
Design Verification and Test of Digital VLSI Designs
Prof. Dr. Santosh Biswas

Prof. Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 8

Fault Simulation and Testability Measures
Lecture -3

Fault Simulation - 3

So, today will be covering the third lecture on fault simulation. So what we have

discussed in a last two lectures that for the defining out define of test patterns for a stuck

at faults there can be two basic approaches. In one approach we sensitize the fault

propagate the affect and then justify the lines which is called the sensitization

propagation and justification approach.

Then we have found out that these actually the algorithm is not a very simple algorithm

because you can see that first you have to sensitize then eliminate of this propagate and

then you have to justify and it will be for all the stuck at faults and sometimes they will

be requiring requirement of iterations because sometimes propagation or your what you

may call the justification not be successful.

So and also this is fact that one pattern can detect more than our number of faults. So if

you are I mean doing sensitize propagate and justify for different faults so, what may

happen is that this you may be landing up in resulting the same pattern for detecting

multiple faults, this is not a problem but, the thing is that the same algorithm or the same

pattern you are generating by the running this sensitize propagate and justify approach

multiple number of time which is actually hampering your efficiency. Then we have seen

that another approach is called the random fault stimulation based test pattern generation

approach in which the idea is to take a random pattern and then you find out how many

faults get detected by the approach.

So if we find that there are some k number of faults detected by that then you drop those

k faults and then you take a another random pattern then keep on doing it till you find out

that I mean a new random pattern is not able to detect some sufficient less number of

faults. So the idea is better than the previous approach because you can see that that I one

pattern detecting k number of faults so that can be found out by a random fault

stimulation when followed by fault stimulation in one group.

(Refer Slide Time 02:15)

So you did not repeat sensitize propagate and justify for this k faults. So I mean what you

can do this only for easy to test faults approve the process saturates and then you have to

obviously go back to sensitize propagate and justify approach and then what we have

seen that we have seen different kind of fault stimulation for example, so what is the

basic idea of fault stimulation was that a we have normal circuit and we have a fault

circuit and then we find out whether a pattern creates a behavioral difference at the

output with the fault.

So we have seen very simple serial fault stimulation which is which was the very simple

one in which case what we do we take up fault and then we they which we take a pattern

and then find out whether one fault is detectable or not and then if we detectable it is a

what you called you returning job the fault and we try with another fault and keep on

doing it then you apply a another random pattern and so forth.

But actually the idea here was that it was very slow because we are going for serial based

approach one fault one pattern one fault then next fault and next pattern and so on till

you cover all the faults and then process repeats for the next test pattern. So we have

seen that this actually bit slow then when you have gone for parallel fault stimulation in

which case for each lying we have a array which represent some n bits or which is the

depending on the parallel approach computer you can have a n bit array or a two n bit

array something like that one bit represent the normal circuit and the other all other bits

of the array represent one faults for the cases and then we can applies is random pattern

and then we can find out how many faults can be detected by the random pattern and

include windows size or array size is n then we can introduce the reasoning about n

minus 1 fault because 1 bit is for the normal circuit that we have discussed. So that

parallelism I mean analysis your algorithm by a factor of n minus 1 if n is the your

window size or your array size.

Then we have seen that in this case what is the idea that if you computer bit processing

or what do you call the parallelism of the processor is low or a mini it is only 32 bit and

also it there is some 1, 1000 faults so at least you have to repeat it 1, 1000 by 32 sealing

factor that time number of times you repeat it what do you call this a parallel fault

stimulation.

(Refer Slide Time 04:03)

So then we found out then we started discussing about another algorithm in which case

can we do the whole thing in one group, that is we apply the one random pattern and in

one scan of the circuit can the reduce the results about all the faults can be detected by

this then we saw that detective fault stimulation was a very good approach for that in

which case we apply one random pattern and then at each net of your circuit this one,

this one, this one and this one we find out what are the fault or we find out the fault least

that is it is detectable by that random pattern and then actually you can in one group find

out which are the pattern detectable by the fault.

(Refer Slide Time 04:41)

Then we started finding out some rules like for a example, if it is a not get then what

happen is the fault list here you propagate the value here and then if the value here is a 0

then we have to also add as sorry if the value here is a 1 in you have to add a stuck at 1

and this net and if the here the inputs signal value is 0 then you have to apply a stuck at 1

fault here and the whole list on here propagates here then it is a a fan out array then

whatever here get propagate here and here in addition to if it is a 1 signal here then it is a

stuck at 0 and vice versa and there similarly, we have seen the rules for and AND gate

like if the cases 1 1 then whatever fault least at both the nets will be add here last some

stuck at 0, stuck at 1 and the output then if it is a 0 0 then we have found out a only the

common set of faults in between this can propagate to the output. So we are starting out

some kind or rules in detective fault stimulation which can basically you scan the circuit

from input to the output you can find out or the false can be detected that for that we

require some rules.

(Refer Slide Time 05:42)

So in the last lecture so, we covered some rules like for example, if is fan out net then

whatever fault is here propagates here. So you see this least here and this least here then

you are applying a random pattern 1 over here and sorry you are here applying a random

pattern of 0 over here. So the pattern apply is a 0 over here so the detects the stuck at 1

fault here similarly, is also here and the value is 0 0 over here signal value it is a

applying a 0. So stuck at 1 is detected at this net another stuck at 1 is detected at this net

and for the inverter what is the rule we saw that whatever here and whatever here both of

the both the this will be here.

Now this is the value is 0 0 here so it is 1 1 here so, some stuck at 0 sorry so this is the

stuck at 0 that we rejected here and this is stuck at 0 that is detected here. Now you know

that if are the AND gate what we have seen the rule for the AND gate there will be four

rules so for 0 0 1 0 1 then you have for 1 0 and then for 1 1 so four so for all the four

cases of your AND gate you have to have the rules. So in this case is 1 1 so you know

that in AND gate when both the inputs are 1 then if I means if this is input 1 then

whatever fault effect will propagate similarly, this is 1 1 here so whatever is the fault

effect can be propagated because 1 is the non-controlling input of AND gate but, if it is 0

you know that nothing propagates the other end.

So in this case both the values are 1 1 signal value because of the random pattern 0. So

whatever the least over here and whatever the least over here the whole thing you know

that it will come over here. So you can if you study with this least and this least so the

whole least will be actually taking care of this one and this one because we are applying

1 1 and 1 1 is signal value output this 1 so you can also detect a stuck at 0 fault at this

net. So this becomes your what you called the pattern I mean this are the fault least for

this stuck at for this random pattern 0 you can detect this n number of faults. So we

found out that the rule for AND gate when both the inputs are 1 then all the faults at both

the inputs of the input and stuck at 0 at the output of the AND gate this is the rule for

AND gate when everything is 1 then we have taken the case when the output here was a

1.

(Refer Slide Time 07:41)

So you can a take stuck at 0 fault over here stuck at 0 fault at this net at this net and this

will be 1 over here. So you get a 0 over here so the whole least comes here because of

this inverter and then you can at the stuck at 1 for at this net you can at a stuck at 1 for

this net. Now we have also discussed in the last class at the both the AND gate inputs are

0 and if the AND gate input is 0 1 input is 0 in AND gate we know that the fault cannot

the propagated by the other end. So what will be found out that only one fault which is

common to both of them.

So this fault is common to both of them so this is landing up an a stuck at 0 over here and

stuck at 0 over here. So that is the only fault which can be detected at the output that we

have seen that only for which is common to both of them it can be a detected over here

and of course, you get a 0 and 0 over here. So stuck at one fault at this can be detected so

both this the this is the fault common that is the stuck at 0 fault at this line is affecting

both this input and this input this is common.

So that is the only thing will propagate here and other things not be propagated so the

rule is when both the inputs are 0 then we thought that input will be nothing be

propagated because a if you any 1 gate of the input is 0 nothing propagates to the AND

gate but, we where the surprise to find out that in this case if some output will be there is

affecting both the inputs of your AND gate then that is the only fault that is propagated.

So fault least at the AND gate comprise and both of the AND gate inputs are 0 all faults

which are common to both the inputs so this only this fault was common to both the

inputs and that get propagates faults a stuck at 1 fault at the output is obviously detected

because 0and 0here which was 0over here.

(Refer Slide Time 09:24)

(Refer Slide Time 09:35)

These rules we have seen in the last class. Now there are two more rules which remain

that is for an AND gate that is a 1 0 and AND gate 0 1. So will see what are the rules for

this thing. So I mean this will be this pretty obvious I mean in your class which should be

obvious because you see whenever this is 0 and a 1 so what our institution say that will

follow. So obviously, if this is one’s of this whatever is here will propagate over here so

whatever is fault least here can be propagated here as well as the output is 0 so

obviously, 1 stuck at 1 at this net is also detectable. So idea is that so, whatever is the

fault is at the same can be propagated from here by detecting fault stimulation rule and

also this is 0 1 so the here will get the value 0.

(Refer Slide Time 10:09)

So stuck at 1 fault the output is also detectable so that is intuitively is the case and that is

what is going to happen. So let us see so we have taken another example here so this a

inverter or not so we put a 0 in the input. So if it is 0 so you know that this input is 0 so

this is going to be 1 this is 0 the answer is 0. So now in the input to the AND gate this 1

is 1 0 so let us study the rule so we apply a 0 over here so stuck at 1 fault is detected at

this net so it is this one.

Now (()) the fan out rule so, this is a 0 and this is 0 so obviously this one gets propagates

here and this one also gets propagated here sorry and then a stuck at 1 fault at this net

this net is here and a stuck at 1 fault at this net is reflected over here. So this is the case

now by the inversion in inverter so we know that whatever fault list here will get here.

So we have this one and this one which is propagating from the end. So these are these

two will get propagated over here because of the inverter and here we had a 0 over here.

(Refer Slide Time 11:19)

So the answer is the 1 over here so, a stuck at 1 0 1 so stuck at 0 fault at this net is also

detectable. So this a new thing that is added and these two are propagated from the input

of the inverter. So now what is the status? So the status here is let us see what is the

status, so the status here was the signal here is a 0 so this is a 1 this is a sorry this is a 0

this is a 0 and this is a 1. So now you see what are the fault lists here and what are the

fault list here, then we can discuss so now you see so in this case so this is a this net is 1

and this net is 0 so whatever I mean a whatever is available here will propagate here.

So this is a very well-known fact so I mean what happens is that let us see what happens

so in this case so whatever fault that will actually impact this net can be propagated over

here because there is 1 over here. So that is what we are expecting and of course, this is a

1 and a 0 so the answer is 0 so here is a stack at 1 will be rejected at the net so this is here

so we expect that i 1 this 1 will be propagated here. So this is here but, you see this fault

should also had been propagated here at which is not the case.

(Refer Slide Time 12:21)

So why this fault that is i 1 1 why this fault should be propagated? This fault that is stuck

at 1 at this thing why it should be propagated? Because we failed that in a AND gate

what happens so this net is this net value is a 1. So as this is the that’s what have any

mean this is 1 and then everything from here passes from here to here so the whole layer

should propagate but, there is a problem. So whole for layer 1 propagate as our

expectation was that in this case if it is 0 0 our expectation was that nothing would

propagate here what we saw that only those faults which are common to both of them

propagate similarly, in this case slight deviation from the intuition there our intuition

says that this net is 1.

So whatever fault propagate so that is why this is propagate this is true but, you have to

observe one thing that if something this one is common to here and here so that common

part you cannot propagate. So the let us see why it is not propagatable so you can just see

why it is not detectable. So let us study the case. So in this case it is stuck at 0 so the 0 so

this stuck at 1 is detectable over here. So this is a 0 normal case fault 1 case so 0 1 0 1 so

it is 1 0 because of the inversion and your output will be 0 slash 0. So this fault is not

detected this stuck at 0 results to a 0 0 here this is not detectable.

(Refer Slide Time 12:50)

(Refer Slide Time 13:08)

Now why this is not detectable because this stuck at 1 fault at this net impact this net by

making a 0 to 1 and also this net by making from a 1 to 0. So what is happens output is 0

0 that is normal case also 0 failure case also 0 so it is not detectable because this stuck at

1 fault actually these affecting both this value is 1 and this value is 1 both this net as well

as this net. So even if this is a 1 and the this fault this 1 should whatever is in this case

should propagate over here but, as this fault actually is affecting both this nets.

 (Refer Slide Time 13:46)

 (Refer Slide Time 14:19)

So even if this is the 1 this thing not propagate but, this fault there is i 1 g 1 c 1 that is

this net this net stuck at 1 easily propagatable over here because this is 1 this thing single

value is 1. So whatever here is propagates over here and this fault does not have this

impact so just you can this can be very easily verified. So I mean in case you apply a 0

over here so it is a signal is 1 it is a 0 so it is a this net is stuck at 1 this net so output is 1

in the normal case and here the signal is sorry it is a single is 0 over here so this is a 1

over here this is 0 1 so the output is 0 1.

So for this stuck at 1 fault at this net what happens normal case it is 0 fault case it is 1 so

of the fault is detected at this net 1 so that means this net this is also propagated at this

list now.

(Refer Slide Time 14:56)

Why it is possible? Because this stuck at 0 fault sorry this stuck at 1 fault at this net has

no effect in this line. So it is propagate this propagates to the input and output it can be

detectable but, this fault that is a stuck at 1 fault over here at this point affects this net as

well as this net both of the net is effected so even if this net is 1 and this fault this fault

list is available over here it cannot propagate to the output.

So the rule is a fault deduction at 2-input AND gate with n 1 equal to i 1 equal to 1 and i

2 equal to 1 is all faults in i 2 obviously because this is a 1 so whatever fault in i 2 will

propagate but, not in i 1 that is if there is a common fault between this net and this net.

So that will not propagate, even if this is a 1 but, any fault which is common to both of

them will not propagate other then whatever fault list here which is not common to

between these two will obviously propagate because these net is the 1 and whenever 1

input of AND gate 1 and other gate propagates and obviously stuck at 1 at the output of

this AND gate is detectable because this is 1 and this is 0 so the output is the 0 so any

stuck at 1 fault at the output will be detected.

(Refer Slide Time 16:17)

So the rule for a AND gate with one input stuck at one input as one and the other input is

0 so what is the rule? The rule is say whatever at the one gate is 1 one input of the AND

gate is 1. So whatever you have the other fault list another input fault is always directly

propagated because the other input is the 1 but, it is a common fault in between both the

inputs of the And gate and then that fault is will not be propagated because it is affecting

both the line so that is not the case. So with the same rule but, that is that is the rule so

this is another configuration for the AND gate was left that is this is 0 and this net is 1 so

here the rule is obviously the same just have a look. So this is the AND gate we are

taking and by normal circuit we are taking in this case we have now the random pattern

is a 1.

So the random pattern is a 1 means it is a 1 over here, it is a 0 over here, it is a 1 over

here. So we can set the rule about 0 1 for the AND gate. So now as you are applying 1

over here so stuck at 0 at this net is detected so this you are going to have and in this net

by the fan out rule. So this is a 1 1 this is 0 by the fan out rule this net this will

propagated over here as well as a stuck at 0 fault at this net will be detected because this

is 1 similarly, this one will propagated here this affect is propagated here by the fan out

rule and this is one a stuck at 0 fault at this net is detectable over here.

(Refer Slide Time 16:31)

 (Refer Slide Time 17:21)

Now this is what is the case. Now the because of the inverter the whole stuck will

propagated over here at signal here is a 0 so a stuck at 1 at this fault is detectable by this

one. So this three list we are having so finally, what we are going to having over here so

finally, we are having you can see that it is a 1 over here, it is 1 over here, 1 over here, 0

over here. So this is the list over here and this the list over here. Now intuitively, you can

say that at this line is a 1 whatever whole thing here will propagate here but, actually it is

not be the case because this is stuck at 0 and stuck at 0 is common to both these points.

So this common fault will not be propagated other than that these two will be propagated

here and 0 1 means the answer is 0 over here so a stuck at 1 fault at this will be detected

so this is added.

So we have these two faults propagated this is the common fault is not detectable is not

propagated and 1 stuck at 1 fault at the output. So the rule here is again the same if this

fault deduction at the AND gate in 1 0 and into 1 is 1 all fault at in 1 obviously whatever

fault here list will be propagated because other input is 1 but, not in into but, if there is a

common fault over between them they will not be propagated an a stuck at 1 and the

output of the AND gate is also detectable.

(Refer Slide Time 18:14)

So we have seen that how the rules can be determined for all these cases. Now just let us

tabulate this one the fault deduction rule for the and I mean logic gates. So that means

what will happens in case of deductive fault simulation is that we apply a random pattern

then we find out the rules that it at the input these are the faults which are detectable.

Then what we do? Then we find out there if there is a fan out or if the AND gate if there

is OR gate then we have to apply the rules and then we have to find out that if these are

the set of fault list at the input then what are the set of fault list at the output that we have

to determine. So we need rules. So let us see what are the rules? So you can see here that

AND gate the four cases 0 0 0 1 1 0 1 1 so these are the outputs inputs four forms is

these are the outputs. Now you see so what is says that if both the inputs are 0 so you

have seen what is the rule both the inputs are 0 only those faults which are common to

both of them will be propagated and at the stuck at 1 fault at the output will be detected.

So we write list of n 1 intersection list of n 2; that means, whatever is common in input 1

and input 2 that will be detected you e n o 1 that is stuck at 1 fault at the output of the

AND gate is detectable. Now you see this case 0 1 so what we have seen? That is 0 1

means what you have seen.

(Refer Slide Time 19:30)

So some faults actually in this case whatever fault at this list to be propagated that is in

list of one will be propagated but, at the same time you have to assure that any fault at

this net will not be propagated that is if there is some common fault over here and here

so that is not propagated. So what we can say is that all the fault list here will be

propagated and all the faults list which are here at this point will not be propagated. Then

it automatically takes care of the factor if there is some common thing in between these

two that will not be propagated why? Because this input is 1.

So whatever here will be propagated but, if there is something common that will not be

propagated and whatever fault is at the 1 will not be propagated because this input is 0

because this is the idea that this is 0 and this is 1. So fault list here will be propagated and

as this is a 0 and this is a 1 the fault list here will not be propagated. So automatically it

says that if there is a something common in between these two then that will not be

propagated because whatever here is not allowed to be propagated.

(Refer Slide Time 20:29)

So how we write this? We write in a very simple way we say that l 1 all the fault is

intersection l 2 bar that whatever here will propagated, whatever here will not be

propagated and obviously the output is 0 so a stuck at 1 fault will be also propagated or

the output will also be detectable this is the propagation list in this the output which is

fault at the output of the gate which is deductable because the output is 0 for the input

this one.

(Refer Slide Time 20:47)

(Refer Slide Time 21:11)

(Refer Slide Time 21:25)

Now for 1 0 you can also see that whatever here will be propagated fault list whatever

here will not be propagated so that is l 1 in bar and intersection l 2 that is whatever here

will propagated, whatever here will not be propagated. So any fault common in between

in these two will also not be propagated plus a stuck at 1 at the output is also detectable

because the output answer is 0. Now we have seen the best case was 1 and 1 if both the

inputs of the AND gates are 1 then what is the idea o list over here, list over here all are

detectable and this is a 1 so this stuck at 0 at the output will be detectable and whatever

list here and whatever list here. So it is l 1 union l 2. So both of them both the fault is

will be propagated so this is for the AND gate.

(Refer Slide Time 21:33)

For the OR gate actually for testing purpose or input purpose or the whatever purpose it

is just the dual that is just the dual if you the dual rule you can find out. So if it is a 0 0

output is 0 so this is an OR gate. So if both of them are 0 the output is 0 so 0. So with

those in case of an OR gate if we apply a 0 over here. So whatever the impact over here

gets propagated because it is the dual of an AND gate in case of AND gate the 1 input is

1 then whatever happens is the other outputs get propagated and in case of OR gate it is

just a dual. So if the answer is 0 over both of them are 0 so whatever here propagates

over here but, in you know that if in an OR gate if one input is 1 then the answer is 1 and

nothing is propagated.

So thus by the applying the dual rules will find out that if both of them are 0 then both

the list will be propagated that is the union and of course, the output is a 0 so stuck at 1

fault will be detected 0 1 so here in this case we know that this this this is very helpful,

this will allowed to you propagate but, this one stops. So whatever here will be

propagated and whatever here will not be propagated this is an OR gate.

(Refer Slide Time 22:06)

So in this sorry this is an OR gate. So whatever is the question was we have a 0 and a 1

so we know that this mean whatever here nothing this will not be propagated over here

because this is the 1 and is this is a 0. So whatever list over here will be propagated so

you write l 1 bar that nothing of this area will be propagated and whatever here will be

propagated that is intersection l 1 into and a 0 1 the answer is the 1 over as the output so

a stuck at 0 fault as the output will be detected.

(Refer Slide Time 22:53)

(Refer Slide Time 23:10)

So similarly, you can find out the rule for 1 0 which is this 1 and 1 1 in this case it is just

like 0 0 for the AND gate nothing gets propagated excepting if there is something

common fault is for both of them and 1 1 the answer is the 1. So in the output case it will

be stuck at 0 fault will be detected so that is what is stated over here in the table for the

NOT gate we know that whatever is the in input of the NOT gate will be propagated

whatever in the input of the NOT gate it is propagated.

(Refer Slide Time 23:29)

So it is an inverter. So whatever here is automatically propagated here or the if the input

is a 0 over here we get the answer 1 over here so stuck at 0 fault is detected if is a 1 over

here the answer is 0 over here and a stuck at 1 fault is 0 that is what is being stored and

in case of fan out it is the same thing like an inverter so, that we have seen the fault gate

so whatever the list here will be propagated here and here.

 (Refer Slide Time 23:54)

So whatever is the list they are propagated and if you get the value of 0 a stuck at 1 is

detected and if you get the value 1 are a stuck at 0 is detected that is just the reverse if

you get a single value 0 a stuck at 1 fault is detected if the single value is 1 a stuck at 0

fault. (()) So this is actually the fault deduction table for the fault list so what happens?

So once you have that so given a circuit we apply a random pattern then you are goal

here is that you have to traverse the circuit once and in the 1 traversal of this circuit what

you have to do? You have to find out that what are the fault that is detectable.

So here are some rules we are applying that the if there is a inverter what are the rule if

the AND gate what are the rules, if it is OR gate what are the rules by this applying the

rule from level 0 to level 1 to level 2 level 3 and so on for the circuit you go to the output

and easily you can find out this list that that that all these faults which are in the list are

detectable by that input and then in that is in one scan of this circuit this is done. Now

you find out also there are we say 30 faults in the circuit then one in one scan of your

circuit you find out the some 20 faults have been detected.

Now if some 20 faults have been detected so is the good news. So another 10 faults are

remaining so you again you have to apply this things and you keep on going this is a

very good an advantages approach compare to serial and parallel for simulation because

in one goal you can reduce the information about all the faults.

But here we have to ap think once that once I have applied one pattern then I have gone

for or deductive for simulation at the output then I find out the these are the faults are

simulated a deductable then I drop them and then I take a new random pattern and again

I read you everything so what was our discussion on fault simulation by event driven

simulation and compile course simulation. So in compile course simulation what was the

idea that one pattern you have apply one fault you do find out and then forget everything

and then again do another simulation but, you find out that is circuit structure is very

simple the circuit structure is not changing from one fault to another fault as such no gate

is added or no gate is detect kind of a thing.

So why we are unnecessarily computing this circuit value again and again when you are

going for one pattern to another pattern. Then we saw that event driven simulation is a

very good approach in this case what we do? So we find out the output or the input on

the fault of normal case then we retain some values or say all the values of circuit we

retain and then what we do when we apply another pattern or another fault may be then

we should able to re-compute only those portions of the circuit we got change that an

impact of something, impact of a new pattern or a new fault or something so that is the

idea that is this is missing in our deductive fault simulation. So in one fault we have

apply then we scan to this circuit by applying the rules in the table which you have seen

then we find out these are the list of the faults which are deductable.

But we generally cannot or generally do not save anything in that algorithm and again we

have to read you everything. So the last fault simulation technique will study today is the

concurrent fault simulation. So that is actually same thing as deductive fault simulation

again that in one scan of this circuit you are going to find out what are the faults that will

be detectable but, at the same time we are not going to through away the results. So if by

applying one pattern we find out that these these these these faults are detectable then we

do not through eliminate the all the results we apply another pattern and then we will try

to re-compute only those things which are got getting changed that is a even driven

simulation. So you can think that concurrent fault simulation is a event driven simulation

plus detective fault simulation. So that idea we have to (()).

That is what is saying the detective fault simulation which will saw last can determine all

the faults detectable by a random pattern fine? But, when a new random pattern is

applied the whole process is to be redone. That is just like a compile fault simulation so

you have to do something better. So in the last that is concurrent fault simulation

technique similar to detective fault simulation but, you have to retain the information that

what I have done so you have to retain when you are going for another random pattern.

So in the concurrent fault simulation when a random pattern is fed it needs to compute

only that information which got changed. So that is the idea for a detect I mean what you

call a event driven simulation. So concurrent fault simulation get motivated advantages

achieved by event driven simulation over the compiled code simulation so that is the

basic idea.

(Refer Slide Time 27:32)

So you will see the basic concept of a concurrent fault simulation. So let us take an AND

gate so this is your AND gate set and then you apply 1 1 and the answer is a 1. So this

you have to first draw this, normal condition then you have to find out that these versions

of the gates we have to draw some versions some versions of this gate which are affected

by the different type of gates like for example, you see if i 0 i 1 stuck at 1 that if this net

is the stuck at 1 then what happens? The your this input is 0 it because stuck at 0 sorry

this is stuck at 0 apply 1 1 you are applying. So this net is stuck at 0 so this input will be

0 this is 1 and obviously the output will be a 0.

(Refer Slide Time 28:20)

(Refer Slide Time 28:29)

So this is 1 of 1 for which is affecting this gate so this information you are have to store

somewhere. So this is the gate which is saying that this gate is the stuck at 0. So this

answer is 0 this is 1 and the output is the 1 so this is the 1 version of the circuit and with

a stuck at 0 fault here now another stuck at 0 fault can be here. So this is the case it is a 1

0 because this is net is stuck at 0 and the output is obviously 0. So this another version of

this gate where there is a stuck at 0 fault at this gate similarly, there can also be a stuck at

0 at this point so is the version is the 1 1 and the output i

s 0.

(Refer Slide Time 28:40)

So for each gate you affect you attach some gates in this circuit which is affected by at

least some fault, see each gate is associated with a number of gates affected by some

faults in this circuit. So to each gate you have to add you have to attach a bubble so this

is a one gate say and you have to attach a bubble. So this bubble will comprises all other

versions of the same gate with different faults in the circuit. So if there are some 30

faults in the circuit so your bubble will have some 30 faults which are affecting this

circuit when if you have some 30 faults which affect this gate obviously so, then only I

mean you will have that this fault I mean gate list in that bubble.

So to in other words in concurrent fault simulation what is the first step we are going to

approach to each gate we will attach a bubble, in the bubble there will be some other

gates and these are the gates which are affected by some fault in the circuit only those

versions of the gate will be available. So for if there are 30 faults in a circuit and 20 of

them affect to a gate. So the bubble for that gate will have 20 more gates of the version

so you store that one. So that is what is the first we have to do. So let us take this same

example and let us see how we can make this (()) more clear so we are applying the

random pattern 1 1 so you will know that we are now considering this gate so what are

the faults?

(Refer Slide Time 29:53)

So stuck at 0 fault at this net so this is 0, so this is 0 not 1 0 and the answer is 0. So this

one is reflected over here similarly, there can also be a stuck at 0 at this net this is the i 2

0 so in this case this is the will be the value 1 this will be a 0 over and this 0 1 the answer

is 0. So another fault list you are having for this. Now we already told that this is one this

net is a fan out net so it is different so i to g 1 stuck at 0 is also possible so in this case we

are going to have this (()) so this is same so this two come in a stuck at 0 here stuck at 0

here the stuck at 0 faults and stuck at 0 fault over here.

A same affect so these are the two gates which save effect 1 0 and the output is 0 but,

you have to keep the version because this represent two different faults. Now this 1 1 so

obviously a stuck at 0 at this net o output 1 stuck at 0 is also affecting 1 1 the answer is 0

so for this version you have this. So this AND gate has a four things a four gates in the

bubble corresponding to a stuck at 0 fault here, stuck at 0 fault here, stuck at 0 fault here

and stuck at 0 fault here. So for these four stuck at 0 faults you have this thing in the

bubble correct?

(Refer Slide Time 31:34)

So these are the four things of the bubble. So you can also think that this is a kind of a

parallel for simulation that you maintain an array but, here the array size is unlimited, we

are not going for any kind of a compute architecture oriented algorithm. So whatever if

we if this some 100 faults affect again so we will have some 100 gates in that bubble. So

here we not using the architecture kind of a thing.

(Refer Slide Time 32:04)

So, now just let us look at it 1 1 so 1 1 and in this case is a 1 it is a 0 now let us study for

inverter so what will be the cases so for the inverter you can easily find out that normal

case it is 1 and it is a 0. So if it if this net is stuck at 0 over here obviously so i to 0 so this

i to 0 so i to 0 what happens? So this one will be 0 so this is stuck at 0 and this one is 1.

So this is reflected by a stuck at 0 fault here that is the change for this gate similarly, a

stuck at 0 fault here will also affect. So now it will be 0 and the answer here will be a 1

normal case it was a 1 0 but, in the fault case it was a 0 1. So this one i to 0 stuck at 0

affect is also reflected over here and of course, is a 1 1 normal case.

 (Refer Slide Time 32:40)

(Refer Slide Time 33:01)

It is a 1 and the answer that is a 0 so a stuck at 1 fault at this 1 will also be affecting. So

in this case you see the input is 1 the answer should be 0 but, a stuck at 1 fault here will

make it a 1 so 1 1 this affect is also shown over here. So these are the three faults which

is going to give you the bubble list of three. So this is the first case, this is the second,

this is the first case sorry just a minute. So this is your first case, this is your second case

and this is your third case. So this has some three faults in the fault now we are making

so now the thing will all the benefits will start coming when you apply another well-

known pattern. So let us first see what is the case know now we have so what we have

any normal case 1 1 1 1 0 so this is also 1 1 and this is a 0 the answer here is a 0.

(Refer Slide Time 33:23)

Now for this gate also there will lot of gates in the bubble which is actually affecting this

one. Now let us see how can we find out these are the fault this thing within number of

faults affecting this one. So you can see that this one depends on three values, the value

here, value here. So these are the two value i mean two this this gate 1 0 is the normal

case and then we have to find out for all we have to find out bubble list for this gate that

is so we have to find out the bubble list that is what are the faults which are actually

affecting this gate. So the normal case this is the 1 0 the answer is 0.

So we have to find out for all cases of faults or all partials of this AND gate where at

least this is a difference so here instead of 1 if it is a 0 you have to put if that means if it

is a 0 over here we have to put that version if there is a 1 you have to put the version and

if there is a 1 in this case you have to put the version so all such cases we changes the

inputs signal value the output signal value you have to put it.

(Refer Slide Time 34:02)

Now you can study this list. So you can see here the answer is a 1 correct? But, now if

this stuck at 1 if this stuck at 1 fault is 0 so this gate output will be a 0 so here we are you

are going to get a 0 and the answer is 0. So this 1 you have to keep so how we are

deriving? This we are deriving this from here that is (()) any signal says that this signal

change if it is from 1 to 0 then you have to put it now how you know that this will be

changing that this fault this is the fault i 1 stuck at 0 this stuck at 0 will result a 0 at this

gate out but, this is we can find out from this bubble list and then this 0 means the signal

is changed so this 1 we have to put it we can put it.

Now you see that is another one which is also the same thing so this one will also

changes value from 1 to 0. So that value also you have to put it over here so that is a 1

this is this case not affected the answer is a 0. So this is the case which is affected now

you can also see this gate is also affecting the signal so this one is also you will be

available over here and this stuck at 0 that is this net stuck at 0 means that is this gate

fault is also changing this value.

So you are going to have this here so what you are having so 1, 2, 3, 4 1, 2, 3, 4 this four

gates check to the chain signal from 1 to 0 1 to 0 so they are actually input within this

bubble. Now you see obviously now we are going to check for the simple input. So this

input means is the 0 to 1 now you can check that if something changes from 0 to 1 that is

will be included so you can see that these are the three gates this one, this one and this

one I think these are the three gates which are actually changing the value of this one

correct? This one is changing from 0 to 1.

So now you can see o g 1 sorry this get we are concurrent this is a already over. So now

you can think that slow signals which are changing the value from 0 to 1 we have to

include an i 2 g 2. So you can find out that if this is the gate so i 2 g 2 this is the i 2 g 2 is

0. So in this case here the answer will be a 1 so this 1 you can include it over here and i 2

z 2 is also the case but, actually i 2 0 already we are including over here.

That is if this gate if i 2 0 fault is there so then this actually this one is included over

here. So already this is taken into picture because this fault i 2 stuck at 0 i 2 stuck at 0

affect this gate as well as this gate so in this case the signal changes are from 1 to 0 and it

is from 0 to 1. So both signal changes are there so this gate actually can be brought on

from this list as well as on this list anyway so this gate is already added.

 (Refer Slide Time 37:25)

So this gate this gate is changing the value 1 here so 0 to 1. So this gate impact we are

bringing out over here and o 2 g 1 that is this one this net this net if you can think of thus

o 2 output to this net this net stuck at 1. So this is the picture so it also changes the value

of this one that is 0 to 1 so that one also you have to bring it over here and in this case

you can see that this is already one and this fault and this fault that is o 2 that is i 2 g 2

stuck at 0 is i 2 g 2 stuck at 0 so this 1 stuck at 0 that is 1 stuck at 0 converts this to 1.

 (Refer Slide Time 38:38)

So here the single changes from 0 to 1 1 1 the answer will be 0. So you have to write that

this gate is saying that 1 1 the output is a 1 that is you have to write in that way so and

this one this stuck at 1 fault sorry this is the this list we have already discussed. Now this

net stuck at 1 this net stuck at 1 actually convert this 1 0 to 1 1 1 the output is a 1 so this

net o 2 o g 2 stuck at 1 is also (()) over here and the and so these are the gates which

actually get propagated this 1, 2, 3, 4, 5, 6 this 6 gates are propagated from the previous

gate inputs to this one so this the you can say that concurrent fault stimulation also.

This is just like a some fault these are propagated from the previous level to the next

level but, here actually the gates this gates versions are propagated from the previous

level to net pulse same concept is there is not much change but, I am also one more for

the pattern is there which we all the one more thing will be there like we have seen in the

fault simulation that here if your answer is 0 in this stuck at 1 fault have this gate

detected that are should be added to the list. So in this case also the answer is we are

saying that the pattern is 0 1 0 0 say any signal change will be affected.

So signal change at this net will be o 1 stuck at 1 then the signal change will be a 1. So

this gate list is added that is 1 0 and here answer is a 1 because this net is stuck at 1 this

net stuck at 1 so the last signal and the signal change at the output so this five this five

fault this gates 1, 2, 3, 4, 5, 6 these six are propagated from the previous values and this

one correspond to a stuck at 1 fault over here so in this case.

So this is how we get this fault list concurrently we generate this one. So this still now

you might see that the concurrent fault simulation is nothing but, it is a detective fault

simulation only in detective fault simulation what you had you just propagating the fault

list from one part to the another part and he has been actually propagating the bubble list

of the gates otherwise there is no deference.

(Refer Slide Time 39:10)

The differences start coming into picture only when will change this random pattern but,

let us see how many faults are detected. So now this is your bubble list so you know that

in this case the normal case the answer is the 0. So wherever the answer is the 1 at the

output of the AND gate you go know the fault is detected. So in this case you can find

out that there are two faults that is o 2 g 1 stuck at 0 the these net stuck at 1 this the stuck

at 1 and this net stuck at 1. So these two faults are detectable because the output of the

AND gate is the 1 and in normal case is a answer is 0 but, now similarly, also you can

see that o 2 also some faults can be detected.

(Refer Slide Time 40:31)

Now what are the faults that can be detected here the answer is the 1 so normal case also

two will be a 1 but, here this is 0 this is 0 the output this is the also 0. So all this four

faults are detected at this net and this one sorry o 2 g 1 that this fault and output stuck at

1 fault are detected at this net. So the same thing like our what do you called this

detective fault simulation we can find out the fault list.

So here the fault list is not very directly computable but, it can be very easily related that

is in case of deductive fault simulation what happens the fault list will tell you that is

faults are directly deductable that you get list over here that is o 1 some list over there

and from the list you can say that these are the faults which is detected but, in this case

we have to just do simple computation that what which are the gates this input is

different. So in this case this is different, this is different and this is different.

(Refer Slide Time 41:00)

So these three faults are detectable at this net and in this case the answer is a 1 so 1, 2, 3,

4 this four faults are detectable over here. So this is just a very simple extension or you

can call the same version of your detective fault simulation in the concurrent fault

simulation instead of propagating the fault list whereas, propagating the series of lists

that is the one thing and one, another thing you should absorb that in case of deductive

fault simulation we have the fault list which tells this is a fault list say so we test that

only fault 1, fault 2 say fault 3 are deductable but, it will not retain any information

which is non-detectable so here you see we have 1, 2, 3, 4. So four gates are

unnecessarily which are hanging over there but, there are not detecting your fault so this

things are hanging over here.

So there are nothing to do unnecessarily there are after going your memory but, we are

see will see in the next slides that because of these things from information is retain that

is now if we change the value from 0 to 1 or 1 0 whatever then we need not re-compute

the whole thing we just re-compute whatever changes have happened over here only

those things will be re-computed and that is like a even resolution something will be

same.

(Refer Slide Time 41:46)

But in case of this jet fault simulation even with the fact that (()) only the set of say 1, 2

only this three information will be available because that had been detected. So this

unnecessary things are not there but, whenever there is a change in pattern you have to

reduce everything. So that is a trade off so you have to think that if you are doing a

deductive fault simulation where as the output you will have information about only

these three faults because these three faults are deductable by this one and this

information about this unnecessary four gates because they are output is 0 and the

normal case it is 0 so the faults are not deductible they will not be there.

(Refer Slide Time 42:16)

But the trade off is that whenever they will be a change in pattern then again you have to

we do everything but, here if be the change in pattern there will be nothing we have do

much only whatever changes are required that has to be done like a that is what is these

things which we have already discussed not to reduce. So the concurrent fault so, sorry

so this is what is the next slide which we are going to see so what we have discussed that

now we have to see the benefits that unnecessary we were carrying some additional

gates. So unnecessary what we are doing so unnecessarily we will carrying out some

gates which could not detect any fault so those gates were carrying with us.

(Refer Slide Time 42:53)

But in case of detective fault simulation those gates will not been carried. So now what is

the advantage that you have to illustrate that I think if you just see so this gate, this gate,

this gate this will unnecessarily been carried out because the output was 0 and this output

is also 0 but, now we will see that what is the advantage of carrying these gates because

this is a trade off in case of detective fault simulation we will not do this but, still if

whenever new pattern is applied you have to reduce everything here will be let us see

here in concurrent fault simulation by carrying this dead gate if you can see what the

advantage. So now let us change the input pattern from 1 1 to 0 1 so there is a change.

(Refer Slide Time 43:36)

(Refer Slide Time 43:49)

(Refer Slide Time 43:50)

 (Refer Slide Time 44:34)

So now as you already seen in what do you call our detective what do you sorry even

driven simulation or computation mean only the fault those cases where there is a

change. So let us see what happens so initially it was 1 1 and the answer was a 1 then in

the normal case we have to apply 1 1 the answer was a 1 in this case. Now there is a

change in signal value this is changing from 1 to 0. So what we will do we re-compute

only when things are changed so re-computation is 1 to 0 here it is a constant so the gate

output is this one correct? Now these gate was corresponding to a stuck at 0 fault over

here. So it was a 0 over here 1 over here and 0 over here correct? So this and now this

new and so what we are going but, this is the old thing that is retained.

So you can see now you are normal gate will become 0 1 and a 0. So that is your normal

gate this is your normal gate recognize 0 1 0 because this pattern that you have to

change. So this gate you can delete this gate which we are going to delete. Now there is

so now so what is the case of this gate is deleted? Now this another gate was i 2 stuck at

0 so this corresponds to the second gate in this list if you remember this i 2 stuck at 0

was a stuck at 0 over here. So now a stuck at 0 over here was so this input was a 0

because this gate is stuck at 0 now there is an impact of change is from 1 to 0 and the

answer is of course, a 0 by and this gate will be retained. So why this gate will be

retained? Because initially the gate will it was a 1 0 and the answer was a 0.

Now sorryso whenever when the input signal was 1 1 and the inputs so what this gate

what the stuck gate with the stuck at 0 fault here look like 1 0 and the answer is the 0 at

the stuck at 0 1 fault at this it was a stuck at 1 fault over here the answer you applying a 1

over here you applying now you apply a 0 over here. So this one will be changing from 0

the output will be no change. So you need not compute this and you need not compute

this these values were retained same as in the previous case when we are applying a 1

over here 1 1 over here and only this small changes at this 1.

(Refer Slide Time 45:25)

(Refer Slide Time 45:43)

So there is a signal change because now the normal gate looks as 0 1 0 this is the normal

gate this one and here to the fault affect the gate is 0 0 0 so the signal difference over

here. So these gate is going to be retained. So that is again we see can see that what we

are doing so this gate is retained so what we are doing over here so what we are doing

was the very simple thing we are going for even driven simulation.

So we are just changing whatever signal here require this is a change here, this is a

change here and in this case after doing this change after doing this change you can find

out here is that this gate and this gate remain similar so you can drop it but, for this

second case there is a i 2 stuck at 0 fault this is the signal from here this does not change

this remain same so this things and this things retain from the previous computation and

we so they say they there is the signal difference between the this one. So this gate is

remaining so, some computation at the computation at this level and the computation of

at the this level are same. Now let us see the third gate the third gate was i 2 g 1 stuck at

0 this line is stuck at 0 over here.

(Refer Slide Time 46:29)

So now the signal your applying here is the 1 this is the 0 over here. So in this case is the

0 so we know that this stuck at 0 over here this signal is 0 this only a change over here

and this thing is retained and this thing is retained. So we can find out the that the

ordinary gate the signal was 1 0 1 0 so in this case it is 0 0 and answer is 0. So again by

the same logic of i two stuck at 0 this get is also retain but, this computation and this

computation is same.

(Refer Slide Time 47:10)

Now let us look at the output of the gate but, it is change so whenever those faults are not

over here applying the change from 0 1 1 to 0 1 and there is a stuck at 0 fault over here.

So you can say the this change this signal, this signal and this signal values retain same

from the previous computation and now this gate is having 1 0 from 1 to 0 your going

here so answer is the same and the answer output is 0 and this is 1. So this two gates

become normal gate and this outputs stuck at 0 gates becomes similar so this gate also

has to be dropped.

(Refer Slide Time 47:30)

.

So now what happens this two gates dropped and this two gate gates keep on retaining

but, we did not compute the value here and did not compute this value, did not compute

the value, they can just carry propagated from the previous one. Now in this case you see

if you are applying 1 over here than this n change the circuit change over signal change

over here. So the fault list at this gate all the things will be retaining because this signal

change over here and in this line there is no impact sorry there is no impact in this line.

So if there is no impact in this line then we did not think about any think you can just

copy paste what was where available over here so if it is i 2 stuck at 0.

(Refer Slide Time 48:13)

(Refer Slide Time 48:37)

So you are applying 1 over here so it will become 0 over here, that is 0 over here and the

answer will be a 1 over there by in the correct sense it should be a 1 it should be a 1 and

answer should be a 0. So that is this fault list this gate is already retain from the previous

list. So previous list of when the input was 1 1. So what we have seen in this example

that whenever the fault is affect of this input change this one. So this thing can directly

retained over here because the change in the input from here is does not affect over here.

(Refer Slide Time 48:56)

(Refer Slide Time 49:04)

So this is the advantage of a concurrent faults simulation of 30 fault simulation, that

many of the portion of the circuit like this portion of the circuit, this portion of the circuit

is not affected by the change in this one also you can directly add this bubble list that is

you did not even think of in this case in this case of the AND gate there is a change over

here so, some impact on this gate is available as have happens you have (()) go on

deleting this gates and keep on retaining and in this gates also you have saved the

computation of this input and computation of this inputs but, for the this portion of the

circuit you need not think about anything just you retain the value that is what is the

importance of deductive sorry a concurrent fault simulation over a detective faults

simulation than you need not keep on this thing now by the same rule.

(Refer Slide Time 49:33)

So this was now the this is change so in this case this will be the change from 1 to 0 and

now you can see that this is this corresponds to this net stuck at 0. So this whole is from

the old computation, this from the old computation. So this is the what we are having

from the old computation. So now you can see that because of this change so you will be

normal condition will be 0 0 and the answer is a 0. So this is about this gate now you

have see that i 1 the this stuck at 0, this stuck at 0 means at the 0 0 and 0 so this gate

exactly become 0 0 and 0 so this gate exactly become similarly, the normal case of this 1

so you can delete it.

Now i 2 stuck at 0 so this net is stuck at 0 if you think so i 2 stuck at 0 if you think so this

one will become 0 this one will become 1. So this is a 1 and this two are same as in the

previous combination so this gate is retained. So in fact what are we doing over here so

just by this change this change from 1 to 0 then this is the old least which was available

with us. So we are just finding out the what are the change this by change what are the

changes in this gates we are finding out that is the bubble list and if something becomes

equal to 0 0 rule that were deleting and if something is not become equivalent with just

retaining.

So for i 2 0 this is the single deference between the this one and this one so this gate is

retained. Now i 2 i 2 g 1 stuck at 0 so i 2 g 1 this 1 in to complex stuck at 0. So then what

happens? This gate this 1 will a stuck at 0 so this 1 so this stuck at 0 so this 1 is a 1 so

this is a 1 this is stuck at 0 so here it will be a 0 output is 0.

So now the thing is that for this case apply a 1 you 1 this is get a 0 so the the this i 2

stuck at i 2 g this this fault stuck at 0 we lead to these two gates is 0 0 0 which becomes

equivalent to the gate under a normal condition whenever will applying 0 1 so this gate

we cannot deleted.

(Refer Slide Time 51:53)

So similarly, you can easily find out that if this is a stuck at 0 over here i 2 g 1 0 and the

input become 0 0 0 which is again similar to the normal condition of this gate under 0 1.

So this gate is deleted this one you find out that two of this gates deleted. So here two

gates are deleted this one is retain now you just think of the case i 2 g 2 stuck at 0 so this

one is stuck at 0 if you think then what happens? Then this one will be 0 so this one be a

1 and here there will be a change from 0 to 1 because initially the pattern applied was the

1 over here.

So the pattern one 1 was a one was a applied 1 over here and if is a stuck at 0 fault here.

So there is no affect over here so no affect was over here so it was the 1 1 output was a 1.

So your gate was looking like 1 1 and the output was a 1 so this was the key old

computation. Now you are applying this change, so this change is getting to this change,

this change is getting to a this change. So this gate will be now having 0 1 0 but, still this

gate will be retained because they are signal difference over here.

(Refer Slide Time 52:55)

 (Refer Slide Time 53:14)

So you can see that because of this change will this one this competition is not affected

only this change and this change you have to get so, some cases this faults are means a

competition is same so this gate is retained that i this gate i 2 g 1 i 2 sorry this i 2 g 2

stuck at 0 sorry this one this i two g two stuck at 0 this case is retained over here because

of signal difference but, only you have to compute this change in the input which is arise

because of this change so this is retained.

 (Refer Slide Time 53:43)

Now similarly, you can easily verified that what are the other gate which are retained is o

2 g 1 stuck at 0 that this one if you are getting going get a stuck at 1 then a this one will

be changed in a output will be changed this 1 will be a 1 but, there are signal difference

in this normal case so this is retain n o g 3 this is the output o g 3 so you just think of this

case. So this fault is also will going to be retained because this is stuck at 1 and this is the

signal change only because of this signal change so you write like this and a big gate

which corresponds to 1 stuck at 1 is still retained because there are signal difference, that

is just because of this change application so it will become 0 0 0 in a normal case but, it

is stuck at 1 the answer here will be a 1 so by the previous competition only you can see

that this gate side this gate is retained.

(Refer Slide Time 53:58)

(Refer Slide Time 54:32)

So what we have done basically by this signal change what happened? By this thing this

is signal change which is happened which is not effecting this gate in any way so directly

you retain all the gates without the anything but, for this gate and fault this gate there is

some changes this is signal change that is happened. So based on that you find that this

gate, this gate, this gate is deleted because here the signal after this change it will become

0 0 0 and this gates will also become 0 0 0 which becomes equivalent to this so this are

dropped but, for this thing things this one, this one, this one and this one the retained

because there is signal change.

So now you can easily derive that which are the fault which can be detected over this. So

you can find out that this is a signal this signal fault which is detected because the here

the answer is a 0 and here answer is the 1 so 1 fault is detected but, this one now the

answer becomes 0 and this one the answer become 0. So this fault does not get detected

by this 1 and in this gate you can see that none of the fault gate detected because the

answer is the 0 over here 0 over here. So in this case also the answer is 0 over here so n1

of the fault gate detected by no additional fault I mean what you can say by this the all

only this fault gate is detected

So but, what essentially we have done? So we are retain this gate directly without doing

for any kind of additional computation and in this case also we have gone for some

computation but, the computation are minimal here actually did not do any computation

but, still directly you can find out that we can deleted in this case only this some small

computations which are point out by we have to do and then we can find out the fault

case.

(Refer Slide Time 55:23)

So now after doing this what we have done we have just say that these are the remaining

gates, this are the remaining gates and this are the remaining gates. Now these are small

thing you have to do what by what advantage you have got so we have just converted so

what you can call that by concurrent fault stimulation as we are retaining the information

about the gates. So we can just for the new change in the input what we can do is that

without doing for any computation we can find out this one, we can find out this one and

we can find out this one with this is without any computation and we have some small

computation are required. So we are using reusing the information whenever the pattern

least but, now some new faults will also been added for that obviously you have to do the

re-computation. So what is the advantages of concurrent fault stimulation?

(Refer Slide Time 56:07)

So whenever a new pattern is applied so what we are doing? Whatever is possible those

informations we are retaining like this information we are retaining, this information we

are retaining, this information we are retaining but, there will some new faults will also

get added for that you have complete effects so in concurrent fault in deducting fault

stimulation we are remaining in remembering nothing but, in concurrent for stimulation

we are remembering whatever is possible.

Like for example, I tell you what are the new gates that are added? So now you are

applying a 0 and a 1. So obviously what is the new fault that is going to be added the

stuck at 1 fault over here this is i 1 stuck at 1 so it is i 1 stuck at 1 then what is the signal

value it will be a 1 over here, it is the 0 and the output is 0. So this is 1 fault it has to be

added this stuck at 1.

(Refer Slide Time 56:49)

(Refer Slide Time 57:02)

(Refer Slide Time 57:12)

Previously you are a applying 1 over here so obviously there is no question of stuck at 1

was there. Now you are changing value from 1 1 to 0 1. So obviously 1 stuck at 1 fault

and this 1 will be applied now you see now this is a this is a new fault now in this case

previously you are you were applying previously if you remember you are applying 1 1

and the answer was 1. So in this case we were deducting a stick at 0 fault.

(Refer Slide Time 57:24)

(Refer Slide Time 57:29)

(Refer Slide Time 57:55)

Now because you are changing value from 1 1 to 0 1. So obviously, the answer here as a

0 so obviously, 1 stuck at 1 fault a o g will be added over here. So in this case it is 0 0 0 1

but, we have the instead of 0 answer is 1 so two more gates have been added and

obviously this two faults are detected here and you have to test see that these are all

recomputed for here detect concurrent fault stimulation and deducting fault stimulation

are no difference.

So you have to again re-compute all this things but, where we have saved we have saved

here, we have saved here and we have saved here. So whatever is possible here

remembering similarly, for this gate if you change some new gates will be added. So

what is the new gate that is the added? So now obviously you can see that this is as tuck

at 1 fault here this is this is actually 1 this stuck at 1 fault over here. So we stuck at 1

fault then the answer is the 1 over here so there will be a signal changing here.

So this gate will be added by this one so stuck at 1 here means the answer is a 1 over

here so instead of 0 the answer will be 1 1 1 0. So this stuck at 1 fault is a new fault

which is added, which is gate retained over here then actually o g 1 so this one was the

new gate, this one there is stuck at 1 so initially it was stuck at 0 so this is new gate is

also added over here. So this is the 1 1 is answer is 0 and of course, previously I think a

previously when you are applying 0 0 sorry previous going we applying 1 1 so the

answer was something whatever.

(Refer Slide Time 59:17)

So now here it was it is a stuck at 0 in the previous case now you are have to apply a

because here it is 0 0 the answer is 0. So a stuck at 1 fault at this net will be applicable

over here. So these are the new gates this 1 because of the stuck at 1 fault which is newly

added over here because of the change in pattern. So these are the two gates which is the

added and now in this case the answer is 0 over here 0 0 the answer 0 over here.

So you can add a stuck at 1 fault here this is o 3 stuck at 1 input is 0 0 the answer is 1

because this is the stuck at 1. So three gates get added over here so you can say that

because of this pattern so the output here is a 0. So what fault can be detected this stuck

at 1 fault can be detected over here and this and this two fault that is a o g stuck at 1 this

fault is detected over here, this is o g stuck at 1 and i 1 stuck at 1.

So these three faults are again detected by the pattern 0 over here. So this new gates are

again totally based on re-computation but, still what is the advantage that what are the

remaining gates this information you can retain from your previous pattern that is 1 1 and

whenever you change the pattern to 1 0 so computation regarding the remaining gates are

very very minimal or no computation is required the just gate the value only for the new

gate you have to reduce computation. So concurrent fault stimulation over detected fault

advantage is there you retained whatever is possible in deductive fault nothing but, here

you try to retain something as much as possible but, still then what is penalty we are

paying that some of the gates like for example, the dead gates if you remember.

(Refer Slide Time 01:00:15)

(Refer Slide Time 01:00:43)

So this gates had no affect like this gate, this gate, this gate actually we are just giving it

we are just carrying the dead animal you can thing whatever not having any affect, they

could not deduct any affect fault in the previous case also not in the present case but, still

we are giving this information because they maybe reuse in some other case. So that is

by because of a carrying this dead animals you can think that some computation is same

that is what is the idea. So here also you may not know that may the this, this, this, this

gate would lead to any kind of fault detection but, still you have to retaining then because

we feel that sometimes it may be possible to do this one. So that is basically the idea

concurrent simulation.

So that is what is case now so what was the discuss and summarize so only three gates

correspond to fault being detected at this one. So what is the requirement of seven gates

in the affected list that is very important thing that is if you look at this example.

(Refer Slide Time 01:01:13)

(Refer Slide Time 01:01:21)

So in this case that I say so only this gate, this gate and the this gate has a output

difference by this 1 then why are you carrying this dead animals? So that is the question

that is being asked over here, that only three gates detected this fault then why are you

carrying this things the idea where was thing whenever change in the random pattern,

then those dead gates may help in detected some other fault which you have seen and

then this re-computation is same that is what is the idea of a concurrent fault simulation

over a detective fault simulation.

(Refer Slide Time 01:01:50)

.

The detective fault simulation we do not carry anything, what we do? We do not carry

anything we just for a pattern we find out what are the fault are rejectable in 1 1 go that

is why in the fault list will have only those elements which are detectable and then we

forget everything then we apply new pattern but, in case of your concurrentconcurrent

fault simulation of what we do? We even we compute some bubbles for all the gates

bubbles are having some values. It the signals difference with the gate we keep that

faulty gate in the bubble list and we retain all the gates and all the levels even if it (()).

Now whatever faults are detected we are very happy because we can drop them but, the

dead gates, that is they are having some signal difference with some gates but, they are

not able detected a fault still we retaining them when we are giving another input,

another random pattern. Then that new random pattern is that is dead gates may help to

detect some faults. Then those we computations are failed. So that is what some by

saving some computation but, still we have to carry the dead load of some gates in the

memory. So that is the advantage and disadvantage.

So that was about the fault simulation, so to conclude we can say that concurrent fault

simulation helps in random test pattern generation. We apply some random patterns and

then we find out what are the faults will be detected. So you can serial which is the

slowest one, you can have paralyze computers supports lot of parallelism then you can

go for pattern fault simulation. Otherwise you can go for detective fault simulation or

concurrent fault simulation. If you using detective fault simulation in 1 go will find out

what are the faults detected by a pattern. But, you do not remember anything next pattern

we apply we have to read everything. But, in concurrent fault simulation you retain fault

simulation that can refused but, for that you have to sometimes carry the dead load of

gates which are not help in any kind of fault which and for the current pattern. But, the

for the next pattern they made do some so we have to retain them but, now we see that

experiment seen that this procedure of random pattern based fault generation whatever

can help only for going about 90 percent of the fault. Remaining 10 percent of the faults

are there will be hard to detective faults and you have to do by what you have to go by

random sensitized propagate and justifier.

So in the next lecture what we are going to see? We are going to see if somebody or

some algorithm can tell you that this 90 percent of the faults are easy to test fault. So

apply random patterns for that. This 10 percent faults are difficult, so do not try for them.

So that will very good so at least in the fault simulation we will not touch the ten difficult

faults. We only touch the 90 easy faults. But, here if you nobody tells you that which is

the easy fault, which is the difficult fault then you are in a blind case. Even for this ten

difficult the test faults you are applying the random pattern generation based algorithm

and you are failing every time. And all the random patterns you are not able to the test

pattern generation.

(Refer Slide Time 01:04:22)

So next class will see some kind of example of algorithms likes scope algorithm call

which will tell you which are easy fault and which difficult fault then we apply random

pattern for the easy faults and you keep assign the difficult faults for sensitizing the

propagate and justifier. Now before we conclude let us come to the question and answer

session. So we are saying that what is the main advantage of compiled code simulation,

event driven simulation? So here what is the answer, so we have already discussed many

times like it know for the concurrent fault simulation, detective fault simulation and

normal fault simulation and normal circuit simulation kind.

So in compiled code simulation, we have convert the circuit into a (()) and you execute

for a pattern. Then you forget everything you just change anything, then you have to redo

everything. But, what you call event driven simulation we remember whatever was we

have done in the previous iteration. And only those changes for a fault or for a pattern

whatever are the small changes in the some regions or the circuit only there will do the re

computation. So what is the advantage disadvantage obviously event driven simulation is

faster. Because you do not re compute anything which is redundant. But, at the same

time you do remember the values from the previous iteration so you have to have some

extra thing in memory, but, gain is free because we are avoiding re computation.

Second question is among all the four faults simulation algorithm which you have seen

like serial, parallel, detective and concurrent which depends mainly on the computer

architecture. So among them we have seen only the parallel fault simulation is depend on

architecture because to these net to assign an array. And the length of the array this

processed parallally. So you have to think about bit parallel, so if you compute a 32

parallel so you can have maximum 32 bit array in all the inputs.

And for all other case like serial, detective and concurrent we do not at all think about

the memory of the computer we do not think about the parallelism of the computer. You

will never think that what are the fault list size, what are the affected gate list size and

accordingly we attach to each gate or attach to the fault list. So that depends nothing on

the parallelism of the computer. It just a it just a program and we think that what is the

case we compute that for this fault gate is these are the fault gate you have to add there is

fault version you have to add for this gate this is the fault gate you have just we keep it.

We do not think what is the architecture what is the parallelism of the computer available

and that many fault list you have to add nothing like that. So again this gate as so many

gates in the fault just keep them. But, in case of parallel fault simulation only those

number of patterns or those number of bits can be operated on that much parallelism is

supported by your computer. So that is why among all the four faults simulation

algorithms parallel fault simulation is mainly dependent on the architecture.

(Refer Slide Time 01:06:18)

The last question is when the procedure for test pattern generation by random this 1 is

stopped at a t p g algorithm by proposition sensitization is taken. That is we start

applying a random test patterns and find out the ten faults are detected next random

pattern line faults are keep on going for it. And after sometime you have to stop then

what is the stopping criteria. Stopping criteria is when you find out that and applying

some random patterns, the number of new faults with a detecting is very very less or

sometimes it can be 0.

Then you apply a random pattern number of faults detected initially will be said 10, next

random pattern 12 another random pattern 8. You will keep on doing it. But, other

sometime you will find that the number of the random patterns you are applying with the

number of new pulse rating is 0 or very very less. So at that time you can say I have to

stop because adding of random pattern is not helping me in any way and I have to go for

sensitize propagate and justify approach.

So thank you and we come to end of the lecture on fault simulation in the three hours

lecture was on that. And in the next class we will see the scan somehow how we find out

which are the difficult to test fault and which are the easy to test fault. So difficult to test

fault we will go for sensitize propagate and justify approach and easy faults we will go

for random pattern with . So with this we come to the end.

Thank you

