
Design Verification and Test of Digital VLSI Designs
Prof. Dr. Santosh Biswas

Prof. Dr. Jatindra Kumar Deka
Indian Institute of Technology, Guwahati

Module - 6

Binary Decision Diagram
Lecture - 5

Symbolic Model Checking

So what we are discussing till now, we are discussing about a data structure call binary

decision diagram or in particular we are looking into ROBDD reduced ordered binary

decision diagram, and we have seen that with the help of these data structure; we can

represent most of the all Boolean functions and it always gives a compact representation

of our Boolean function.

(Refer Slide Time: 00:46)

Also in last class, we have introduced, how we are going to represent transition system

with the help of ROBDD, also we have seen that if we are going to take some set of

states. We are having the entire transition system, we are looking for a particular set of

states; then these particular set of state can also be represented by ROBDDs. So, we can

represent the entire states phase, entire state transition diagram with the ROBDDs and set

of states also can be represented with the help ROBDD and I have slightly introduce that,

these particular data structure can be used to implement a model checking algorithm.

And when we use ROBDDs or in particular OBDDs to represent our transition system,

when we are going to implement a model checking algorithm; then we call this particular

model checking as your symbolic model checking, because we are symbolically

representing the entire system.

(Refer Slide Time: 01:47)

So basically what happens in our model checking algorithm, what is the basis of model

checking algorithm? If you look that, you will find that it is nothing but some graph

traversal algorithm, because the Kripke structure they are using to model our system can

be treated as graph. And in that particular graph, we are using some graph traversal

algorithm to look for a particular state of set of states, where a given property is true, and

the model checking algorithm written this particular set of states. So in this particular

graph traversal algorithm, if you look minutely you will find that our basic requirement

is to find a predecessor state of a given set of states or a given state. So this is the basis

thing that we need to find out the predecessor states of a given state or the set of states.

(Refer Slide Time 02:40)

So for that what happens, we have to somehow find out the predecessor state.

(Refer Slide Time: 02:46)

Say just like that, if I am going to consider this particular system, say this is your s 0, s 1,

s 2, s 3, s 4, s 5 and say that the atomic propagation p is true in s three and s four. Now if

you look into this thing, what you call? Say if we are going to find the states where A X

p is true that means; in all states, in all path where in the next state p is true, so this is x p

in all path, next state p is true. Now in this particular case, first we are going to see the

states where p is true. So in this particular case, we will find that, the atomic propagation

or a CTL formula p is true in state your s 3, s 4 that means; we are going to get this

particular two state s 3 and s 4 and you can say that, this is a subset x.

Now in our model checking algorithm what will happen? We are going to find out the

predecessor state of these two a states or say this is subset x. Then we are going to get

the predecessor as your s 1 and s 2; s 1 and s 2 are the predecessors states of this

particular subset x. Now for here what will happen? We are going to look for pre they

are exist X and pre for all X, in last class I have introduce that means; for all x means all

the transition is coming to this particular subset and pre they are exist means at least one

x is coming to this particular subset x.

Now in this particular A X p, in all path in next state p is true that means; all the

transition must come into this particular subset x. So in this particular case, now the

predecessor state we are getting s 1 and s 2.Now we are going to look for this particular

criteria, whether all transitions are coming to this particular subset or not; we will find

that for s 1 all the transition are coming to this particular state subset x but from s 2 one

of the transition is not coming into this particular subset x; it going outside of this

particular. So that means, pre for all X will give me this particular state s 1 that means; I

can say that A X p in all path in next state p is true is in state s 1. So we are going to get

this particular state s 1 and in this particular state s 1 p 1 is true. You just see that, in our

model checking algorithm our basic requirement is to find the predecessor state.

If similarly, if I am going to look for that A F phi or say E phi 1 until phi 2, in all those

cases what will happen? We are going to start from particular set of states and we are

going to traverse this particular graph in backward direction, backward traverse

basically, and we are going to collect more and more state; then we are going to say, we

are going to find that which are a state that A F p or A F phi or E phi 1 until phi 2 we

have prove. And eventually, we are going to get a set of states and our model checking

algorithm is going to written this particular set of states and we have seen that, we can

use ROBDDs to represent this particular set of states.

And ultimately, our model checking algorithm or symbolic model checking algorithm is

going to return me those particular set of state in symbolically, which repre which will be

represented with the help of our ROBDDs. So this is the basic thing, so when we are

going to use ROBDD for model checking algorithm is to get the symbolic model checker

for basically, we need we need these two function; pre they are exist X and pre for all X,

in last class we have introduce these two notion then I have explained it.

(Refer Slide Time: 06:50)

Now also we have seen one important relationship between pre they are exist X and pre

for all X and you can see that, pre for all X can be express by this particular expression s

minus pre they are exist s minus x. So this is a relationship between our pre they are exist

X and pre for all X, where s what is s? s is nothing but set of all state that means; we are

going to consider all the states of my transition system and x is a subset of this particular

s that means, we are going to look for what are the predecessor state from this particular

subset x. And if we can calculate now pre they are exist x, then from if I know this

particular things, then very well always I can calculate, pre for all X also while using this

particular relationship that means; we need one predecessor to calculate pre they are exist

x.

If we have this particular procedure to evaluate this particular set of states, then very well

we can evaluate this one also by using this particular relationship. Now we are going to

see, how we are going to evaluate this particular set of state that means; pre they are exist

x, so we need a method to calculate this one and this is the basis of our symbolic model

checking algorithm. If I give you a set of state, always my requirement is to find out

order a predecessor state and out of that I am going to see, what are the states? Where it

is going to satisfy? Pre they are exist or it is going to satisfy pre for all.

(Refer Slide Time: 08:37)

Now in this particular case, now how we are going to look into it. So we are going to

look for a procedure for pre they are exist X where what is the input? The input given to

us is your B x it is the OBDDs for the set of state. So we are having a set of states, say

this is a set of state x, we are having some states say s 1, s 2, s 3 say something like that.

So B x we are going to say that, this is the BDD representation of this particular subset x

and secondly we are going to say that, B arrow basically we are having that transition

system and that transition system already we have seen or we have discuss how to

represent a transition system with OBDDs or may be ROBDDs; so we say that B arrow

is the OBDD representation of our transition system. So basically, we are getting two

OBDDs; one is your B x, this is the OBDD representation of our set of state x and B

arrow is the OBDD representation of our transition system.

Now one basic requirement is there, for this B x and B arrow what is the basic

requirement? Already I have mention that, since we are going to use some operation on

these two particular BDDs. So they must have computable variable ordering, already we

have mention what is compatible variable ordering? They must have variable ordering.

So we are taking two BDDs or OBDDs as our input and both the OBDDs must have

computable variable ordering. Now what is the procedure? What we are going to do? Say

this is very simple one I am going to explain it as for procedure we are going to say that

rename the variables in B x to their primes versions and we call this resulting OBDDs as

B x prime. What is primed version of a variable because already we have seen that if we

are going two represent a transition system we need to set of variables to represent those

particular transition.

So if I am having a transition from say as p to say s n, s p is the my present state or

current state and x n is the next state of this particular transition say t 1. So this transition

will be represented by the order p r of 2 states, so basically this state, current state will be

represent by some state variable say, if we need n state variable; then we are going to

take the help of n state variable say from x 1 to x n.

To represent this particular s n, we need another set of variables and this set of variable

basically, the primed versions of this particular original variables. Now what we are

going to do? We have going to rename those variables in B x to their primed version, I

will explain it what we are going to get. Then we are going to compute an OBDDs for

this particular operation, first we will apply, we will use this particular apply algorithm

with this particular dot operator with this two BDDs, OBDDs for transition system and

OBDDs for the set of states where the variables are rename to their primed version and

this particular apply algorithm will give me an OBDDs and where the variable ordering

is same with your B arrow and B x prime.

Now after that what we are going to do? We are going to apply this particular exits

algorithm where we are going to make it independent of this particular primed version of

those particular variable. So x but basically it is a factor, I can say that what is your x

set? x set is nothing but the factor of all variables that we are using x 1, x 2 to x n.

Similarly, x prime set is the factor of variable of prime version of this one x 1 prime x 2

prime like that x n prime. So these are the two set, that you have to apply one renaming

of the variable and second we are going to use this particular method first; using they

apply algorithm with dot operator, then we are going to use the exists algorithm. So these

are the two set, that we have to perform when we are going to get this particular p they

are exist X.

(Refer Slide Time: 13:20)

Now rename the variable in B x to their primed version, now what happens? Say if I am

going to give your function say f is equal to a b plus a prime a b plus a dash c dash. Now

if I going to write another function, say I am going to say this is your f 1 and I am going

to say write another function say f 2; I am going to say that, x y plus x prime z prime or x

bar z bar. I can say that this is bar is basically, negation of that thing; so I am saying that

x bar z bar.

Now if you look into this particular two function f 1 and f 2, now I can realize sorry you

can realize, that these are equivalent function because what will happen the variable a is

correspond to variable x variable b is correspond to variable y and variable c is

correspond to variable z? That means they are having the name of the variable is deferent

that means, you can say that we are just renaming this particular variable from a b c to x

y z. If you look into the evaluation, if any evaluation say x is equal to 1, a equal to 1, b

equal to 1 and c equal to 1 what about functional value you have going to get for f 1?

With x equal to 1, y equal to 1 and z equal to 1 we are going to get say evaluation for f 2.

For all combination, we are going to get the same evaluation, so that is why we are going

to say that f 1 and f 2 are equivalent or they are representing the same function. So these

two function f 1 and f 2 basically same, they do not have any different only we are

rename in the variable a b c to x y z.

Now similarly, in our transition system also now what will happens? Say for f 1 I am

going to get an BDD, so this is your f 1. If you look for the BDDs for f 2, we are going to

get the same BDD here will be no difference because; they are representing the same

one. Only the variable will be rename now if this is you’re a, now it will be rename to x

similarly, if next level if I having the variable b, then that will be y one. Now similarly,

what will happen in our B x, this is the OBDD representation of our set of state x with

this particular variable x y z, x 1, x 2, x 3. So, B x is your this thing BDD representation

of a sub set of state, sub set of states and say that variables are your x 1, x 2, x 3 like that

x n.

(Refer Slide Time: 16:39)

Now B x prime, what we are having? We are going to have the same BDDs but

renaming this particular variable x 1 prime, x 2 prime, x 3 prime, x n this is the scenario

that we are having. Now I will see this thing, say if I am having a transition system

something like that, so this is the sub set x, the set I am having say s 4, s 5, s 6. Now,

what basically happen, say we are having if I am having a transition s n to s m, then we

are going to represent this transition with this particular order of your s n, s m.

Now, when I am having this particular sub set, so I am just saying that this is the B x is

representing the this particular sub set s 4, s 5 and s 6. Now say B x they are representing

with the state variable, now I am just reaming those particular variable in B x prime to

their primed version x 1 prime, x 2 prime something x n prime. Now what is the basic

basically, if you look into those particular transition because our aim is to find out the

predecessor state that means; these are basically next state variable and we are going to

find out what are the present state variable. That is why we are renaming this particular

variable to their primed version, just capture those particular transition. This is our basic

aim, so after renaming the variables we are getting the same structure as OBDDs; so

whatever OBDDs we have the rename structure will remain same on the we are

renaming those particular variable.

(Refer Slide Time: 18:27)

So after renaming the variable we are getting B x prime, now what is the next state?

Compute OBDDs for exists x prime had I should say, apply dot B arrow, B x prime

using the apply and exists algorithms. Now in this particular case what happens you just

see that, if I will conceder this particular relation, say simple transition system; now say

that I am I can or set of completion I can complete it say this is a sub set x. Now we are

getting B arrow as the OBDD representation of my transition system and B x prime is

the I will say that, representation of this sub set x. Now we are having this representing

this particular sub set with their prime version of the variable.

Now in B transition the BDD of the transition system, we are having all the variable x 1

to x n and x 1 prime to x n prime all the variable are available in your B plane and your

B x prime we are having the prime version of the variable. Now when I use this

particular apply operation the dot operation, what basically dot? It is going to give me

the intersection of two sets. Basically, already we have discussed, we have mentioned

that this if you apply this particular dot operation it is going to give me the intersection of

two sets.

Now I am using tools BDD, this is one is representing some states and second one is

representing the after transition system. Now when we apply this particular dot

operation, it is going to give me a command or intersection of these two particular state,

then basically what we are going to get after applying this particular dot operation, we

are going to get basically those transition say this t 1, t 2, t 3, t 4, t 5. So it is going to

give me, say in my entire BDD representation of the entire transition system B arrow, I

have all the transition; now I have just intersect this particular transition all transition

with this particular subset.

Now whatever we are getting, we are getting the transitions that are all coming into this

particular x, since other transition which simply go ever. So this is a intersection

operation we are doing, so basically we are getting after performing this particular apply

operation after apply what we are getting? We are getting those particular transition only

t 1 t 2, t 3, t 4, t 5 we are getting this five transition because these are the five transition,

these are the intersection of these to particular sets. Now when whatever is the result you

are getting over here, we are getting the transition; that is coming into all the transition

coming into this particular subset x.

Now in this particular BDD whatever resultant BDD we are getting say, I am going to

say that this is your BDD say only transition that it is having, so these particular BDDs

having all the variable x 1, x 2 to x n and your prime version x 1prime, x 2 prime, x m

prime. So we are getting those particular transitions, which are coming into this

particular set x and these particular transition will be represented by these all those

particular variable, the state variables along with your next state variable. Now whatever

BDD we are getting, now what we are doing it; now we are using this particular exist

algorithm and what we are exist? We are making B exist x prime had that means; we are

taking this particular factor x prime had x 1 prime, x 2 prime like that x n prime.

So what we are doing basically, whatever result and BDD we are getting, we are making

it independent of these particular prime version of that variables. You just see what we

doing? We are first doing the apply operation and we have applying this particular dot

operation, we are getting the intersection, we are getting those particular transition which

are of our interest that means; the transition which are coming to this particular set x.

Now from that what happens? Now we are making it independent of the next state

variable. So when we have making it independent of this particular next state variable so

what happens? Now, these transitions are having all the variables x 1 to x n and your

prime version x 1 dot to x m dot. So this is basically representation of this particular state

from present state to next state algorithm.

Now we have making it independent of those particular next state variables, so it is

having all the variables; now we have making it independent of next state variable. So in

this particular case what we are getting? In the resultant BDD, whatever final BDD, we

are getting now it is independent of next state variable. So eventually, we are getting the

representation of those particulars states on there, just try to visualize it and try to

understand it; that we are getting these particular states on them that representing those

particular states and these are represented by the state variable of present state variable.

You know, just see that what apart the ROBDD or OBDD written by this particular

operation, it is going to give us the states or OBDD representation of a sub states from

where all the transition are coming into this particular sub set x. So this is the way we are

evaluating, so that means we are getting a resultant BDD from that resultant BDD of a

subset and from those particular all the state from this particular sub state all transition

are coming into this particular sub state x.

(Refer Slide Time: 25:34)

So this is the way, we are calculating the pre all the predecessor state. So, if all the

predecessor state we are getting in, so predecessor they are exist x will also be the same

state because we are getting all the states from where the transition all the transition are

coming into this particular subset x. So that means at least there will be one transition

which is coming into this particular set, so it is going to give me the pre they exist x. So

if I am having some more transitions something like that, spiel these two states will come

into as a resultant state. Now, since at least some of the states are coming into this

particular x that means; this is also candidate for your p they are exist x.

 (Refer Slide Time: 18:26)

So with the help of this simple operation, with this particular two stapes, first we are

renaming the variable of B x and then we are applying this particular operation or using

this apply operation and exist operation to get the predecessor state and whatever

predecessor state, we are getting all those states will give us a pre they are exist x. And

once we are having the pre they are exist x, we can variable calculate the pre for all X,

already we have seen this is nothing but s minus pre they are exist s minus x. So now we

are having a method to find out pre they are exist X and once we can calculate pre they

are exist X, we can calculate pre for all X also. Now this is basis or this is the basic

requirement of our symbolic model checking algorithm.

(Refer Slide Time: 27:13)

Now in this particular case, now we are going to see, how we are going to implement

those particular symbolic model checking algorithm.

(Refer Slide Time: 27:18)

Already you have seen that, we are having, we have discussed with four temporal

operator; next state feature, global and until and this four temporal operators are

predictors always preceded by the path quantifier A and E that means; in all path and

they are exist a path. So we are getting a different combination but already we have seen

that, if we get three operators also, that will going to give me a complete set of operators.

So in that particular complete set of operator, I need the next state operator, I need the

until operator, I need either feature or global any one of this two. So either all A or E x

whatever it may be so we need three operators and already we have discuss the algorithm

for those particular three operators, that complete set of operators. Now we are going to

see, how you are going to implement those things symbolically that means; how we are

going to implement symbolic model checking algorithm.

(Refer Slide Time: 28:20)

So path operator is your we are talking about E X p that means; they are exist a path

where next state p is true. This is the simple procedure what we are talking, first we have

going to take all the states where p is true, so satisfying the p is going to return all the

states where p is true. So, we are going to collect those state in such a whether from

those particular states, we are having a transition to s 1 such that, s 1 belongs to this

particular set X. So this is basically, the evaluation of E X now this procedure we can

implement symbolically.

(Refer Slide Time: 29:02)

So how much symbolical model checking algorithm so look like, you just see that E X B

phi what is B phi? It is a OBDD representation of the state of states where phi is true

because when we are going to evaluate E X phi, we must know the set of state where phi

is true. We know the set of state where phi is true and we are going to represent those

particular set of state with the help of n BDD and we are going to said that, B phi is the

BDD representation of those particular set of state, where phi is true. So this is analogous

to X assign, we are assigning the set of phi where the set of state phi is true to this

particular x. So this is basically, analogous to x is equal to set of p.

Now what happens and B arrow is the OBDD representation of our state transition

system. Now whatever variable we are ordering, we are having for B arrow that same

variable (()) we should maintain for B phi also. Now from that what will happen?

Simply you evaluate pre they are exist B phi, now we are getting all the set, this is

analogous to this particular set y is equal to you are going to collect all the set from s

from s; so that we are having a transition of s to s dash, where s dash belongs to this

particular X. So this is the way that we are going to have, so we simply use this

particular pre they exist x.

(Refer Slide Time: 30:28)

Now what basically just see that we can think about something like that, you say this p is

true over here; then first we are going to get B arrow, which is the representation of this

particular whole transition system. Then we are going to get say B phi the set of state,

where phi is true; say these are the two states where phi is true. So I am going to say that

s m and s n, so this is B phi is nothing but the BDD representation of your s n and s m.

Now we are going to look for the all predecessor state, so if you con going to calculate

the predecessor state. Basically, these two states will come as forward this evaluation, we

can pre they are exist B phi and these are the states where E X phi is true. So we are

going to give the input as our B phi and B transition and from that we are going to

evaluate this particular predecessor state. Just see that, pre they are exist X or pre they

are exist B phi is going to give me the set of state where E X phi is true. So this is one

algorithm, this is a very simple one.

(Refer Slide Time: 32:04)

Now second one, we are going to say that state A F p. So determine a set of states where

A F p is true, already we have discussed these algorithms. So we are going to perform

with operation wherever p is true, we are going to say that A F p is true. This is s for a

semantic, that we have discuss our semantic says that, present state includes the future

behavior and after that we are going to look for all the states from where we are having a

transition to those particular state. So we are going to collect all state, so that we are

having s this some. We are having a transition of s to s prime, where s prime belongs to y

look like.

(Refer Slide Time: 32:43)

So this is basically what happens? We can say something like that A F phi in all part in

future phi may be say, if I am having something like that, then say if p is true over here.

Just say that you in one state I am going to take, then all state p is true over here also;

then I am going to this particular sub state, we are going to calculate the previous state,

since all the transition that are coming from this. So these two states will be marked with

your a F p, now we are going to perform the backward traversal algorithm.

So in this particular case, say all the transitions are coming to this particular sub state x.

So A F p will be true over here, A F p will be true over here, then if I am going to look

for this one, then A F p is true for two states but these state is not A F p is not true; so

these state will not given to us. So we are going to repeat this particular procedure. So

that is why we are saying the collect some more states. Then again see go over and see

where x is equal to y or not, some point of time that means; we have not adding any

more states, then we are going to terminal this particular procedure.

(Refer Slide Time: 34:15)

So this is the same procedure, we can use, now we can apply our symbolic model

checking algorithm. So, what we are having? Say B phi is the OBDD representation of

the set of state where phi is true. First we are going to start from those particular set of

state, where a given formula is true like that; we are starting from this particular sub state

and now going to perform the predecessor operator and going to find out what are the

states where A F p is true or F phi will be true.

So first we are going to take the OBDD representation of the set of state, where phi is

true and B arrow is the OBDD representation of our entire transition system or you can

say that, it is OBDD or it may be a reduced OBDD also. So we are starting with these

two OBDD, B phi and B arrow, then we are going to take one particular this things B x.

Basically it says that, these are say all states of the system, I am just representing it with

the help of this BDD. So we are going to take one BDD, where it is going to represent

the entire states. It is not the state transition system but this is the all the states OBDD

representation of all the states. So this is basically analogous to or I am saying that,

miscellaneous taking that x is equal to your s, I am just express.

Now we are going to repeat this particular procedure, the way we are doing in the

previous case that, repeat until x is equal to y. So we are going to repeat this thing, until

that B x is equal to B phi, so b phi is assigning to B x that means; we have keeping the

previous information. Now we are going to use this particular operation, we are going to

use this particular apply plus because what we have to do? Whatever we are having, we

are going to perform the union with some new more states.

Now what are the new states is coming? So this basically union, union is going to use by

this particular plus operator at B phi is the set of state with correspondent to this

particular y set of state, where phi is true and now this is your in all path in future, so that

means we need pre for all. So this is basically, we are going to calculate pre for all B phi

and how to calculate it? Already we have seen that we are having procedure to evaluate

pre there exist B phi or x. So we will use this particular relationship to get pre for all x;

so that is why I am just crisply, I am writing over here, I am not writing a entire

expression. So we are going to look for all the predecessor state from where all the

transitions are coming into this particular sub set, where phi is true.

So I have getting a new state then again I will go back and repeat now I am going to see

what is the previous set of state we have, now whether it is equal to B phi or not. So new

B phi, if there equal then will terminal, if it is not equal that means; you have where at

some new more state like, these particular case say you have where at some new more

state. Now we have to check get the predecessor of those particular new states, so we

will again enter to this particular procedure. So just see that, this is a simple conversion

of our model checking algorithm to the symbolic model checking algorithm, where we

are using OBDDs; ordered binary decision diagram to represent the entire system and

represent the set of states, where a particular formula is true and applying this particular

algorithm.

(Refer Slide Time: 37:54)

So similarly, we need one more procedure, where we are having set E U p until q. So E

exist a path, p remain to until q becomes true, so E U p until q. So what is the procedure

already we have discussed it, so what we have to do? We have to look for p remains to

until p is true. So this is the expression or this is the evaluation we did actually, what is

the w? w is the set of state where p is true that means; you have to collect those particular

states and intersection with this particular new state that, we are having a transition from

those particular state and p must be true.

(Refer Slide Time: 38:32)

So basically you just see the transition, this I am drawing it something like that. So if you

are having this thing, then what will happen? First we are going to look for those

particular states, where we are looking for E p until q. So we are going look for those

particular state, where q is true; since q is true over here. So I can say that, E p until q is

true because it is as for our semantics, that present into the future. Now from this

particular state what happens? We are going to look for a predecessor state, so we are

going to get this particular pre predecessor state.

So in this particular case, p must be true and the next state E p until q must be true. So

this is the scenario, that we are having w, it is where is the set of state, where p is true

intersection with those particulars states, where in next state q is true. So in this

particular case what will happen, in the state whatever we are getting over here; then we

will find that, this particular state p is true and next state e p n thinking is true. So you

can say that, E p until q is true; here also we will get that E p until q is true, but in this

particular state E p until q is not true because p is not over here.

Now I am getting some more states, so we are going to look for a predecessor of those

particular new states. So I am going to get these two state again with the same property,

same constant that p must be true over here, say w intersection of those particular things;

we must have transition to this some state of this particular state y, where y is the new set

we are constructing. So again we will find that E p until q will be true over here but it

will not true at that particular point; now when we come back to this thing again E p until

q will be true. So this is the way that we were evaluating E p until q. Now this same

procedure we are going to implement symbolically.

(Refer Slide Time: 41:08)

Now what we have to see? Again similar to the preparation, now it is basically E psi 1

until psi 2; so we need two BDD s to represent the set of states, where psi 1 and psi 2 are

true. So we are using starting with these two BDD, B psi 1 and B psi 2; B psi 1 is the

OBDD representation of the set of state, where psi 1 is true and B psi 2 is the OBDD

representation of the set of state, where psi 2 is true. So these are the two things we are

getting, then we are taking at the entire state transition system B arrow, this is the OBDD

representation of the entire transition system.

Now as for our semantics, wherever psi 2 is true, then E psi 1 until psi 2 it is also true on

those particular state. So I am starting with these particular psi 2 and we are saying that

initially, making B x is equal to psi 2. So initially, I can construct B x as the entire states

all the states of my states space. So initially, wherever psi 2 is true, E psi 1 until psi 2

will be true; so we are just keeping this particular assignment. So now we are going to

compare these things, we are going to repeat this particular look; now loading all those

particular states psi B psi 2 to B x, just renaming it, then we are again using this

particular expressions.

So what happens? These particular portions will give me this portion. So pre they are

exist X, it is giving the all the predecessor state in predecessor state psi 1 must be true.

So we are doing this particular dot operation, that is the inter section that means; this is

the set of state, all predecessor state. Now B psi 1 is the set of state, where psi 1 is true

that means; this is nothing but the states space representation of this particular w, w is the

set of state, where psi 1 is true.

So we are taking the intersection that means; it is going to give me those particular two

states in my previous example, say it is returning my these three behavior of

predecessors state but after doing the intersection, I am going to get these two states on

this. So this is the operation we are performing, so these are the states where it is true and

now I am going to use this apply plus that means; I am going to do the union operation

that means, first we are collecting the set of state, where psi 2 is true and I am say that

psi 1 until psi 2 will be true all those particular state. Now we are collecting new more

states, so we are going to use the union operation we adding them to in this particular

state. So that means; this union operation has been perform by these particular apply plus

operation.

(Refer Slide Time: 44:18)

Now we are adding some more states, where this particular E psi 1 until psi 2 is true like

that we are adding these two states, now we will again if we this particular procedure to

get the state and this state.

(Refer Slide Time: 44:26)

So this is the way that we are doing. So after adding this particular two states we perform

go into this particular look, I can we are going to check whatever is the new states, we

are getting whether it is equal to our previously collected state or not. If they are equal

then will terminal, if they are not equal, then again I am going to knew this same

procedure. This is similar to repeating these particular states.

 (Refer Slide Time: 45:16)

So in this way we are calculating this, so you just see that, all this true operator what are

the operators that we are talking about here, three operators we are talking about one is

your. So we have talking about the operator E X phi, A F phi and E phi 1 until phi 2. So

since we are having the procedure to evaluate these three operators; now we can evaluate

the other operator also because we have seen that these are the complicit set of operators.

So we need basically eight operators, temporal operators that we have discuss till now.

We are having four temporal operators, next state future, globally until and with respect

to this particular four temporal operators, we are going to get eight CTL operators with

path quantifier A and E, in all path and they are adjustable that means; A X, A F, A G, E

U and similarly, E X, E F, E G and sorry this is A U and E U

So out of that, if we are having these three procedures for these three operators, others

can be evaluated. So you just see that, we are using ROBDDs to evaluate these three

procedures; now we are getting a symbolic model checking algorithm and what is the

advantage we are getting? We are representing the OBB the centre states phase with a

help of ROBDDs. And in most of the cases, we have found that we are going to always

get a compact representation. Again I would like to mention that, the size of ROBDDs

depends on the ordering of the variable but to get the exits ordering is a hard problem,

already I have mention all those issues. Now we have seen that, we have got that model

checking algorithm or symbolic model checking algorithm for our this thing.

(Refer Slide Time: 47:20)

So we use ROBDDs to implement model checking algorithm and what our model

checking algorithm we are getting? We say this is your symbolic model checking, we

have seen this particular things.

(Refer Slide Time: 47:57)

Now you just see that, now we are having enough idea about our model checking

however what we can do with the help of model checker? What cannot be done, all those

things we have studied. Now in this particular case, I would to mention some tools; one

of the tools is your CUDD, this is basically a package for your decision diagram or say

binary decision diagram. So this is a package for your BDDs, this is CUDD it is

developed in university of Colorado at boulder. So universe the Colorado at Boulder,

they have developed this particular package. This is a clear everywhere try can you

purpose and you would you can use it now what you can do? You can download this

particular cut package from university of Boulder university of Colorado at Boulder and

use this particular package to construct BDD to manipulate the BDDs, use it is having all

the required algorithm.

Another tool I am going to just mention over here, which is your nuSMV, this is your

symbolic model verify. It is the extension of SMV symbolic model verifier, which is the

first model checker based on your BDDs. It was developed by Ken McMillan who was a

student of your adamant class, who is Parnell of this particular model checking

procedure during his tenure it in CMU, he develop this particular SMV. Now, it is

having some modification extension and release as your nuSMV. So this is a symbolic

model verifier, whether is in a BDD to represent entire system and do this. So with the

help of this thing, we can model our system or we can look for property verification, it is

handles Parnell’s also.

Another one I can just mention over here, it is SPIN; this is a tool developed at your bell

labs this is initially the LTL model checker. So we can already we have mention about

what is LTL which is, so we are having a LTL model checking. Also now what you can

do? You just try to download this three package and try to work with this thing. So

working is also very simple, what you need to do? You have to see; you have to look into

the syntax how we are going to give the input to this particular tool.

So you have to know the syntax of nuSMV, how to provide the input and you have to

know the input syntax for the SPIN verifier. They using the particular language call

Promela, so that you need to knew the, know the syntax of this particular formula

language to give the model of your system and after that after specifying the property; it

is going to check whether the property is true or not. So this is the way, that we are doing

it. So what happens now? You just try to for I am just giving this information, if you are

interested you can download those package and try to work with those package.

 (Refer Slide Time: 50:54)

Now what we have seen in this particular case, say this is basically we are discussing

about your system design verification. So we are having a design and we after coming

with up a design, we are try to verify or check whether my desire properties are true in

this particular design or not.

So in this particular case what we have discussed? Or what we need? Basically, we have

to come up with the some model of the systems. Say if I am going to design something,

say simple one I can talk about that you are going to design for your. So traffic like

controller, we have to come up with a model and this model basically, we are

representing with the help of Kripke structure which is a kind of your FSM, finite state

machine.

After that we have to give our specification or the property death not be satisfied by my

model and here in this particular course, we have discuss one specification language

which is call CTL, computational tree logic. We have discuss with this particular CTL,

we can give the specification with the help of this particular CTL language and after that

we need the verification method by which we are going to check, whether given

specification is true in the model that we have given or not. So for that, we have used this

particular model checker or we are using this model checking algorithm.

(Refer Slide Time: 52:15)

Now after that, when we look into the model checking algorithm, what we have find? Or

we have observed that, we are going to get an polynomial algorithm for model checking

algorithm. So this is the beauty of your model checking algorithm, if I talk about a model

checking algorithm, particularly I should say that, in particularly should say that this is

your CTL model checker. For CTL model checker, we are getting an polynomial time

algorithm, so which can be manageable, which can be handled and the method can be

easily automated.

Now since we are having an algorithm, which your polynomial algorithm, so it can be

automated that means; we can have an automated tool. I am already I have mention

about some tools like nuSMV, SPIN like that. And another advantage of this particular

model checker is, it provides counter example. So if I am giving a model and I am giving

a specification of property, now using this particular model checker, then what will

happen? If the property is true, it is going to say that; yes, this property is true in your

model you can proceed but if the property is not true, it will give me give a counter

example, it will give me an execution trace and it will say that if you follow this

particular execution trace, then you are given properties falls.

So this is a some sort of feedback mechanism, it is giving some feedback to the designer

team; now designer team can concentrate on those particular execution trace and they

can fixed the bug. So this is the advantage about this particular model checking

algorithm. Now what we have seen? We have seen that, we are having some problem

with this model checker. What is the problem? The problem is takes place expression

problem. Already I have mention that, the states place of the system, of the model that

we are going to get is exponential with respect to the number of state variables that we

have. Already I have mention that, if I am having n state variable, the number of possible

states will be a 2 to the power n, if n is increase by 1 then it will be 2 to the power n plus

1 which will be exponential in nature.

How to contain? How to restrict this particular states place expression problem? Or how

we are going to work with a bigger system? So for that, we have seen how compactly it

can be represented that transaction system can be represented and how it can be

represented? What we need? And we have seen that, the data structure BDD can be used

or in particular ordered BDD can be use to represent the state space diagram and most of

the time we are going to get a compact representation for those particular states space. So

by using OBDDs, we are coming up with another model checker and we call this is your

symbolic model checker.

So in case of symbolic model checker, we are using OBDDs to represent our states space

and we are somehow contenting the states space expression problem, we are restricting

the explosion with respect to this particular states space. So these are things that, we have

discussed in this particular part.

(Refer Slide Time: 55:09)

Now as I now question, what I am going to say that, already if you look back our

lectures, then what happens? We have seen how to design an elevator controller. We

have seen or we have discuss a simplified model of a microwave controller, so these two

we have discuss in our course of our lecture. Now what we can do? Now since you have

the model, you know what are the properties that you need to verify, already I have

mention something along with that very simplified the one of very simple one, that we

have discus about your Michel exclusion problem for our said resources. So these are the

things that we have discussed in our course of lectures, now what we can do? That I have

mentioned about some tools like your nuSMV or SPIN.

Now you try to model this system on those particular tools, model this system means

what happens? Already I have or we have discussed about the model. Now you just try to

convert this particular model to the input language of you SPIN or nuSMV and you see,

how we are going to write the specification for those particular tool and check those

particular properties. Just as an example as a question I am giving you, you download

those particular tools, install in your machine and try to check how those particular

model checkers are going to work.

Now, I am giving some other problems also, say what I am talking about that traffic light

controller, say already in many a time I have discussed or I have mention about this

particular thing. Now you take some complicated system, complicated thorough network

and try to design a controller for this particular traffic on this particular junction. So that

means; we need a controller, so you try to come up with a design, come up with a model

and come up with the properties, that need to be satisfy this particular controller.

Another one, another system you can talk about ATM. Now it is most of you people are

using that ATM, automated teller machine, so how it is going to work? You must know

and if you try to analyze it, you will find that, you are all come up with a basic model. So

you try to come up with a model of this particular ATM system also and after that after

coming up this particular ATM model, then you try to find out what are the properties

that need to be satisfy this particular model? And now use those particular model

checkers to check those particular properties. So that is why I am saying that use of tools

nuSMV or SPIN because these are freely available for convene purpose. Now you can

come for, you can look for the designing or modeling of those particular system and see

try to prove the properties on those particular system; in that particular case, what

happens? You will be knowing how to use these particular tools also.

(Refer Slide Time: 58:04)

Now what we are looking into it, this is some sort of your designing of our digital system

in this particular course, we are talking about design verification test of your VLSI

system. Already I have mentioned or we have mention that basically, if you look into the

design cycle, you have found, you will find this particular step. First you have to come

up with the specification of the system, then we have to come up with an design; once

we have come up with a design before proceeding further, we have to say that our design

is going to work correctly.

So for that we have been coming up with this particular verification methodologies, we

are going to check the properties in our model. Once we are coming with this particular,

once you verify these properties and we are satisfy that yes, my system is going to work

correctly, then we will go for implementation. After implementation then what we have

to do? We will go for this particular testing, whether my implemented circuits are correct

or not basically, it is going to find out the fabrication fault and next steps are next stage is

your installation and marketing and after that, you have to maintain it or you have to go

for the observation. So these are all design cycle steps that we have or seen or we have

discuss that these are the steps where we required, when we go for this designable digital

system.

(Refer Slide Time: 59:25)

And in this particular course, this is about the digital VLSI design. If you see that in this

course, we are talking about the design of a digital system and if you look in to it, we

will find that, we are having three part of this particular course; one is the design issues,

second is the verification issues and third one is the testing or testing of our design or

testing of our VLSI design. So in this course, we are having these three issues. In the past

module of this particular course, we have discussed about the design issues how will

precede to design a system? This is the first part of this particular course and second part

we are talking about the verification. So this is the second part that we are discussing till

now in this particular part, we are talking about the verification issues.

So what we are doing over here? We are coming up with the design, so in while we go

for this particular design we are coming up with a design, we are getting a model. After

getting the model, we know what are the properties it must satisfy. So will come up the

specification, we will apply some verification methodologies to check whether this

property is two or not. So in this particular part, we are discussing about these particular

verification issues, how we are going to do go for verification; and how what we are

going to do and all processes and we have discussed and in this particular part, we have

just introduce one particular technique call model checking. We have seen how we are

going to use this particular model checker? What are the problems? And we have

introduced about your symbolic model checker also.

And in the third part of this course is your testing, so in next part we are going to talk

about this particular testing. One my fabrication is over now, how we are going to test

the system, that before releasing into the my card we will said that, this is fault way.

Basically in testing, what we are going to do? We are going to do about the going to find

out the fault and we are going to release a fault free circuit to the market. So this is

basically, post implementation of post fabrication. So next class onward, we are going to

talk about a testing of our VLSI system that is all.

Thank you.

