Design Verification and Test of Digital VLSI Designs
Prof. Dr. Santhosh Biswas
Prof. Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 2
Scheduling, Allocation and Binding
Lecture -1
Introduction to HLS: Scheduling, Allocation and Binding Problem

Welcome to module 2 lecture 1. So, in module 1, what we have generally discussed, so
we have seen that the there is a digital VVLSI design flow how it works and then we have
seen that we require cad tools or automated tools, which can automate the design flow.
Because | mean it is very it is a digital designs you start for specification then you have
to go to the final product. Then it involves lot of steps like high level synthesis, gate level
synthesis, layout and then final test pattern generation and so forth; which are extremely

complex and cannot be done by a human being on by in a by manual procedure.

So, we require automatic algorithms to solve solve all the problems for us, and then we
have seen told that in the next form the next module onwards that is from module 2
onwards. We will be looking into cad tools or algorithms how we can develop good
algorithms which can enable our designer to take help of those cad tools and he can get a
very smooth in a automated design flow. So, that is the basic goal of this course that we
will be learning about digital design flow, verification flow and test flow and how we
can develop cad tools which can help us automate this flow. So, that is the very, very

basic emphasis of the course.

Then we have seen that for any a procedure or any algorithm you have to if you want to
process some data from the algorithm. So, data should be represented in a, what do you
say a formal manner by using some formal model, so that it can be easily transformed or
it will be easily processed. Then we have seen that control and dataflow graphs are very
important | mean are very important parts, I mean is a very important actually data

structure or you can say a model which can represent our design specifications.

We represent in hardware definition languages and then we can very easily represent
them as control and data flow graphs, which can be processed by all the algorithms or all

the cad tools, which will see down the line, so that you can get a automated design flow.

(Refer Slide Time: 01:53)

Design Verification and Test of
Digital VLSI Circuits
NPTEL Video Course

Module-l|
Lecture-l

Introduction to HLS: Scheduling,
.”'L) Allocation and Binding Problem

So, in this course in this lecture | mean second I mean module 2, first lecture what we are
going to see where. Or in other words say | mean module 2 will be basically dealing with
high level synthesis that is we will be taking a CDFG or a verilog code at in the
beginning. And in the end of the flow we will generate, what we will generate a

architectural design for this for this specification.

So, this is actually called the high level design flow, so in the high level design flow as
we will see we will consist of the problem schedule allocation scheduling allocation and
binding. So, we will be looking at algorithms, which can automate this three problems.
So, in the first lecture we will introduce the problem of high level synthesis that
comprises three parts scheduling, allocation and binding. So, first we will see the
problem and then from lecture 2nd, 3rd, 4th onwards in this module we will see how we

can design cad tools which can automate this process.

So, we saw in the last lecture that first step is to obtain for VLSI design, we have to
design VLSI design we start with the specification and we first obtain is a RTL level
circuit. So, what is the idea, so we write a specification in verilog or VHDL, so that
because this is unambiguous and if you write it in English language, so it may have

ambiguity and all.

(Refer Slide Time: 02:35)

Introduction

*Aryy VLSI design we start_with specifications and the first step is 10 obtain the
Register Transfer Level [RTL) ¢ rpuit

*RTL circuit is obtained from Ypecifications using High Level Synthesis (MLS)

algorithms. As specifications are\processed by MLS algorithmy, they need 1o be
represented using some modeling language

sControl and Data Flow Graph [CDEG)L i one of the most widely accepted
modeling paradigm for specifications that are processed by HLS tools

Trgnfformaion technigues In the CDFGs, which lead to efficient circuit
implementagon in terms of area, frequency, power etc. HLS takes as input. the

optimized G, performs Scheduling. Allocation, Binding and generates (RTL
design. / 3

sin.ahis module we will study algorithms pertaining to these steps-—-Scheduling
Alotagon, and Binding. To start with, in this lecture, we introduce HLS and
RIOLIEM definition of Scheduling. Allocation and Binding

So, we generally prefer to write the specification in verilog or VHDL kind of HDL
hardware definition languages and high level synthesis will transform it to what do you
call the RTL circuit or a architectural block level diagram. So, to obtain this from
specification to RTL we require high level synthesis algorithm. So, high level synthesis
basically transforms your specifications for RTL as specifications as we have already
seen, are generally represented in terms of some kind of a control and data flow graphs.
So, CDFG is one of the most widely accepted tools for this and then what do we will do
is that we will take a CDFG and we will convert it into RTL level circuit or block level
architecture. So, we have to, so high level synthesis actually takes as input the optimized

CDFG and performs scheduling, allocation and binding.

So, why do we talk about optimized CDFG because in the last lecture of that is the third
module of the first sorry third lecture of the first module. So, what we have seen
sometimes | mean the r t | designs or actually, sorry the what you call, the verilog
designs or specifications in terms of verilog designs are generally written by human
beings. So, you express your specification, which is the manual activity. So, the it from
the designers experience, he looks at the specification and then he writes a verilog code
or hardware code, hardware definition language code, so which can satisfy the

specifications.

Now, we have seen that as a human procedure, so it may have lot of inconsistency it may
it may have redundant course like, it may have dead course it may have moved in variant
computation and so forth. So, if you can do a preprocessing like we have seen compiler, |
mean compiler based optimization, then we have seen graph based optimization. Then
we have seen the last level like what do you call the, | mean technology library, that is

fabrication library or tech library based optimization.

So, similar optimizations are | mean when we have reduced the eliminated redundant
course or we made our our design more optimized by using a increment instead of an
adder and so forth. So, all this about optimization steps we have already seen in the last
lecture. So, they are applied actually to the main specification, so that we get a very

optimized specification in terms of hardware power, area and frequency.

So, that is actually sometimes called a preprocessing step. So, we take a we take a CDFG
which is comes to the input form the specification then we go for the preprocessing step
that we optimize it and then we go for scheduling, allocation and binding problem. We
generate the RTL design or in other words which is your architectural level block level

design, so that is the idea of high level synthesis.
(Refer Slide Time: 05:26)

Introduction to HLS
*A behavioural description (iLe., functional specifications) is used as the starting
point for HLS. It specifies the behavicur in terms of operations, assignment
statements, and controTTonsiDete In Hardware Description Language (HOL)

| S S S P

e

Patrrmediate v porese ol sl
¥/

So, high level synthesis will take you preprocess design. So, preprocess means you have
already done the optimization on the CDFG’s or in the HDL course and finally, the CFG
or your input will be schedule, allocated and binded. And finally, we get a RTL level or

we get a block level design, so that is the basic idea of high level synthesis. So, in this

lecture we first see what is scheduling, allocation and binding problem.

Then in the next lecture onwards we will see how we can develop a automated cad tool
which can solve the problem. So, so now, so we other words we are not looking at the
high level design flow. So, whole broad level VLSI design flow already we have seen we
start with high level design then we go for gate level synthesis, then we go for back end
design and and from from back end design you go for fabrication and also in in mean
time we also generate the test pattern then it is called the test flow.

So, now we will go in depth in one of the flows one by another, so first we are looking at
the high level design flow. So, what do we have we have functional representations that
we say what we want to do, like we want to add, we want to implement the multiplier
etcetera, etcetera. Then we go for a intermediate representation, so what do you mean by

intermediate representation, in this case it was a control and data flow graph.

So, we were representing in a manner, so it is very easily usable by your automated cad
tools. Then actually here also sometimes with your lot of preprocessing as well here you
have seen to get an optimized design, because functional functional specifications what
we are writing, basically are manual driven procedure. So, they are done manually, so

sometimes you require optimization.

Then the first stage is that we go for scheduling, so we will all see in details what the
scheduling means. Scheduling means in case for each of the operations we give a time
step that is operation will be done or in this time step and so forth. Then whenever we
have schedule all the operations, then we actually allocate some hardware units for this,
like for some case, we may require a hardware and also for some case we require a
multiplier and so forth. And finally, we are actually allocating what do you call the

variables will be allocated through registers then there will be multiplexers and so forth.

So, first you go for scheduling then we allocate it to the hardware and then we then we
bind the operations to the hardware like say addition 1, addition 2 will be done by adder
1, addition 4 and 5 will done by additional adder 3 and so forth. So and finally, we go for
control and data path generation and that is we will see what you mean by control and

data path, and finally we get the RTL design or what do you call your block level

architecture design, so this is the basic flow. And now in today’s class or today’s lecture

we will look at all the problems in details in a more formal way.
(Refer Slide Time: 07:22)

Introduction to HLS

The second step of the HLS, which plays a key role in transforming a COFG (Le.,
behavioral) representation into a RTL (le., structural) representation, Is operatic
s (called just "scheduling”™ in HLS terminology)

Scheduling involves assigning operations of the CDFG 10 so-calied control steps. A
control step usually corresponds to a cycle of the system clock, the basic time unit
of a synchronous dightal system,
The third step is Allocation, which chooses functional units and storage elements
from the dn-_gn Forary. The design Bbrary has several alternatives for a given
functional unit or 3 storage unit. For example, for a functional unit ke adder,
there can be many options like ripple-carry adder, carry-look-abhead-adder etc
Similarly, for storage elements there can be different types of registers like
regaters with only resels, registers with both pre-sets and resels, registers with
pre-sets, resets and load etc. Among the alternatives, the allocation algorithm
lect the one that matches the design constraints best and maximires the
)A tion objective

So, as | already told the first step in high level compilation is an internal representation.
So, it is a control and data flow graph, then we go for preprocessing step, so what do you
mean by preprocessing step; that means, you go for some kind of optimization. So, that
the code is more optimized or it have though not even redundancy or it is more what you
call it uses better hardware elements like incrementers or shifters greater than divide
adders or dividers multipliers kind of a stuff.

So, we are using better we are we are keeping the circuit very optimized, because we do
not have any redundancies, we do not have any what you call dead course etcetera. And
finally, we are using very good quality blocks, so this type of optimizations we do it. So,
that is actually called the preprocessing of the high level or your specification.

Then what we do then we actually go for operation scheduling, so as | already told you
what do you mean by operation scheduling. So, in a control and data flow graph we have
some operation nodes, so each of the operational nodes we should assign it to one you
should assign it to thumb time step that is this operation will be done in time step 1, this

will be done in time step 2 and so fourth.

So, that is actually called operation scheduling, all the scheduling in high level synthesis
is terminology. We will see in details the actual formulation of the problem then this is
actually second step, then third step is called allocation. Now, that is what you mean by
allocation now we have an adder, so we say that this is the adder, how we want to

implement the adder.

So, you can use it use a use a hardware adder like ripple carry adder, also you can use a
carry look ahead adder or carry save ahead adder. So, in the allocation step for each of
the operational load or each of the operators like adder, multiplier, subtractor we allocate
a hardware block. And we and we can also say that in this step we actually physically
look at the design library what are their components available there or what are the adder
multipliers, divider, subtractor available there. And we try to allocate that to each of the
operational loads in the CDFG or in the scheduled CDFG is the better way to say.

(Refer Slide Time: 09:02)

Introduction to HLS

The fourth step ig flinding. After the functional cperations and storage operations
are scheduled and components from design lbrary are selected for such
operations (allocation), then comes the role of binding. Binding assigns operations
to functional units, variables to storage elements and data tranifers to wires or
buses such that data can be correctly computed and passed, according to the

scheduliing

The final step of HLS is data-path ang ntroler genery n. Depending upon the
scheduling and the binding wr'l'orr“;?-ap. Intercopméction between the circuit
modules of the data-path components are set up; this s called data-path
generation, Further, an FSM s generated to control all the micro-operations
required to control data-flow in the data-path; this is called controller generation

Then in the fourth step is actually called the binding, now say we have taken 3 adders
only and 2 multipliers only, but then may be 10 additions, which can be done. So,
obviously, all the additions cannot be done in one step we all see that, because it is one
may not be possible, even if there are 10 additions that are required to be done in the
CDFG you cannot do it in one step. So, we put all the three or four adders may be and

we try to reuse the adders.

Now, reusing the adders means we can say that operation 1, 2, 3 or addition 1, 2, 3 will
be done by adder 1 and addition 3, 4, 5 will be done by adder 2 kind of a thing, so this is
actually called binding. So, in binding what happens each of the operations which are
already scheduled and allocated. So, you will actually bind it or physically assign it to
one of the hardware, which is have been which have been taken in the case of allocation

step.

The allocation step will take some hardware adders, multipliers, subtractors whatever
from the library. In binding step we say that operation 1 will go to this hardware,
operation 2 will go to this hardware and so forth. And also we take care of registers to
show the variables etcetera, all these things are done in case of binding; and finally, we

will go for data path and control path generation.

Now, we will see | mean what do you mean control because if you say that one adder 1
will do operation 1 and operation 2. So, in case of operation may be a and b should be
fed to the adder in case of operation 2 ¢ and b may be fed to other fed to this adder block.
So, we require lot of multiplexing arrangement and all, so depending on which time step
you are or which which are the two variables you want to add in the adder. So, you may
require to generate some control signals. So, in the final step we generate the control
signal and the data paths. So, this is the actually control I mean this is in a nut shell is a

high level synthesis flow, now what we will do.

(Refer Slide Time: 10:30)

Scheduling Problem

The scheduling problem involves determining the sequence in which the
operations are executed to produce a control step schedule, which specifies the
cperations that execute in each control step
~ g
o 9 W

A\ VN T J
e}

F \
Let Obe the sct of all operations 1o be uh\‘dakﬂ hich arc obtasrfd from the HDI
- = . -

code. If there is an operation o ¥ O which depends on the result of another operation
-
an o ¢ O, then o must [mash its execution before operation ¢, can begn. In such a

—

casc we say that there 1s a data dependency between the two operations 0, and o and
is an immeodiate predecessor of o . Data dependency results m 8 precedence

conatraint between the two dependant operabons | swchoduling [n other words, an
.?(vjw can be schoduled only after all s prodoccsson are schoduled
o

Now, we will take we will take each of the problem in a more formal way and with
examples we will try to explain what do you mean. So, then it will be the now the
definitions will be a bit fuzzy to you, but that is actually we are telling it in a very
layman kind of a language. Now, we will come to a in a very depth level or what you can

say we will come we are coming to a more technical level of doing it.

So, now, what is the scheduling problem, so already said that is a CDFG we have some
operations. So, this procedure what it will do it will try to allocate a time step to each of
the operations. So, what it says that let O be the set of operations, which are to be
scheduled. So, set of operations you can easily get from the CDFG and each individual

operation we say that O j belongs to O.

So, now what in scheduling problem what you do you will take each operation from the
set of operations say O y is an operation which belongs to capital O 0. So, each of them
has to be given a time step. So, you can say that these happens in time step one, this
should happen in time step two and so forth. But one thing you should be very careful in
doing that if there is an operation O j which depends on the result of y. So, it will happen
that output of y is actually controlling output of O j. So, in this case you should be very
much assert if that this has already been scheduled before this before the second guy is
scheduled, why because the output of this depends I mean the output of sorry O |

depends on the output of O i.

So, y has to be computed first then you can compute o j. So, it is very obvious that you
have to give a prior times time time what you call time step to y compare to o j, then you
can | mean you can easily do this, so this actually called data dependency. So, if the
output of y actually controls the output of O j or O j is dependent on the output of y, so
they are data dependency. So, when you are scheduling it, you should take very much
care that or it is a mandatory requirement that this partial order or what you call this

dependency is satisfied.

(Refer Slide Time: 12:11)

Scheduling Problem

For any HLS platform, there exists a module hbeary comprming carcunts for different
functiosalitics like adder, multiplicrs, registers ¢tc. Further, the hbeary also has
mniomation regarding different parameters of the modules namely, frequency, area
power ¢ic. Let T be the set of dufferent types of modules that sre avadable. For a
gven operaton o, the type of the operation 1s determined by a type functwon

Ty: 0T Ty(o) = mphcs that operation o can operate on module of type £

Based on the above basic formulations we will discuss the following four types of
schoduling problems
Un-Constrained Schoduliag (U'CS) peoblem
I'me Constrmned Schoduling (1CS) problem
Resgurce Constramed \'hnk.;l?.r.w (RCS) problem
Time-Resource Constrained Scheduling { TRC S) pedblem
7

A .
N b claborate on cach of these types using the simple example expression

(PR d)%e

Otherwise | mean obvious it is very obvious that if some O j depends on Oy and O y is
not yet scheduled then if you try to schedule O j before O y. So, you may get inconsistent
result right, so that is the very basic idea. So, that is actually data dependency and then
has to be very much taken care or the mandatory requirement in case of scheduling. So,
let us now see that | mean they are different type of scheduling problems, so we will see
one by one. So, one is called the unconstrained scheduling problem, so there is no

constrained.

So, there is only one constrained actually it should not unconstrained there is only one
constrained that is data dependency has to be managed. Otherwise there is no constrained
like you have to compute all the operation in four times, say there is no requirement that
you require, so many adder, so many subtractor, there is no resource constrained there is
no time constrained etcetera. So, this is called the unconstrained scheduling, but of

course, you have to follow the dependency.

Second thing is called actually time constrained scheduling. So, what are he say he say
that you will give a time constrained that you have to go for scheduling should be
possible in three times four times. So, sometimes you may get a successful result saying
that yes it is possible and sometimes you may say that this is not at all possible, why it is
not at all possible, because you may say that we we have given a constraint of t time step

and he is not doable in three times step.

Then there is a resource constrained time scheduling in which case time is not a matter,
but we will tell you that we have only 1 adder, only 1 multiplier on, only 1 subtractor
kind of a thing. And you have to reuse them again and again and you have to get the
solution or you have to get a scheduling you have to schedule all the operations. So, it
may happen that you can take a very long time to do it, because the there may be a

constrained on the resources.

And sometimes the resource constraints also may be something like that you may not be
able to solve your problem. Like for example, it may happen that you require a there is
subtraction operation and you say that | do not have a subtractor then; obviously, is a
infeasible schedule problem and you cannot schedule the schedule the CDFG at all. And
finally, we have time and resource constrained scheduling problem in which case both of
the problems are together; that means, you have a different time constraint as well as you

have to have definite resource constraint.

So, I mean this is a very | mean most practical time scheduling problem in most of the
cases we use resource and time constrained scheduling problem, because we say that |
have to do all the operations in so and so time. So, many time steps as well as | have this,
this, this is the maximum number of resources you cannot have anything more than that.
Now, you can understand that sometimes our constrained may be too tight and you may

need to a inconsistent solution, then you have to relax one of the one of the criteria.

Like you may say that | have | have to extend my time step or | have to put more
hardware to get my solution. But in all of them you have to understand that, one
constrained always remains that is the data dependency you cannot anyway violate the
data dependency, so that is the idea. So, we will now elaborate all the examples and all
the problems using this expression a plus sorry a plus b plus c plus d star e. So, this is the

basic expression we will try to do it is a unconstrained scheduling problem.

(Refer Slide Time: 14:41)

Unconstrained Scheduling (UCS) problem
LNl \
A st of oporationy O Ja set/] of different types of funciionsl moduales, a type

A S
™\ r— - =
fasctson Iy 1}\‘3 and a pilal order on O delemnined by the precedence
“/

cOtIramt —=
Find:

A feasible schedule for all danonts in O, taking sppropriate modules from T and
" L4

obeying the partial order

i e /) ;

7 N v
. »
- al | nej
Y v /\ iz
& \
va) WV bUJ i -

P _‘\.; g /

So, what is said that we have a set of operations, so so O 1, O 2, O 3, O 4 are set of
operations and T is the set of different type of functional modules available. So, in this
case say we can say that T 1 stands for adder and T 2 stands for multipliers and T 1
belongs to capital T and also T 2 belongs to capital T this you have to know. So, this
means o was small 1, small 2, 0 2 and o 3 are the operations, so all they belong to capital

O and t is the set of different types of functional modules, so this is the idea.

So, we have T 1 and T 2 only two types are required for that we want capital T and we
have to define a function T y actually what it does is maps O to T that is each it it maps
each of the operations each of the operations to a to a hardware module and a and a
partial order as you constraint. So, what let me see let me tell you what is the idea. So, to
solve this what we are given, so we are given o that is the set of operations in this case 1,
2, 3, 4 are the operations and the different types of functional units available. So, in this
case T 1 and T 2 are available or required because this multiplication addition only and a

partial order on O is also given.

So, what is the partial order, partial order in this case you can see that you see that
without computing O 1 and O 2 you cannot go for O 3. So, that is what this is the data
dependency that you have to compute these two first, then you can go for this, but O 1
and O 2 do not have any data dependency, you can do any one before other or after the

other, because there is no dependency on this; but you cannot compute O 4 before O 3.

Similarly, you cannot compute O 3 before O 1 and O 2, so this is the partial order order
data dependency. Now, what you have to go for the this unconstrained time scheduling is
that a feasible schedule schedules you have to schedule all the elements in O taking the
appropriate modules from T that is you have to schedule O 1, O 2, O 3, O 4 that is you
have to give some time steps to this. And also you have to say that for O 1, I allocate T 1
for O 2 | allocate T 1 and like for O 4 | allocate T 2, because T 2 is a multiplier and all
other say adder and you should obey the partial order that is data dependency and data

dependency has to be followed.

But, now it is unconstrained time scheduling problem, so unconstrained problem. So,
what is the idea we do not have any requirement that how many adders we can give how
many multipliers we can give or what are the time steps, we did not at all bothered. So,
this can be very well unconstrained time schedule, which is given it says that in O 1 |
will allocate T 1, O 2 I will allocate T 2, O 3 | allocate T 1 because they are all adders
and O 4 I will allocate T 2 it is a multiplier. And O 1, O 2 and O 2 I will do in time step
1,0 3 1willdointime step 2 and O O 4 | will do in time step 3.

So, I have given all the operations some type of hardware as well as | have given time
steps, as well I have said that as well as | have taken care of the data dependency that is
the partial order that dependency | have satisfied. So, this is a schedule unconstrained
schedule because | have not though that what would be the time limit maximum or what
is the number of adders require I do not think, but I give a feasible schedule for this one.

So, this is you consider unconstrained schedules for this expression now how many
adders, multipliers, subtractors you require if you think. So, you can think you can see
that | require 2 adders because they are happening in parallel in one time step. Now, in
time step two you can either use this or you can reuse this and then we require one

multiplier, so resources require two adders and one multiplier.

(Refer Slide Time: 17:51)

Unconstrained Scheduling (UCS) problem

As the schodule is enconstrained we nead to see that all clemonts in@ arc schoduled
appropriate modules from 7 are taken and partial order is maistsined In the above
cxample, there are four operations (3 addiions demoted & 0, 0,.0,and 1 multiplication

denoted s 0,), all of which are schoduled Lot the libeary have two types of resources,
e
adders (demoted @ £) and multiphiens (demoted as 1,). 1t may be noted that appropriate
modules from T are taken—-a 0, a, are asuigned 1 e, adder is mssigned to addtion
e Liwr U B
operations) and o, e msigned n:}/(ne_ multiplier is assigned 10 multiphication
operation)

As the scheduling is unconstrained, we consider two adder modules (one for o

the other foro,) and a (for 0,) The adder module for o
i o g
. Cpi be reused for a‘(lbecmrul steps requared & 3

WNPTEL

So, I mean, so whatever I discussed actually is written over in the slide that is 3 additions
O 1 and O 2 and one multiplication this thing, so we use T 1 is the adder. So,0 1,0 2,0
3 are all assigned to T 1 O 4 is assigned to T 2 and then actually we depend time steps
that O 1, O 2 in time step one O 2, O 3 in time step two and O 4 in time step four, so that
is what has been done. So, we require three control step and we require 2 adders and 1
multiplier module for this one. So, this is an unconstrained time schedule.

(Refer Slide Time: 18:21)

Time Constrained Scheduling (TCS) problem

Gives:

A st of operations O, a set 7 of Afferent types of functional modules, a type
— P

function I'y - O ~» T, a time constrint (deadline) 12 (1. maxinvam control stepn)

and a partial ceder on O determadncd by o Bt
Fiad:
A feasible s¢ for al\ clements inQ, taking appropriste modules from J

meeeting the de: D ct-nw_lf:plmll order e
= el rmetene

It may be noted that schedule of last example satisfics all requircments of
unconstraint schoduling problem and along with that, it satisfics the throe steps
deadline (of timing constrained problem). Further, we may note that we cannol
have a successtul schedule of tming constraint is two coatrol steps, as it wall lead
(’ g 10daton of partaal order The me-comtramed scheduling required o adders

H' a,.0,, which is reused for o,) and a multiplier (for o,)

Now, we go for a time constrained, so in this case we should give some time constrained
that you should say that we have to do all these things like O will be given, T will be
given, a function will be given that is actually we have to say that this type of like for
adders you have to apply to addition operation you have to apply to adders, the

multiplication operation we have to have multipliers and so forth that is for I mean.

So, so in terms of operations and different type of functional modules type function all
these things are given along with that all these things are available in unconstrained time
scheduling problem also. But in in in addition of that we are also given a deadline that
you have to say that you have to do everything in, so many number of time steps. We are

not allowing more than say three time step or more than four time step is not allowed.

So, you are giving a deadline and everywhere this partial order is there, because you
cannot; obviously, violate your timing constrained. So, that is, so now, what you have to
do you have to find out a feasible schedule, for all the elements taking appropriate
modules from T meeting the deadline. These are new constrained that is added because

of time and obeying the partial order that is what you have to do.

(Refer Slide Time: 19:22)

Unconstrained Scheduling (UCS) problem
Unvem ~

\
A set of operationy O Ja set/T of differomt types of funcisona modules, a type

"\ 1 # —_
o - ’ -
fusction I'y JO @ and a pilal order on O delemuined by ihe precedence
L
COMITMNT —
Find:
A feasi bie schadule for all damats in O, takimg sppropnate modules from T and

obeying the partial order

a & — d Y
N\ VAL /)
) ‘CS 6 /)
- — ey

al v w3
* ;'/ /\ et | '/x/ 3
4 \
y ~ |
{ v) L,]v \b‘;& P | w,u// ?\
Ko — K A

So, in the last example if you look at it, so in this case the time constrained is if you say
that my time constrained was three. So, this unconstrained scheduling problem was
converted can be converted into a time constrained three time constrained three

scheduling problem, because here we are able to do it everything in three time steps.

(Refer Slide Time: 19:27)

Resource Constrained Scheduling (TCS) problem
Ghven:
A set of operations @, a set T of &llerent types of functiceal modules, a type
fanction Iy O -» I, resource construints max, 1<k < T | for cach functicaal
module of type £, 1<k<J| and a patial order on O determined by the

procadance constrants

Find:

A femible schodule for all chomaonts in@?, taking appropriste modulos from T
mecting the resource constrants for cach (unctional module type and obeying the
partial onder

NPTEL

Now, let us see, so let us define, so in last example you can say that it was an example of

our time constrained scheduling, when your time requirement or deadline was 3. So,

what is the resource,

so in this case one more thing you have to observe. So, like in this

example, so this is a scheduling a problem with time constrained three those is satisfied.

So, if I tell you that I want similar I mean scheduling schedule to be done, but my time

constrained is 2.

(Refer Slide Time: 20:03)

® «

HNPFTEL

Unconstrained Scheduling (UCS) problem

Onvem

A st of -1-mmm Q. Ja h't;f different types of fusctional modules, a type
fumction I'y o O and a un;: O Scicnmined by the ;ﬂ‘u‘dﬂut
comtraints —

Find:

A feavible schadule for all dammts in O, laking appropnate modulbes from T and
obeying the pu.nu.l order. o

5 87~
I z/‘/\ W/ -
f’\c:, C@/ - (3

\' 6"

So, you will find out that I will land into an inconsistency because we cannot do
everything in two time steps, because at least ah for I mean you cannot compute this in
parallel with this one because results of t 1 and t 2, sorry O 1 and O 2 are required to get
the value of O 3. So, you cannot put this guy here it is not possible, so you require at
least one step for these two one step for this one. And similarly this one also you cannot
put parallel over here because I mean result of O 3 is dependent I mean O 3 controls the

result of O 4, so you require minimum three time steps to solve the problem.

So, if you say that | want to solve the time constrained scheduling problem with time
step two, so you will not be able to do it, so if you say it is three or more then you will

able to solve the problem, so this was about your time constrained schedule problem.

(Refer Slide Time: 20:45)

Resource Constrained Scheduling (TCS) problem

A set of operations O, a st T of &lferent types of functional modules, a type
Panctson Iy € —» V‘If"'\'“. q\m‘”":"" max, 1<k €T for cach functional
T 7 \ .
modale of typg (e <k <] ol a partial order on @ determined by the
\ Ve
procaianoe consingnts /f —— =
i —
Find:
A femible schodule for all cloments in@?, taking appropriate modubes Trom 7

mexting the resource constrants foe cach funcoonal peddle type and obeying the

partial order o
7
[=

Now, we go for the resource constrained scheduling problem. So, resource constrained
time scheduling problem is very similar we have O T, and then the function it may have
solve the what you call the operations to different type of hardware’s and along with that
you have a resource constrained. So, what is the resource constrained says it says that k
is the type of operator, like it adder, it can be multiplier, it can be subtractor and it has a
limit it says that it is 1 to max of t that is what. So, it says that you can have a say | will
use maximum two multipliers. So, k is the type, so like in this case you see for each
functional type of T k you can have a function like this oh sorry you can have a

inequality like this it says that T it says that T k say you can say that equal to 1. So, that

means, the for the particular type of hardware operator like like in we can say T 1 may be

adder in this case.

So, we can say that T 1 is equal to max of T 1 say 2, so it says that maximum you can
have 2 adders in your circuit. So, if | say that T 1 equal to 3, so you can say that
maximum 3 adders can be possible. So, like T 2 stands for a multiplier, so you can say
that T 2 equal to 1, so it says that maximum you can have only 1 multiplier in this one.
And so how many you also what is the limit, so minimum should be one. So, if you do
not have any hardware any multiplier no problem can be solved. So, it says that T k is
actually a constrained it is says that what is the maximum number of operators available
or maximum number of hardware each hardware type that is possible. So, that is

possible, so it will it starts from 1 to max of T.

So, that, so T is the maximum number available. So, you have to specify that along with
the number of operations different type of hardware elements, partial order and also we
have to tell, what is the maximum number of elements per hardware type you are having
you want to put it that is one time resource constrained. So, you are putting a resource
constrained there and then you have to perform a, | mean feasible schedule for all this all
the operators for all the modules in T as well as we have to need the resource constrained

here.

(Refer Slide Time: 22:40)

Resource Constrained Scheduling (TCS) problem

So, in the last case we were talking about the time constrained, now we are having a
resource constrained. Now, let us assume the case resource constrained what | say that
maximum T 1 is equal to 1 and T 2 is equal to 1. So, we can have a maximum 1 adder
and maximum 2 adder time constrained is not there; that means, what you can have on
you can do parallely one addition at a time. So, feasible schedule is this is one T 1, this is
one T 1 and this is one T 1. So, what we do in first step we go for operation O 1, then the
same adder we will use for operation T 2 in the same adder you operation T 3 and
finally, the multiplier for T 4.

Now, you can see that this is our feasible schedule because now O 1 has been given T 1
O 2 T time step two O 3 time step three and O 4 time step four. So, what are you require
four time step, because we have the constrained is not 2 adder, but the constrained is a
single adder, so you have increase in your time step.

So, if you remember last example, so if our constrained was at adder is two then we
could have shifted this guy over here then this thing will be shifted here and this thing
will be shifted here and in a time constrained requirement will be at two. So, now
because you have gave an severe resource constrained, so your time actually your time

step have increased.

(Refer Slide Time: 23:41)

Resource Constrained Scheduling (TCS) problem

iastrates a resource-constrained schodulmg involving, one adder and one multsplcr, for
expression (a+beced)®e

As the schodule s resource-constrasned we nood 1o see that all ckemonts m O are
scheduled, sppropriate modules from 7 are taken, partial onder is maintained and
recourse ulilwration does not croas the lsmat

As there s one adder module (for 0,0, 0,) and a multpler module (for o,), we canmot
schedule o and o, m one coatrol step. So we schedule o, is stepl and o, | sep. To
manntaan (he partial order, o, 15 scheduled i step3 and o, 15 scheduled 1n siepd, 8 may
be moted that these operators cannot be scheduled carlicr

-
lh-f\é‘ . the number of control steps 18 4. De 1o mecting the resource constraint, we
carthit Jive a schedule m 3 steps

Now, resource constrained time scheduling problem that is what I have discussed. So, in

this case the number of control step is three and because in the last example it was in

time step three because of because of the time constrained. So, what | have discussed is
written in the slide, so | mean because the time resource constrained, so you have

increased your time step.

(Refer Slide Time: 24:00)

Resource Constrained Scheduling (TCS) problem

R
n L

Sup 1 h‘ V.\ PN

v

Swep J =

So, now if you say that | want to have a resource constrained of one and one and till 1
want to get a | mean schedule in three type step, so this is the infeasible requirements.
So, you have to either increase your time steps or you have to increase your hardware
requirements. So, that is the is the... | mean next definition that is called time resource
constrained schedule. So, in this case it was only about the time only about the resource
constrained. So, he is saying that or the or the designer is saying that the T equal to 1 and
T equal to 2 that is maximum 1 adder and maximum 1 multiplier, so you require four

steps.

So, it is one more than the case when your requirement when the constrained constrained
may be two that is 2 adders kind of a thing, so we have increased from 3 to 4. Now, in
what is the next problem, so scheduling problem we have seen that is both resource as
well as time both may be constrained. So, if somebody says that T 1 equal to 1 and T 2
equal to 1 and time is equal to time is equal to 3. So, you can say that it is impossible to
generate or is a infeasible situation, to generate a schedule in this way. So, you may have

to either say that either increase my time resource requirements to say 2 and then you can

follow this or we have to say that even if i want to keep my resource constrained less or

or see here thatis 1 1 1. So, you have to go for a time constrained of 4,

(Refer Slide Time: 25:09)

Time Resource Constrained Scheduling (TCS) problem

Gilven:

A setof operatsons O, asct T of y?{:uﬂ typov-af_fusctional modules, a type
— -— o ™~

fusctson Ty O -7, a tune \.»(nl.'.m.’. (deadline) [, resource Cpeistrmnts

max, A<k 4T for each .*ll\l-a-.ﬂ"m;;,‘,u!'r ob st 15k ST and a partial

order o) determmed by the precedence \\“l\lrml.‘:-

Find:

A feasible schedule for all clements inQ, taking apgproprisse modules from 7
mweting the deadbne D, mecting the resource di‘.:u.n-;:- for cach functronal

module type and obeying the partial ceder,

In time resource constraint scheduling, we noad 1o meet both timing and resource

Ccomiramis

o,

So, this is how sometimes we need to inconsistence schedules and then you have to go
for a better schedule i mean we have to | mean restrict one of the we may have to relax
one of the requirements and then we can give you a successful schedule. So, what we are
learning over now, so what we are seeing is that we are looking at the schedule problems

we are not giving you the solution that given a constrained how we get this graph.

Given 1 1 and three how do you get this graph or given 1 1 and two we said this is not
possible. So, how automatically we can get it that we are not discussing that we will be
discussing in the following lectures. In this lecture what we are doing we are just
defining you the problem what are the problems that algorithms will be looking in the

few | mean next in the next lecture onwards.

So, now you do not do not do not think about how you can automatically do that just
understand try to understand the problem. So, in time resource time resource constrained
scheduling problem is o set will be a T set will be there there is set of operation different
type of elements this function is there which maps the operation to the type of hardware;
then there is a resource constrained as well as a deadline constrained. So, we are truly
increasing the number of constrained as well as there is also a what do you call the data

dependency, that has to be also that the partial order you have to always follow.

Then you have to go for a we have proper schedule and then you have to say that the
proper schedule matches both this, what do you call this resource constrained as well as
the time constrained. Obviously, you have to follow the partial order of data dependency
for everything there is a feasible schedule, that if one of the say that one of the parameter
is not being met, like for meeting the time schedule you are not able to meet the resource
constrained. And then for missing the resource constrained you are not able to meet the

time constrained, then you said infeasible then you have to relax any one of them.

(Refer Slide Time: 26:43)

Allocation Problem

*Once a schedule is made (i.e., type of operators are determined along with
thelr quantity), the allocation task determines the “excxt”™ operator
modules, available in the design library, to be used in implementation of
the operators. Also, the area, power, frequency is determined after
allocation

*A typical design library can be represented as a table given below. It has
description regarding the type of modules (Le., functionality), sub-types
(namely, fast, slow, typical etc.), area, power, frequency etc. In case of a
modern sub-micron technology, a design library has many more entries
namely, leakage power, current etc

So, that was about the scheduling problem, now assume that this scheduling have been
done, so that is all the operation have even given some time step. Now, what you have to
do, so now, you have to find out exactly now in this case if you remember we are saying
that we require a adder this is T 1 we require a add here, we require a multiplier. So, this
is actually we had just said as a name that you were using a adder, you were using a
multiplier and you were using a what do you call, so what do you call call called a

subtractor.

But, now we are not telling exact nature of the multiplier exact nature of these adder or
something like that you know the lot of adders are possible and then it available in the
library like ripple carry, adder carry loop ahead adder carry save ahead adder. So, some

adders are faster, some adders are slower, faster adders are generally high in area they

take more power, we all know that slower adders are generally less area they take less

power and so forth.

So, in case in this type of allocation procedure we have to look at the design library and
then you have to typically find out or exactly find out, which is the type of adder or
which exact hardware module here going to be implement for each of the operations.
Like in this case you may see that there are two adders like t one and these are two

different additional operation.

So, it may happen that you may take it to be a carry loop ahead adder and it may be a
ripple carry adder sorry in this case they both are reused we should not take this example
like in this case you may think about this example. So, you may think that these are the
two different adders they are working in parallels you have to put two adders. So, you
can think that if I will be taking as a ripple carry adder and this I will be taking as a carry
loop ahead adder this also possible they are both adders, but you can take you can they
can be allocated a different, what you can call different hardware actual hardware

element.

(Refer Slide Time: 28:30)

Allocation Problem

S1. | Name of Module | 1 ype | Sub-type | Frequency | Arca | Power
No |
t
1 \dder-slow L1] I A r
S \
|] -~ . .
[Adder-fast_; T\ ¥ T Faw S+S
v | =" b
{ —— b
| Multipher-slow ' 1. - Sl I { P
| e — ¢
{ A —] —
i Mulnplier-fast [I, ~F = £ P, y
! - - q 7.
l —
It mav be poted that a fast module has higher frequency, higher grea and ?:.:/'p(.' power
ad 1 S - ' . 4 P 4
compared 10 i1ts shower coumterpart; so F <E s, <. 0 <F , and

—

F <} A iy PP

- - —

@

So, allocation problems will take you take in the schedules which you already made. So,
what you do you take the exact hardware that is required and you put it. And like like

this today the design library will tell you what is the power requirement? What is the

area requirement? What is the frequency? Everything will be mentioned there, so it will

be very easy for you to select this one here, what type of adder or multipliers you require.

So, let us take a typical example, so let let be this be table be your design library. So,
what we have, we have two adders one is at slow adder, one is a fast adder, | am not
typically mentioning it is what is the type like people carry or carry say we are not saying
that. We are saying that there is a slow adder, there is a fast adder the type is t 1, then sub
type we have to also mention the sub type. So, t 1, S is slow t 1, F is fast then we can say
the frequency is Fof t 1 S and F of t 1 fast, so this is the frequency of the fast adder and

slow adder respectively.

Similar this is the area, this is the power then and then we have two types of multipliers
also t type is t 2 subtype is t 2 slow t 2 fast and similarly here we have defined our
frequency area and this one. So, it is a general rule of thumb is that generally if the
elements are faster, so frequency will be higher area will be higher and power will be

higher, so generally this relation will hold.

So, what what are you mean what | am say that, so these are slow adder. So, frequency
will be less sorry. So, fast adder, so this frequency will be higher this frequency will be
low. So, area of this fast adder will be also higher than the area of the slow adder
similarly power of the slow adder will be also less than the power taken by the fast
adder. So, everywhere this one will be higher than this one, similarly in the case of
multiplier. So, we see that always the slow frequency of the slow adder will be less than
the frequency of the fast adder; and similarly the area of the fast adder will be higher,
area of frequency power of the fast adder will be also higher and similar case of

multiplier.

Generally the hardware which is faster | have more frequency, so it is obvious it is
generally it will take more area and more power kind of a thing, so there is general rule

of thumb. Now, we have to now let us take this unconstrained problem.

(Refer Slide Time: 29:57)

Allocation Problem

Let us comsider the unconstrained schedule of the expression (a+b+c+d)®e, From th
output of scheduling we know that 6,,0,.0, are of type 1, and o, is of I, . Further, w

noed two modules of type ¢, and one module of type £,

Now, depending ca requircment of froquency and available arca-power overhoady
we can select the sub-types for £, and £, . If we have high area and power constramiy

then we woulduse £, -5 for £, and 1, -5 for 1,

It may be noted that hme penod of cach control step i dependent on module havimg

the lowest frequency because system clock frequency depends oa the critical path. |

gencral, a mubtiplier bas much higher arca and power requircments compared to &
@ Also, frequency of a multiplier is lower compared 1o an adder

WPTEL

(Refer Slide Time: 30:12)

Unconstrained Scheduling (UCS) problem

Given

A st of operation: L] ut'! differomt n'pn of funsctonal modules, a type
I-m-.rwnh O and a ; --nk'r cn O Idcanined by the § ;tmnlmnr
c-xmm\ —

Find:

A feasible schodule for all danots in O, taking sppropriate modubes from T and

obeying the partial ceder. 4

; *&Dwﬂf ,

\f.v/ ~ ‘.
/ N v 1"/ = e ,t,
Ly -
(% i ™
() e , %L} SeAlNE
MPTEL - -

V. vt

Now what we have to do let us take this this one, so this guy and then we have to say that
which is the exact adder now itwast1t2t3t4 sorryt1andt 2 kind now you have to
say that which I will use you can have you have to sayt1fortlslowandort2fandt?2
slow. So, now we will we will explain that later on with the slides, but now let us just see
how we can do that. So, generally what happens multipliers are very slow circuits, is
slow circuits because very complex multiplier or complicated operation compare to

adders.

So, it is even happens that your that is the frequency of t 2 faster will be that is the
frequency of the fast multiplier will be also less than frequency of t 1 slope that is the
very typical thing you have to understand again and in this case say t 1 s. So, the the
frequency of t 1 s that is the frequency of the slow adder will be still higher in the
frequency of the fast multiplier that reemphasize multipliers are very complex circuits
compared to adders. So, even if you take a very slow adder is the very interesting thing
to observe that even fast multipliers till the frequency or the operating speed of your slow
adder will be higher than that. So, that is the general rule of thumb will take and then we

will try to go for the allocation procedure.

So, we know that this is the, these are time steps and; that means, it it takes some
frequency or this time steps has some time units that; that means, what, so if you say that
this is, so 25 Nano seconds. So, what does it mean; that means, that your adjust to
additions they are operating in parallel this should be over much before 25 Nano
seconds. So, if you take it as net 10 Nano seconds then you may need a problem because
10 you said that step one or step two or step three these are the steps are of equivalent

size.

We are assuming typically for the sake of simplicity for complex examples of complex
cases the time steps may also vary in size. So, sometimes or some case you have 10
sometimes in 20 the uneven time steps, but there are for complex and multiple clock type
design. So, we are not going into those complexity in this course, because our idea in the
course is to take what is of the three design was, four design flow greater than going in

even depth in one of the areas.

So, let us assume that all the time steps have equal length | mean equal time period. So,
if you say that it is a 10 Nano second and say if the addition here takes 20 Nano seconds.
So, you will have problem because even before the addition has been done you will
come to the next time step. So, the clock will arrive, so it will be a problem. So,
whenever we say that it is a 25 Nano seconds something like that, then it should be able
it should should assure that these two operations are done these two operations are done

and this this operation is also done.

So, who will decide what are the time step length? So, it is very obvious the slowest guy

in the whole schedule process will determine that, so if you say that this addition

multipliers are very complex that take lot of time. So, you can say that it takes 40 Nano
seconds to do your solve the problem. So, obviously everything will be 40 Nano seconds
by default because this here you have to use 40 Nano seconds because your multiplier is
doing the solving or solving your problem in or doing the multiplication for the 40 Nano
seconds. So, obviously if you put twenty third an adders are doing your job in 25 Nano
seconds. So, instead of 45 to 25 Nano seconds, so this guys will not have a problem, this
guys will not have a problem in generating the output, but if I instead of 40, if | put 25
Nano seconds, then the adder multiplier will not be able to do its operation and will be

the inconsistency position.

So, what we do we always say that the fastest, slowest guy will determine the length of
the time step, so in this case let us see the 40 Nano seconds and so it everything will be
40 Nano seconds and this will be also 40 Nano seconds. So, this may be even 25 or
something like this. So, in our case what we have seen, so so our t 1 slow. So, we have
already seen that the frequency of t 2 fast that is is also less than frequency of t 1 slow.
What this happens because you can assume that this is the fast adder we just assume that
is the fast adder this is slower slow slow adders.

So, still the frequency of your frequency of your slow adders will be higher than your
fast multiplier. So, in other words the time period or time required to solve the problem
will be lower in case of the slow adders compare to the time period required for even the
fast adders. So, generally what happens multipliers are always very slow if you if take a
fast multiplier it will be slower than the even the fastest adder. So, let us assume that we
take everything very fast, so let us take everything very fast. So, we what we will do you
take t 1 fast, here also you take t 1 fast here, also you take t 1 fast and here also you take t
2 fast, because your job may be there | want to do everything very, very fast, very, very
quickly.

So, let us assume that it will this t 2 fast will take say 50 sorry 40 Nano seconds to do the
operation and sorry. So, t 2 fast is going to take 40 Nano seconds to do the operation, so
this one is actually 40 Nano seconds. Now, what you say that you say that we are using
fast adders over here. So, instead of 25 we also get for the slow adder kind of data, so

assume that they do your job in 20 Nano seconds.

So, now there is a big loss why you were in a big loss because this even if if I am using
the fastest multiplier still what happens the time period taken is 40 Nano seconds. And if
I am putting a very fast adder also my time taken is 20 Nano seconds, but | cannot make
this one as 20 Nano seconds, because there may be the problem. So, by default this is for

t, so this will be 40 as well as this will be 40.

So, even by using a slow adder by using a fast adder | am not getting any gain, I am
getting the result in 20 Nano seconds because fast adder, but still I have to wait for 40
Nano seconds because the everything is decided by the slowest guy in the in in the all the
operations, so that is t 2 or operation O 4. So, that is actually slowest one it is taking 40
Nano seconds even with the fastest guy | am having for type two is 40 Nano seconds to

all the time steps are 40 Nano seconds.

So, even, so there is no use of putting a very fast adder over here you know the fast adder
area will be higher than a slow adder and time period may be all the case and even the
area and power of the slow adder will be less than the first adder. So, when you putting
very fast adder, so | am putting more area and more power and I am computing of the
total Nano seconds, but still I have to wait for another 40 Nano seconds because the time
period is 40 Nano seconds and it is determined by the fastest slowest element of the

block which is at the multiplier.

So, | am putting the fastest multiplier available if it is 40 | can | cannot have a compute
multiplication more in less than 40 Nano seconds. So, | cannot bring down the time step
less than 40 Nano seconds. So, there is no use of putting anything very fast adder over n,
because even if | am putting a fast adder 1 am getting the solution in 20 second still |

have to wait for certain Nano seconds.

So, let me try the other way, so let me what I do is that this is 40 to fast | am using what |
have to do, but now I am putting say t 1 slow and also t 1 slow and here also t 1 slow. So,
I will get the answer in 25 Nano second here also | will get the answer in 25 Nano
second. But still I have to wait for another 40 Nano second, so even I if | get the result in
20 Nano second. So, 25 Nano second it does not make any difference for the adders

because time time step is 40, so you have to wait.

So, in this case because this 40 Nano second is these are bind by the fastest multiplier |

have | cannot go down between this. So, why | should use a 20 Nano second fast adder

because fast adder will always take more area in slow adder and if I am putting a slow
adder 1 am not losing anything. Because compute the addition in 20 Nano seconds or
even if I do it in 10 Nano seconds, but | cannot get the answer earlier, because | have to
have my time step of 40 Nano seconds because of the multiplier. So, what | will do is
that typically intelligent designer will put a 40 Nano seconds multiplier is the fastest is
available you will put it here and here you will not put a very fast adder, you will put a
very slow adder. Because who is getting the answer in 25 Nano seconds and still I mean
it is much less than 40 Nano second.

So, anything for below 40 Nano second is even if | have a very, very slow adder which
will do my answer in say 30 Nano seconds, | will be prone to put that because | want to
do my I do not want to I cannot the time steps are fixed to 40 and I do I can | will be then
within | one my motivation will be that |1 want to compute all my answers. Or addition
answers in less than 40 Nano seconds at least equal to 40 Nano seconds and | will be
using as slow or as little hardware as possible. So, that is you will take a slow adder

because slow adder will take very less area and it will take very less power.

So, what | will do I will use slow adders over here and | will use fast multiplier over
here, so that is actually called the binding allocation problem. So, what | am doing. So,
what | am understanding. So, what |1 am doing I will 1 am finding out the this is the
slowest guy. So, I will multiply the slowest part, so even if I do my best effort. So, even
if 1 using two s 2 type 2 fast still this is actually say 40 Nano seconds kind of a thing |
cannot bring it below that. Then I will try to take the stuff or, so | will take such type of
adder which will do my answer get me my answer in less than 40 Nano seconds and take
the minimum amount of power and area. So, | will obviously, use t 1 slow and t 1 slow
and t 1 slow over here, because they are going to give me the answer in say 21 Nano
seconds still much less than 40 Nano seconds and my area and power is less than using a
fast adder.

(Refer Slide Time: 38:44)

Allocation Problem

Let us comsider the unconstrained schodule of the expression (a+b+c+d)*e, From th

output of schoduling we know that 6,,0,.0, are of type 1, and o, 1s of 1, . Further, w

nood two meodules of type £, and one module of type £,

Now, depending oo roquircment of froquency and available anca-power overheads

we can select the sub-types for £, and 1, . If we have high area and power constramity

then we woulduse £, -5 for f, and 1, - § for 1,

It may be noted that hme penod of cach control step i dependent on module havim,
the lowest froquency because system clock frequency depends on the cnitical path. |
gencral, a multiplier bas much higher arca and power requircments compared to &

@ Abso, frequency of a multiplier i lower compared 1o an adder

HPTEL

So, that one is that is what is the motivation over here, so it is written over this case.

(Refer Slide Time: 38:48)

Allocation Problem .

So, in the example, time peniod of each controd step

Now, if have no arca and power comstraints, then e f~F for , and

-

t, = F for t, The ime penod of each control step T/f

But, = general F, < F, . frequency of a fast = is generally bess compared

to even a slow adder. So m speie of allocating fast addens 1o o .0,.0, (commumang bagh

arca and power), ime penod of control step is - - , which s not dependent on

-
F, ;ock, ;. S0 we can use show adden wathout any compromise in overall time

penod of operaton (i e, time penod of control sep)

®

NPTEL

So, this is what | have written, so in this these are actually | have given you some
examples of frequency and time periods what | was saying 25 seconds at the nine periods
49 seconds the time periods. So, here in the slide is written in a general formula like here
you saying that a time period which control step is F t to slow, so | mean just you can go
through this. So, I mean if it is saying that the time period of which control stepist1 1

by t 2 F that is the frequency of the fastest multiplier. So, but now now you can think that

if I am taking a very slow multiplier then you will be in the another very big problem.
Because now the time period of the slow multiplier may be say 50 Nano seconds then the

time periods of each of the times will be 50 Nano seconds now.

So, I will not be prone to take a slow multiplier I will be taking a fastest multiplier and a
slow adder because the multiplier is actually determining all the type, because it is the
slowest element in the whole schedule operation. So, if have another block which is
doing a very, very complex operation say which is mod computation sorry factorial
computation and all. So, then | have to concentrate then | will take the faster mod
computer and that will actually determine my time steps. And based on the requirement |
will take such elements which will be the slowest in nature, but still do not over shoot the
time step requirement. Like in my case of this multiplier, the multiplier of the slowest
element, so | have taken a very fast multiplier which is 40 Nano second. Then | will take
adders slow as slow as adders as possible or as slow other elements as possible that do

not over share the time requirements of 40 Nano seconds.

(Refer Slide Time: 40:38)

Binding
Afer all the operations are scheduled and allocation s done, we get information
reganding exact type of curcust modules (from the desagn Iibeary) 0 be used and ther
numbers
We have soem i the allocation step. that operatxons i a control step are performed by
different modules, hbowever, modules are shared between operaticas (of same type)
that are in Gfferent control steps. In the unconstraned schedule example, an adder
module will be shared between o, and o, 0r o, and o, . Due w shanng, in ad&non 0
operational modules (adders, multipliers et), we need multiplexers
Further, 1o store vanables (a.b.c.de¢) and mtermediate results (femp] femp. lompd)
we need regnters. Like operatxonal modules, regstors can be shared, wiich do not I
in same control sMop

.Wjahn.\' mentoned steps (afier scheduling and allocation) fall under Bandmg
[=

So, it is saying that nobody we have to find out the slowest element of the whole lot in in
that is in set O and that is actually set t or other. So, you have to find out the slowest
element in set t that is the type of operators and then you have to take the fastest version
available for that then determines the time time step length. And accordingly you have to

use very slow elements of the other guise still you have to think that you should not over

show the time step that one. So and that is what has been written in the slide | mean you

can read through that.

So, then then actually this is now you are coming to the third step. So, third step is the I
mean a bit complex step I should not call it complex, but what happens here. So, in this
case what we do in this case what we do is now we have your scheduled operations, now
we have binded elements, binded elements means now all the scheduled operations has
been binded sorry allocated to some specific hardware like hardware fast adder, slow
multiplier etcetera, etcetera kind of a thing. So, now what you have to do, so in case of
binding what happens. So, now, you have to say that like for example, you might have
say that we are using like, if you take this time control step like if you take this example

that is better to explain here.

(Refer Slide Time: 41:15)

Resource Constrained Scheduling (TCS) problem

2 W N\
- ¥
- »V

So, in this case you see that we have used only 1 adder and 1 multiplier. So, you can
think that this one will be t 1 slow, this one is also t 1 slow, this one is t 1 slow and this
one is t 1 fast. Now, this is your actually scheduled and this one is actually binded
everything is done sorry allocating the scheduling is this one and these are the allocations
now you have to bind it; that means, what we have only one adder. So, there is only one
adder which is of type t 1 s and you have to first you have to say that a a and b will be
first done with this one then again this temporary variable 1, temp 1 and temp c will be

again done by the same adder will reused of the adder.

Then you can see that again temp 2 and t will be again | mean binded in same adder for
the third time which is being reused and then you can say that temp 3 and e has been
allocated and and schedule allocated and binded. So, you can say that temp 3 and e has
been binded then this adder number 4 that is t 1 f. So, in other words what | am saying is
that in case of binding, what | am doing as we were reusing the elements, as we are

shown in the examples.

(Refer Slide Time: 42:17)

Binding
Afier all the operations are -\I'a:-.'.:l;m allocation is done, we get information
regandng exact type of circust modules (froe the desagn Iibeary) 10 be used and thew
numbers
We have soen in the allocation step, that operations in a control step are performed by
different modules, however, mody \\ are shared \t(-n operations (of same type)
that are i Giferent control \q-h In the m}y/n-;d schedule example, an adder

modile will be shared betwern .- Yarsd Due 1o shanng, in .\d-&' o 0

operational modules (adders, mult I[\IC‘T‘\ et), we n-:c'd multiplexen

Further, to store vanables (a.b.c.de¢) and miermediate results (femp | femp.. tlemp3)
we noed registers. Like operational modules, regstors can be shared, whnach do not I
in same controd sicp

\}?’jd‘\!\c mentroned steps (afier scheduling and allocation) fall under Bendmng
°

As we were clearly, always reusing the elements like adder multipliers you are reusing
many times we do not have to use do not use parallel is not even if you are using parallel
is not like even we are using two adders in state one still one of the adder will be reused
in the third step as you have already seen like we actually called the reusing. So; that
means, what; that means, same variables or same operations, which is binded to same
same hardware like first it will be a plus b, then it will be ¢ plus b and so forth. So,
actually binding thus binding actually the problem is that one, it says that which
hardware elements binds to which of the operations, so that is the idea. So, here it says

that in the unconstrained time schedule first example O 1and O 3, 0 2 and O 3.

So, there is actually two hardware’s are available, so in one actually we do one the other
we do two and then in the second time step we do O 3. So, we can take saying it is say
adder one you do O 1 and O 2 or you can say that adder two | do O 2 and O 3. So, O 3
can be buying the two either a 1 or a 2 they are the two adders. So, that is actually then

also you have to think about the variables like a, b, c, d, e where the input variables and
they are the temporary variables, so they has also to be binded to some kind of registers.
So, that is particular operations or particular variables then they are actually buying there
two on which hardware or on which allocated hardware, they have to do the operation is

actually called the binding. So, we will explain with examples then it will be more clear.

(Refer Slide Time: 43:40)

Binding
The binding sk (also called resource-sharing step) assigns the operations and
variables to hardware modules. A resource such as an operational module or
register can be shared by different operations, data accesses, or data transfers |f
they are mutually exciusive, For example, two openations assigned to two
different control steps are mutually exclusive since they will never execute
simultaneously; hence, they can be binded to the same hardware unit. Binding
can be classified into three sub-functions
Storege binding: This step assigns input, output and temporary variables to
rEENTETT Units. Two variables that are not alive simuitaneously (Le., not required
In overlapping controd steps) in a given control step can be assigned to the same
reguater.
Functionat wmt binding. This binding step assigns operations to operational
modutes (like adder, multiplier etc.). Two operations of same type that are not in
a single control step can be assigned 10 the same operational module.

7
h‘_Lgf(4 binding: This step assigns an Interconnection unit such a1 a
ruitiplexer O 3 bus 10 a data transfer

Then actually we have three type of bindings let us just define the type storage binding.
So, storage binding means if it is input variables a, b, c, d, e, f temp 1, temp 2, temp 3.
So, which are the registers which they will be used to store, so there is actually called the
storage binding. Functional unit binding is very simple like operation O 1, which adder
which has been allocated, which allocated adder they will be operated on or which the
which multiplier allocated multiplier will be multiplying a particular operation, I will
actually called the functional unit binding. That is which hardware will do which
operation and similarly interconnect binding is the actually using a multiplexers and

wires.

So, that is about actually three types of binding, so that we will all illustrate by an
example which were already using. So, actually already said that there the three different
binding steps, which are like this one storage storage function unit and interconnection
binding. But there are three different steps although written in in all text, but actually

they are all intertwined and they are done hand in hand.

(Refer Slide Time: 44:14)

Binding

Although listed separately, the three sub-functions are intertwined and are to be camed

out concurrently for optimal results

Now, we will dlustrate Bndng-Lr the unconstraned schodule when allogatvon 1s-- two
number of modules of type £, - S for 6,0, 4 and one module of type 7, - F Jor o,
/] 9
Y]
JL
17, —
DS 0
< 2 il
L/ Oy >
- B
- ’ Lo
Y e)
[& i / Oy
e A
. D~

So, now we illustrate the binding operation for the unconstrained schedule, when the
allocation is two types of modules that is slow adder and fast multiplier. Already we
have considered thisand O 1 and O 2 O O 1 o two and sorry O 3 they are your thisis O 3
this one is your addition operation and O 4 is the multiplication operation. And we are
taking the case where it is unconstrained schedule that is this is your two adders that is O
1 O 2, then you add temp 1, temp 2 that is O 3 and finally, in the last step we have this
multiplier operation which is actually O 4. This is your unconstrained operation, so two
adders are in the first step, so you got two adders same adder can be reused. And
obviously, there is one multiplier block, so that has to be done to this one about the

multiplication O 4.

So, let us look at this is the basic architecture of the binding element. So, what we have
we have one register one adder as you can see over here this is another adder 2 as you
can see over here then a is one input, then b is one input, ¢ is one input and d is one
input. So, now, we have to say that a plus b that is one operation and c plus d is another
operation. So, we allocate a plus b to other one sorry we bind a plus b to adder 1 and ¢
plus d to adder 2. So, what will happen a has to be go to adder 1, b has to go to adder 2 in
one step, simultaneously ¢ has to go to adder 2 and d has to go to adder 2 that is what is

being done.

(Refer Slide Time: 45:19)

Binding

Some then some results will be generated which is nothing but your temp 1. So, temp 1
and plus temp 2 we are saying that we will again bind it to adder 1. So, this temp 1 from
adder 1 will be fed back to this same adder and the output of temp 2 that is of output of
adder 2 will be again also fed back to your adder 1, because you are binded temp 1 plus
temp 2 to adder 1. Now, what happens the output is temp 3. So, it is generated and this e
that is actually temp three plus e is actually a plus b, temp 3 is a plus b plus c plus d that
is actually actually multiplied with e. So, temp 3 star e is actually binded to multiplier
that is obvious because there is only one multiplication operation and one block is there.

Now, what we will see that there are different operations, I mean now we will see how
this happens that is in first step you add a plus b then you add c plus d simultaneously
then you go for temp 1 plus temp 2 and then actually you go for temp 3 star temp 3. So,
there is some step time step involve, so let us look at how the hardware works like that

and how actually the binding is happening.

(Refer Slide Time: 46:48)

Binding

At control stepl, we have | active \anal»iﬂ.{_l\.-"‘\. d), At stepl we have 2 active
vanables (femp] .'-_-e,':_‘r and at vtepd woe have _‘.nf?w—\;r-.alwk‘ur.-m;-_h)

—
S0 we have a mavimum of 4 active vanables at step |, thereby keadmg 10 the fact that
we required 4 regasters, o b ¢ d cannot share any regnter Homever, regivtens ¢an be
shared between (ab.c.d) and (lempd.c). (ab.c.d) and (temp] sempl). (temp] templ)
and (templ ¢). However, variables listed in the brackets cannot share registers among
themsedves. As discussed m last section, we have two adder modules and ooe
multiplier module. Based on these facts a possible by i as follows

So, this was a very basic block level diagram, so now, we will see step by step. So, in
control step one what happens you actually have four active variables a, b, ¢, d because
in the first time step we are adding a plus b and c plus d. In time step two we have two
active variables temp 1 plus temp 2 because we are adding in time step two temp 1plus

temp2.

In time step three what happens you have two active variables temp 3 and e because
temp three is a plus b plus c plus d and if you remember example we are taking is a plus
b plus ¢ plus d and we are actually starring with with this is our expression which we are
doing. So, now you see, so we have to store this variable. So, there is we have seen that
there are three types of I mean what you call this variable three type of bindings are
there. So, storage element binding let us say, so we have four elements a, b, c, d, so we
have to give some registers where there can be stored.

Now, you can see in time step one a a, b, c, d all of them are acting. So, here actually you
cannot save any kind of this thing. So, in time step one you cannot | mean share any kind
of a hardware like for a plus b plus ¢ plus d all the a, b, c, d are all alive at time step one.
So, as all of them are in time alive in time step one, so obviously you require four

registers for this one.

(Refer Slide Time: 47:56)

Binding-Configuration at Control stepl

conarall ¢ * v 1 i
JR—— [_:'—_I ,Lh-_] 1'_._,_'
L l'llﬂl J L ;r""'] Crepen] [_mewees |
— . v
sddery sdder?
it [B=

Meltiglicr

WPTEL

So, 1, 2, 3, 4, so four registers are mandatory because in time step one, I mean all the
four i mean what you call this four variables are simultaneously to be stored.

(Refer Slide Time: 48:05)

Binding o
At control sepl. we have 4 active vanablex{ab.c.d) bt siep2 we have 2 active
vanablkes [rmmpi we have 2 active vanables (fempd.e)
e — -——

So we have a maximum of 4 active vaniables at stepl, thereby keading to the fact that
we required 4 registers; @ b.c.d cannot share any register. However, registers can be
shared between (ab.c.d) and (fempd.e). (ab.c.d) and (templ templ); (temp], tompl)
and (temp3 ¢) However, variables listed in the brackets cannot share registers among
themselves. As discussed in last section, we have two adder modubes and ome
multipher module. Based on these facts a possible be

NPTEL

So, four registers has to be assigned and that is actually you have to allocate four
registers and a is binded to register 1, you can say b is binded to register 2, c is binded to
register 3 and d is binded to register 4 kind of thing. See see a then b then ¢ and then d.
So, all of them are binded to 1, 2, 3 and 4. But now you see in the second life cycle

second life stage after a plus b plus ¢ plus d happens. So, this will generate temp one and

this will will generate temp 2. So, now, you can see the temp 1 and temp 2 do not share
any kind of a common life time with a, b, ¢, d. So, whatever for registers we have taken
or we have allocated four registers and binded with a, b, c, d they can be reuse to store
temp 1 and temp 2, so that actually we can do over here.

(Refer Slide Time: 48:48)

Binding-Configuration at Control step2

f

.fi,g

— &
o \\‘ \heltipiir
\;%%) .

S —

So, you see a is actually in time step one what happens time step one this is say this is
actually at control time step one. So, | mean this multiplexer actually sends a over here b
over here then c is | mean allocated directly to sorry binded directly to register three and
d is going to register four. So, we are using two multiplexes because some as | have
already told you adder one will do a plus b and then it will be do temp 1 plus temperature
2.

So, there is a multiplexer over here, so in time step one control step one you made the
multiplexer control to be zero you can see that we have made control this one equal to 0.
So, what happens, so these guy is flowing over here this already shown in the slide. So,
this guy is flowing over here, d is flowing over here, ¢ is flowing over here and d is

flowing over here, so you get temp 1 and temp 2 as the output.

Now, what about the control time step two in control time step two if you see we are
making actually control as equal to 1. So, in this case what happen your temp one should
go here temp 2 should go here and you are generating temp 3 in this case we do not

require because in time step two we are not at all requiring this adder. So, now you see

what happens, so this register is actually being shared by a in the first time step temp 1 in
second time step register 2, is shared in three, | mean register 3 is only stored in ¢ not to
bother.

And we will see that register four is storing d in the first time step. So, it is binded d in
the first time step, but in the third time step when you are going for the multiplication
operation, then what we have we have already done temp three plus temp sorry temp two
plus temp three plus temp two already we have added here and we have got the result in
this one temp three and then actually we have to multiply with with e.

So, now this will come via this register, so this will be come via this register register
number 4. So, register number 4 was storing at d in the first step and in the third step it is
actually storing the value of e, which show you that it can be multiplied with temp 3. So,
register four is actually storing the value of d as well as t in two different time step. So,

in other words, so we are using four registers here that is what is been told in this slide.

So, we are using four registers if you can see we are storing four registerr 1,r 2, r 3and r
4 and in the binding a and temp 1 is binded to register register 1 b and temp 2 is store
binded to register r 2, ¢ is binded to register 3 and d and e are binded to register r 4. So,
that is actually your what you say what do | say these actually storage binding kind of a

thing.

Now, you have some addition operations, so already told that O 1 is done over here O 2
is done over here this a plus b and ¢ plus d this is control time step two. Now, control
time step is also it is in control time step one O 1 is binded here and O 2 is binded over
here that is a plus b and ¢ plus d. Now, in this case you see in time step two this is not
doing anything this do not care and here what we are doing we are doing temp 1 plus
temp 2 that is O 3.

So, O 3 is actually binded you can say to adder one and finally, the third step what we
are doing we are actually multiplying temp 3 with e, so O 4 is actually binded to
multiplier in the time step three. So, these actually is the story of binding in a nutshell
that is we are given two adders and one multiplier and we require four registers. And so
we have to bind a, b, ¢, d, e a b ¢ d e they are the four input variable. So, you have to

bind them to different registers.

Exact registers which will be storing the value at what time step and also the four
operations we have O 1, O 2, O 3 and O 4 you have to bind them to adder 1, adder 2 and
adder 4. So, this is basically the idea of binding we can explain with an example. Now,
what is inter connect binding over here they are nothing but you are the multiplexers we
have kept and the wirings. So, you see in register 1, where binding a and temp 3, so you
require a multiplexer. So, in one go a will go and in second times steps step in the second

time step temp 2 will go and in third time step temp 3 will go.

So, actually in fact, register one is been shared by three variables in this case you should
see. So, in the first case | mean will be more precise here. So, in the fast time step these
stored in register 2 and a is being stored in register 1 register one. So, in the second time
step temp 1 is stored in register one because this is result of a 1 plus a 2 then again what
you do again you add temp sorry here you are again adding what, you are adding temp 1

plus temp 2.

So, temp 3 will be generated then it will also be stored in register r 1. So, basically
register r 1 is actually binding three variables a plus a then it is binding temp 1 and then
finally, it is also binding temp 3. So, this is actually a for first time step a plus b that is
temp 1 is second time step and the third time step I mean sorry second first is actually
initial storage is a then first time step you are computing temp 1 that isa 1 plus a 2 that is
also stored in register 1 and finally, in time step two you are calculating temp 3, which is
also stored in register 1.

So, register one is actually 1 mean which can be shared by three variables, register 2 is
shared by 2 variables b and temp 2. So, in first step and in the initial step you are reading
the value of b. So, that is stored in register 2 and temp 2 is binded to register 2 at the end
of fast time step, so here actually we have b and temp 2 and in register three only c is

there.

So, only c is binded to register 3 and in case of register 4 d at the initial time step you
read and e also is there at the initial time step, but you are requiring e in the third time
step for doing the multiplication. So, in the register 4 is binded to e at the third time step.
So, now, you require multiplexers, so why do you require multiplexers because in fast go
registers 1 should add load a in the second time step it should add temp 1 in this third

time step sorry second time step, which would add temp 2 and so forth.

In initial temp 1, then temp 2, then temp 3 all are actually rotate to register 1. So,
obviously you require a multiplexer. So, there are some multiplexers over here we have
to add and there we will actually comprise your, what do you say your interconnect

binding, so at is in a nut shell what we have seen.

(Refer Slide Time: 54:25)

Binding L\‘S

{1
7 &I) :
» Binding of 0,10 adder] and o, to adder2 (functional unit binding) |

s Bmmdmg of o, 10 .\-.Idﬂl (funcional unst bndang) 'J’
b /
. 3 f

* Binding of atempl.tempd 1o register] (storage bending)

‘ * Bmdmng of b fempl to regntar2 (storage bindang) |
\ * Binding of ¢ W register3 (storage binding) |
\, * Bmdmng of de t0 registerd (storage bmnding) ||

Bmdmg of o, to multipher] (functsonal unst bmding)

— — — —

H"“u_,__ Ll \""'.‘:\

3

—

Y
lv)

If you look at this this is your binding result. So, we say that at time step one o one is
binded to adder 1 and O 2 is binded to adder 2 this is actually functional unit binding. O
3 of adder 1 functional unit binding will be done in adder 1 or adder 2 whatever you
want to say that will be actually the second time step. Then we say that a temp 1 and
temp 3 is binded to register 1, already we have told you b and temp 2 is done to register
2. So, this is actually storage binding, c is to register 3 and d and e are to register 4 by

that therefore, these are storage binding and these are actually functional unit binding.

So, O 3 actually in this case we are doing in adder 1, so sorry for the actually adder 1 O 1
in adder 1 O 2 in adder 2, it is in the first time step. And in the second time step O 2 that
is temp 1 plus temp 2 is again done in adder 1 and then actually O 4 is done to multiplier
one that is earlier there was; obviously, one choice. So, this actually completes your
binding arrangements. So, given | mean in this case adder all the adders are you should
know that they were actually t 1, t 1 slow and it was actually t 2 fast for the multiplier.
So, this is what these are operations are physically they will be done by this this this

hardware. So, if you define them they will actually tell your binding step.

(Refer Slide Time: 55:42)

Control Path

For the schodulng, allocation and bmnding comsidored in the runmang example wy
have the following sigmal sequences for control] and conirol? in the three tme steps

o Step-1: controll w0 and controll 0

e Step-2: controll | and control? s X

e Swp-3: comroll = | and comtroll s |
We need 1o develop a sequential circuit having two output bits “comrof] * and™comtrol2

and they should bave the values 007, “IX" and “117 in three consecutive clock edges.
This carcuit can be casily design using the concept of state machine implementation

o

So, these are this with this we actually complete the what you say the binding procedure
of your high level synthesis process. Now, what you have done one small step is

remaining that we will see.

(Refer Slide Time: 55:50)

Binding-Configuration at Control step3

- -—p

® T o

So, what we have seen that there are some multiplexers over here. So, in the first first
step of the multiplexing, so what will happen we make control one equal to 0 so; that
means, what a is flowing over here, b is flowing over here, c is there and; obviously, d is

flowing over here. In second time step what we have done, so we require that temp one

should go over here temp two should go over here, so we made control one. So, that the

multiplexer the second bit is selected.

So, in the step we made control one equal to 1the other multiplexer and these adder is not
require. So, do not care we do not require this and again in the third time step what we
have done. So, again we have kept it one. So, the temp three generate kind of a thing and
here actually we require control two to be one because e should flow over here. So, these

are some of the control signals you have to generate.

(Refer Slide Time: 56:28)

Control Path

For the schedubng, allocatron and bmding comsadored i the runnang example wy

have the following sagmal sequences for comtrol] and comtrol in the three time steps
o Step-1: comtroll w0 and comtroll w0
o Step-2: comtroll s | and comirol w X
e Step-3: comtroll ©» | and comtrold 1l
We need 1o develop a sequential corcunt having two output bats “conirod] © and™comtrol 2
and they should have the values “007, “IX™ and "1 17 in three consecutive ¢logk edges

This carcuit can be casily design using the concept of state machine implemontation

(V) (@ L
[i/_“) .\\-._-) / \‘__// ':‘/

So, what happens here, so you require in step one control one is 0, control two is 0, in
time step two control one is 1 control two is x. Because second adder is not required and
in third step control one is 1 and control two is generated. So, you now have to generate
a sequence with value 0 0 1 x and 1 1 in three consecutive clock cycles. So, that can be
very easily generated by a final state machine like the output state 0 O, state O 1 and state

1 1 you can say and these are moving back.

So, if you can add each clock pulse you will move around this final state machine. So,
initially 0 0 and sorry it should be not 0 1 this is 1 0 you can take, because it is second bit
is do not care over here and third bit is 1 1. So, if you go around this final state machine
at each clock step, so you will be able to generate this control path. So, after doing this
scheduling then we have done allocation and then we have done the binding that is you

have allocated a, b, ¢, d to define registers then temp 1, temp 2, temp 3 to define

registers. And and and actually multiplexing arrangements we have done and also we
have said that operation O 1, O 2, O 3 to different adders and O 4 to a multiplier.

So, after computing this what you can call this binding procedure then we have found out
the control signals this should be 0 0 1 x and 1 1. So, that is can be very easily generated
by this final state machine right. And so this can be very easily synthesized using digital
circuit fundamentals and that will complete your whole RTL design design that is your

high level block diagram. So, this is your high level block diagram finally.

(Refer Slide Time: 57:47)

Binding-Configuration at Control step3
ey =

(Refer Slide Time: 57:56)

Question and Answer

Question: Among the three sub-steps of HLS, scheduling, allocation and
binding, what can be done without information regarding design-ibrary?

Answer: Scheduling and Binding can be done without information regarding
design-library. Scheduling assigns control steps to all operations in the COFG,
after satisfying data-dependency between the operations, subject
constraints ke number of steps, number of modules etc. So none of the
parameters are related to design-ibrary. In case of Binding, opentions and
variables are attached to circuit modules, which are selected from the
design ibrary during the allocation phase. As circuit modules are dlready
selected from the design library during the allocation phase, binding can
work without any information from the design library.

®

-

And this will be another block level diagram which will generate the control sequence.
So, there we will have this final state machine which we have already drawn, so this is
the output of the high level synthesis procedure. So, what we have started with, we have
started with the example that is with a specification that is a plus b plus ¢ plus d star e.

And then finally, at the output we should get these architecture.

(Refer Slide Time: 58:06)

Binding-Configuration at Control step3
Sw—p ! -

- - d p
. 4
sve 'z ‘ . o en

OX\% T o

That is the block level architecture and then which is where the operations are schedule

allocated and binding as well as this control structure.

(Refer Slide Time: 58:12)

Question and Answer

Question: Among the three wtrstgp;_g! HLS, uhcdm‘, and
binding, what can be done without information fegarding desi ?

AML: Scheduling and Binding can be done without information regarding
design-library. Scheduling assigns control steps to all operations in the COFG,
after satisfying data-dependency between the operations, subject
constraints ke number of steps, number of modules etc. So none of the
parameters are related to design-ibrary. In case of Binding, cpenations and
variables are attached to circuit modules, which are selected from the
design ibrary during the allocation phase. As circuit modules are already
selected from the design library during the allocation phase, binding can
work without any information from the design library.

®

WNPTEL

So, after that we go for the gate level synthesis which is the next step of the design flow.
So, in the next lecture what we will be looking at, in the next lecture we will be mainly
looking at how we can have automated algorithms or automatic procedures where given
a specification like a plus b plus ¢ plus d star e. And some design constrained like
unconstrained design resource constrained, time constrained, automatically you will get a
schedule allocated and binded design ready, so that we will be looking at in the in the

next few lectures.

So, before we stop there is a question answer session. So, among all the three sub-steps
of high level synthesis already seen scheduling allocation binding, what cannot be done,
what can be done, without information regarding the design library. Like we are saying
that 1 mean design library means whatever hardware is available to you, so that only
those things that can be used with design like you cannot have a 10 input AND gate. You
have a very good design library then you can have different type of adders, but if you
have a very rudimentary design may be then you may have only carrying ripple carry

ahead adder and so forth.

So, based on the design library which what can be done in the three steps what can be
done without any information of the design library or which of them is a steps are
independent of design library information. So, already we have decide seem that
scheduling and binding they what they they will do they will actually in the scheduling
we give different time steps to different operations. And in binding what we do we have
different hardware, hardware modules where we where we physically bind which

operation is to done and why.

So, this two are basically be general steps, but in allocation what we do, in allocation we
actually look at the design library and then we see what are the time steps already we
have seen that we have used a very fast fast multiplier that we have used slow adders.
Based on the timing requirements of the multipliers and the adders and based on the time
state we have already decided that it is very good to use a single, what you say, we say
that it is good to use a fast adder slow slow sorry a slow adder and a fast multiplier.

So, this allocation stage looking at the frequency power requirements and all... So,
allocation step it is very important to have a idea about what is in the design library. So,

without having a idea about the design library you cannot go for the allocation step, but

the other two steps like scheduling and binding. So, | mean there is strictly speaking
scheduling, you do not require any information about the design library it is a

generalized step and your assigning operations to different time units.

But allocation it is mandatory to know that design library information is there based on
that you see see that which exact hardware you are going to use and even if you do not
say you by pass the allocation step, because you do not have in that information. So,
even you can say that | use adder one | use adder two type adder three type multiplier
type one, but exact details you do not know, because you do not have the library
information still you can go about the binding step, because in this you have to

physically bind the operations to different hardware.

But, without the by design library information allocation step cannot be done. So, with
this we stop here and in the next lecture we are going to see automated procedure for
going about high level synthesis the fast step that is scheduling. So, in next lecture we

will see scheduling procedures, automated scheduling procedures that is what.

Thank you for that.

