schedule o i in the best step or all
operation will be data dependency s. Now, what you have what you actually have done
you scheduled it here and found out the value to be 3 that was the best. Now, we have
again there was another interval, it could sorry another step which could have procedure.
Now, you schedule it here and then you find in the best value to be 2, so 2 is less than

equal to 3.

So, you schedule the value of 0 6 over time step 2 and you are done, so this is 0 6 will be
actually scheduled over here because that value is 2. So, that is done, now again it says
that update of all operations everything all the values you have to update it and due to the
data dependency and because something will be freeze. Now, you see already told you
because if you said this yet now this guy cannot be this this was o 7 cannot be placed
over here. This can be placed only over here, so all ranges that is extra everything will be
changing, now this range will be one because this interval will 3, so it will be only one,

so this range will change so all these computation.

It is like a cost excreta like interval and range probability list cost everything we read and
again, you do this, again you come to this look and then you start doing for other

operation may be for adder may be subtracted or dividers.

(Refer Slide Time: 50:13)

Force Directed Scheduling
Now we will illusteate the FDS algonithm with the runaing cxample of scheduling

ol =((a*b)(c*d))-a-((e*N'D)" and “out2(g-b)+f

Next Figure illustrates INTERVAL and RANGE | for all the operations. Here we
have four types of operators, et & =/ represent multiphier, b= represent devader, &= §

represent subtractor and b~ 4 represent adder

Now we will illustrate FDS for schedulmg all operations of type £+/. Computation of

PROB |, for all the multiplication operations are as follows
o PROB.=1; PROB,, ~1; PROB,, =05
e PROR -0, PROB, ,~0. PROB, , =05
lur{.ﬁ’c LIST, . for the first two steps for multiphication operations are [IST

oueseg) and LIST .~ o, }. So, COST 1+14035=25 and COST,, =05

-

So, these how it happens, so let us I mean just look at the example, so initially this was
an example, so this range etcetera is already being given over here. So, in the example k
one represents multiplier k 2 represents a divider 3 represent subtraction and 4 represents
adder, so probability of 1, 1, 2, 1, first we are trying for the multiplication. So,
probability of one already told one then probability of 1, 2, 1 is 1. So, to 1 is a actually 1
because this things can be hardcoded over there and then probability of 6, 1 is 0.5 that is

6 can be schedule over here is 0.5.

Then, again probability of 1, 2 that is probability of 1, 2 in this one, sorry one probability
of one it this is one into be actually no longer there probability of 1, 2 is 0, why this is 0

because operation one cannot be scheduled in time step two.

We are actually concentrating only for two time steps over here you should actually see
for all the other time step because the multipliers do not get any concern in time step 3
and 4 the multipliers are only mean limited two time step one and two. So, we are
actually listing for time step one and two over here, so probability of o any that given
operation one in one step is 1, 2 is 1. What does it say that is operation one probability in
time step one is one operation two probability in one again operation one in time step 2.
That is actually no not possible because 1, 1 cannot be scheduled over here that is what is

written and similarly 2, 2 is also 0 because 2 cannot be scheduled over here.

This 1.5 and similarly 6, 2 is also 0.5 because 6, 2 can probe o 6 can be scheduled in time
steps 2, so this which has been calculated and the list is actually a what is the list cost for
time step one it is over 0 2 and 0 6. So, what are the list mean the list mean that 0 1 0 2
and o 6 can be scheduled over here because we are already taking care of the
multiplication. So, this is how we are calculate the then o list of 1, 2, so list of 1, 2 will
be actually only 1, 6 will be there here. So, is only 6 over there because 6 can there is
only one multiply that may be possible over here. Similarly, you can find out the cost is
2.5 and the cost here is 0.5, already we have shown.

(Refer Slide Time: 54:25)

Force Directed Scheduling

Among three multiplication operatons, we have freedom oanly m scheduling o, (
RANGE, = 2). If we schedule o, m step] then

e PROR ,~\. PROB,,~1, PROB, |

e PROB ,~0; PROB,.~0. PROB,, =0

o LIST,~{0,.0,.0,) snd LIST ,~{)

e (OS]

o A .=3:mA, <A \, . 18 assigned 3 and best step /

I have told you we have already shown this how we generate the cost this is how
everything has been done over here. Now, actually what we do now we have freedom of
scheduling o0 6 the in 0 6 range 2 in if time step if we schedule in time step 1, then
actually what happen the cost is 3 already we have told the cost is 3 than best step is one.
That is the best is that is the first step when we have scheduling o 6 in time step one, then

what we do, then we actually schedule an also schedule o 6 in time step 2.

(Refer Slide Time: 52:45)

Force Directed Scheduling
We can also xbtd.lk:.’:ﬂl‘. whach results n

o PROB,~1; PROB,, ~\; PROB,, - 0;
e PROB,,~0, PROB,,~0. PROB, , =1;
o LIST,~{o.0,} and LIST,,~{0,}

o COST, =2

. A 2:m A

- e T

<D Deines 15 assigned | and best_step=2
So we schodule o, m step2, which results in fixing the schedule of o, in stiepd
(due 10 data dependency). o Joses its flexibility. This is shown i next figure

®

NPFTEL

If you do this, you have values of probability values the list values and the cost will
become two as already we have seen. Now, we have seen that two is actually less than
three so the best step is two and there is no more range where 0 6 can scheduled it can be
scheduled only one. So, we stopped over here and we actually schedule o 6 in 0 2, but

now actually o 7 will lose its flexibility.

(Refer Slide Time: 53:08)

Force Directed Scheduling

ENTERVAL, (L1] INTERVAL, [11] INTERY AL, (1.9

RANGE, 1] RANGE.N

INTERVAL, [1,1] INTERYALL[LEY .

3. -~ : s

RANGE,. (1) RANGE,.(1)

INTERVAL, [1.1]
INTERY AL, A% -

= -] ' o
RA m RANGE, D)
RAMAL 1) .
INTERVALL1.1]
Sap d
* RANGE, (Y
RANGE,.11) INTERY ALy 2.4

nr‘;‘l‘) and RANGE, for “out] *((a*b)(c*d)l-a<{(c*)" and “out2=(g-b)*{" after
o, is WHled in step2

So, this guy will be you have to be scheduled over here there is no only this thing over
here, now again you are actually having these two which you can play with. So, if you
again | mean this is this part is fix, now you have to think of the adder and the subtracted.
So, we can find out that very easily we finding of that if we put the subtracted can be put
over here put over here and put over here. We put the subtracted over here the cost will
be higher because the probability of subtracted, then one is one over here and if you put
it here, so it will be 1 plus 1 it will be 2, but here if you to put it will be one only because
this is one.

This can be one and again if you put the subtracted over here, the probability will be one
and the cost will be one over here the cost will be one because there is no subtracted here
no subtracted here, you put the subtracted in time step three. So, it will be 1 plus 1, it will
be 3, so I mean if your f d s will put the subtracted over here, so if you put the subtracted
over here, then again this guy this adder will have a flexibility of here and here now you

will be easily able to find out that.

Again, you will find out that in this case mean there is no other adder over here, so you
can either if you placed here and here because everywhere the cost will be over.

(Refer Slide Time: 54:33)

Force Directed Scheduling

Similarly. computation of FROS_ | for all the subtraction operations are as follows

e PROB, 1

e PROB,, 01X}, PROB, ,~023; PROB,, =03} ;
Further, LIST, . for the st three steps for subraction operations are [IST
and LIS] 1o,) and LIST le,.0) So, COST 031, CONY 03% and
COST (R
Among two subtraction opemations we have frecdom only o schoduling o,
RANGE, = 3). If we schedule o, in step| then

e FPROB, 1

e PROB, =1, PROS, =0, FROS,

8. LIST,,~{o,). LIST {} and LIST

If o) -

. o5l |

:0“. A lim A, <A, AL, isanigned | and best stap~]

So, your adder will be over here, so everything will be actually done, so these are all the
values of | mean all calculations which we have done before this operation power 3. So,

you can see that that subtracted is probably 0.33, it is showing, so if you it shows that

among the operation | mean if you schedule o i in time step one, then this will be the
value. So, if you schedule o0 2 in time step to the cost is one if you schedule o time step
one cost is the one, if you schedule o 8 in time step 1, 2 the cost is 1, but if you put 0 3 in
time step 3.

(Refer Slide Time: 55:28)

Force Directed Schedu[in&
INTERVAL,(L,1] ENTERVALL[11]
. . Sop 1
raNGE (1) BANGEL(N)
INTERVALL (L)) INTERVALL LY
i R 2
RANGE, (1) RANGE, (1)
INTERVALL(1.1)
INTIRV AL A3 o
.~ ‘_: l y Sap 4
RANGE,. (1)
RANGE. (1]
INTERVAL,[1.1]
] -
oy RANGE, (Y
RANGE,.. (1) INTERV AL, {2.4]
@l.li and RANGE, for “out] ~((a*b){c*d)-a{(e*NHD)” and “outd (g-b)+ " after
wpwachoeduled in stepl

The cost becomes 2, so that is not so good, so you will schedule o 8 in either time step
one or time step two, so in this case let us see schedule this one in time step one, now it
is the left to the adder. Similarly, we will able to find out that there is no more adder, so
the cost will be one wherever you put in time step in 2, 3 or 4.

(Refer Slide Time: 55:48)

Force Directed Scheduling

Similarly, 1t may be venfiod that FDS will schedule o, in step2; final schedule »

shown 10 next figure

It may be noted that this schedule 15 same as the one for ALAP+ASAP. Therefore

FDS oltaien an optimal < hedule compdenng a merger of ASAP and ALSP

A)
| =

So, anywhere you can put it, so the final step 0 9 is actually placed over here that can
easily visualize and finally you may be note that whatever we got over this one adder
over subs will be here. Whatever we got is actually same as the optimal solution, we got
by merging as soon as possible and as late as possible, so manually what we have done
we can say that this part of the circuit, we apply as soon as possible, sorry as late as
possible. This is apply as late as sorry as soon as possible and this is as late as possible
you individually do that you do that to get the optimal solution what here we not do
anything like that.

Automatically, the algorithm actually settled out in, a in | mean what you call a settled
out in a schedule like this. So, whatever what do we find out that force directed
scheduling actually it takes modification from the high bred nature of as soon as possible
and as late as possible. It will automatically find out cases when which have to be apply

and it actually does it for you.

That is what is a force directing schedule, so this another heuristic though which actually
takes care of your I mean high bred I mean sometime as soon as possible is greater.
Sometime as late as possible is greater for a more general class of circuit force directing
scheduling is better, but you still you can find out the example where focus directing

scheduling is also will not give you almost optimal solution. All of them are heuristics

and we have trying to gain our type by finding out a near optimal solution rather than

going for very complex algorithm.

All the three algorithm discuss today basically time constrain, so you have to fixed up
the time we are we are not thing about the number of resources based on the time step 3
or 4. Among that, we are trying to the number of resources for example, like if we say
that time step have taking time step four, but I take three multipliers to the job and
somebody takes I also time step to do the job. I have tale two multiplier to do the job,
obviously we go for the second person that is what is being tried by this three algorithms.
You have studied the time is speaks based on the time we have trying to reduce the

resources as much as possible.

(Refer Slide Time: 57:03)

Force Directed Scheduling

INTERVALLILY] INTERVAL L) INTERVALG (LY
RANGE,.{1) RANGE..[1] RANGEG (1)
INTERVALL (1,1 INTERVAL (2.2
INTERV AL, (1.0
(m RANGEL. 1) .
RANGE,.(1) -. RANGE, (1)

INTERV AL, (1.1
INTERVAL.JLY
L
‘ ..D Sevp
RANGE,. (1)
RANGE. (1]

INTERVALL 1Y)

. p 4

RANGE (1)
-

-
A'ﬁ)'h’ and RANGE for “out] «{(a*b){c*d)-a(c* DY) and “outd =« g-b)+ " aller
o MR W Rodul od en stepd

So, in the tomorrow's lecture what do have to do, sorry this one is your last schedule |
mean, so this is the final I mean output of this thing.

(Refer Slide Time: 57:13)

List Scheduling

+*All the scheduling algorithms we discussed till now were heuristics based on time
constants, in terms of number of control steps. Now we discuss another heuristic
scheduling algorithm which s resource constrained —List Scheduling.

*Unlike ASAP, ALAP or FDS scheduling, which process operations individually in a
fixed order, list scheduling handles each control step individually (in increasing
order).

+List scheduling works by trying to schedule “maximum” number of operations in
the control step, subject to resource constraints and data dependency.

*During the scheduling process, list scheduling uses » ready list (hence the name)
to keep track of data-ready operations subject to data dependency.

*The ready st in a control step comprises those unscheduled operations that can
be scheduled Into the current control step without violating the data dependency

c ts, operations are chosen from that st and scheduled into the current
control step.

:;Qn there are operations in the ready Est that meet the resource

So, the thing that we are going to do next class we are going to proper list scheduling
which case it will be more about a resource constrained scheduling. So, the resources
will be fixed and depending on that you will have to go for whatever time in whatever

minimum time you can achieve for them.

Thank you.

