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Module - 6 

Binary Decision Diagram 
Lecture - 2 

Ordered Binary Decision Diagram 

In last class, we have introduced the data structures called binary decision diagram and 

with the help of this binary decision diagram, we can represent any Boolean function or 

expression. And we have seen, how to construct this particular binary decision diagram. 
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So construction can be done from your two table, where we are going to get a binary 

decision tree or we can use the Shannon expansion of your Boolean expression to 

construct the B D D, binary decision diagram. And after that we have seen some 

reduction rule basically, we have 3 reduction rule; 1 elimination of duplicate terminals 

removable of redundant nodes and margining of duplicate non-terminals. With the help 

of these 3 reduction rule, we can reduce the BDD and we get reduced binary decision 

diagram. And in most of the cases, we have seen that we are going to get a compact 

representation of Boolean function; if we use reduce B D D, reduce binary decision 

diagram. 
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But, when you look into the construction of our B D D, we will see that we are not 

putting any restriction on the ordering of variable, the way it may appear in our BDD and 

again we are not giving any restriction of the occurrence of variables in a particular path. 
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It may appear in many places, because if we look into the definition we are saying that a 

binary decision diagram is a finite DAG with an unique initial node. It is a finite DAG 

directed as I click up with an initial unique node, where all terminals are labeled with 0 

or 1; all non-terminal nodes are labeled with Boolean variable. So, if we are having a 



Boolean expression, we are having those particular variable in the Boolean expression 

and the term non-terminal nodes will be label by this particular Boolean variable and its 

non-terminal nodes are having two outgoing edges; one represent by dash line which 

specifically indicates, it is the valuation of that particular variable is 0 and another one is 

given by solid line which says that, the valuation of this particular variable is 1. 

So this is the definition of binary decision diagram and we can construct binary decision 

diagram of any Boolean expression and while we are talking about this or when you look 

into the definition of this particular B D D, it is not talking about any, not talking 

anything about your occurrence of that variables, how many times it should occurred? Or 

it is not keeping any particular ordering. 
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. 

So, if you look into this particular binary decision definition of binary decision diagram, 

then will say that, this is a binary decision diagram. This is simple DAG; we are having 

three variables say, it is a function of three variable f x y z. So x I am having over here, 

then this is dash line indicate the valuation of this x is 0 and valuation of this particular x 

is 1. Like that y z’s are another variable and these are the two terminals known one is 0 

and second one is 1. So if you look into it you see that, here in this particular case this 

particular x is appearing twice in this particular path because as per definition we do not 

have any restriction. Similarly, we can say that y is also appeared in two different 

position but if they are in a different parts. 



(Refer Slide Time: 04:05) 

 

Now in this particular case if you look into it, then by looking into this particular variable 

B D D, we are going to see some problems. We are talking in that particular case, we are 

going to have the notion of consistent evaluation path and inconsistent evaluation path. 

So when we draw this particular B D D, some of the path may be in consistent; I will say 

why it is inconsistent. So die valuation of this Boolean function will be done through 

consistent part only. Now you just see that, I am saying that this is x variable here I am 

talking x equal to 0 and in this particular part I am talking x equal to 1. When value of x 

equal to 0, I am going to take decision of y, this is in this particular part y equal to 0 and 

in this particular point y equal to 1. 

After that when I come to this particular node, then again I am going to take decision on 

x; then I am going to say that in if a follow this particular path, then x equal to 0 and if I 

follow this particular part then x equal to 1. Now this is the way that we can see an 

ultimately, we are going to get this functional value. Now if I follow this particular path 

in this evaluation path, it is same for that value of x equal to 0 and value of y equal to 0 

and we are going to say that, the functional value is 0 if x equal to 0 and y equal to 0; it is 

independent object in this particular evaluation path. 

Now if I look into this particular evaluation path, I am showing by double line. Now 

what happens? I am going to say that, x equal to 0 and valuation of y equal to 0 and x 

equal to 1. Now in this particular path you just see that, value of x is taken as equal to 0 



and it is also taken as x equal to 1. Now, when we are going to look for a valuation of 

any particular function at any instant, we can have only one valuation for one variable; 

so just say that if I am randomly writing on function say f equal to x y plus x bar z. 

Now in this particular case, when I am going to look for the valuation or evaluation of 

this particular Boolean function, either I am going to say that, evaluate it either x equal to 

0 or I am going to say that either x equal to 1. So for these two different combination, I 

am going to get two different valuations, but in this particular path, what will happen? 

The value is treated as x equal to 0 as well as x equal to 1 which is not possible and 

which is not permitted.  

So in this case we are going to s ay that, this is an inconsistent path. So that means, we 

are having the notion of inconsistent path in B D D, if we look into the basic definition of 

BDD that means; the valuation of the function or evaluation of the function has to be 

done through consistent path only that means; we should not look for the inconsistent.  
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Now due to this particular problem, we are trying to eliminate this particular problem 

and in this particular case, what we are going to do; we are going to put some restrictions 

on the occurrence of the variables and in that particular case, we are going to put a 

particular ordering of that variables and after putting this particular ordering of the 

variable, we are going to get ordered B D D; ordered binary decision diagram. So in case 

of ordered binary decision diagram that means; variable will come in a particular order. 



Let consider that, x 1, x 2, x n be an order list of variables without duplication and let b 

be a B D D, all of whose variables occurs somewhere in the list. Now we are considering 

a BDD where, all the variables of this particular list is occurring somewhere in this 

particular BDD and we are saying that, this is an order list where duplication is not 

allowed. We say that b has an ordering x 1, x 2, x n, if all variable of b occur in that list 

and for every occurrence of x i followed by x a along any path in b, where i is less than j 

that means; if we are going to fallow this particular ordering say x 1 to x n. So when we 

draw this particular B D D, then x 1 must always come before x 2 or may be x 1 always 

comes earlier point of x n; it should follow this particular ordering. 

So when we are following or practicing this particular ordering of B D D, then we will 

find that, one particular path only 1, the variable will appear only once that means; since 

it is appends only once. So that multiplicity of valuation like, x equal to 0 and x equal to 

1 that when the way we have seen in the earlier example we will not occur. So that 

means; in case of ordered B D D, we are going to follow a particular ordering of the 

variable. 
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Just a simple example you see that, I am having an BDD over here and we are saying 

that, we are having five variables x 1 to x 5 and we are considering this particular 

ordering that means; x 1, x 2, x 3. x 4 and x 5, this is the ordering of variable. When we 

mention this particular ordering, then what we have to see that x 1 always must occur 



before x 2, x 3, x 4 and x 5. Similarly, x 3 must always occur before x 5 in any path in 

this particular B D D. So if you look in any path, you will find that this is x 1, x 2, x 4 

then we are having evaluation values. 

So now where it is saying that, it is evaluate everything this particular ordering that 

means; x 3 is not coming before x 2 in any of path. Similarly, x 5 is not coming before x 

1 in any of the evaluation value. So in this particular case, we are going to said this is an 

ordered binary decision diagram and that means the variables are following a particular 

ordering. Since they are following a particular ordering, duplication occurrence of a 

multiple times of a variable in a particular path is not allowed. So this the way that we 

can say this is ordered binary decision diagram. 

Similarly, this is another binary decision diagram, ordered binary decision diagram and 

in this particular case, we have following these particular ordering say; x 5, x 4, x 3, x 2, 

x 1. That means when you look a name evaluation path in this particular path the variable 

must occur in this particular ordering that means; x 5 will come first then x 3, then x 2, 

then it is coming to the terminal node 1 so it will follow this particular 1.  
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Now when we are using this particular ordered binary decision diagram, then variable 

will appear in a particular order in any execution, any evaluation path of this particular B 

D D. So appearing a particular variable multiple times in a particular path is avoided that 

means; the notion of in consistent path is avoided over here that means; all evaluation 



paths are now consistent. So this is the notion about ordered binary decision diagram, so 

we are going to pull a particular ordering of the variable. 

Now if you consider this particular B D D, just say I am drawing a random BDD over 

here, I think in last class also I have drawn this particular B D D; now slickly sensed a 

level over here. So in this particular case, I am saying that it is not an ordered B D D; 

why it is not a ordered B D D? It is not fallowing any particular order in an angle. 

Say, if I fallow this particular path, then the ordering is your a, b, c. This is the ordering 

of variable in this particular model but if I fallow this particular order path, evaluation 

path, then I am going to get the ordering as your a, c, b. You now see that, a is appearing 

before b is All Right but in this particular path b is appearing before c and in this 

particular path c is appearing before b that means; it is note following any particular 

ordering of the variable, so that is why it is not an ordered B D D. 

Secondly, we are saying that, this is not a reduced BDD why? We can see some 

instances look into this particular node c, we are having a retardant test over here. So c 

equal to 0 or c equal to 1 it is equal to 0 that means; this is retardant test; so this retardant 

test can be removed. Secondly if you look into this particular two nodes, b equal to 0 it is 

evaluated 0, here also b equal to 0 evaluated 0; in this case b equal to 1 evaluated to 1 b 

equal to 1 evaluated to 1 that means; these are read you can say that duplicate non-

terminals.  
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So these non-terminals can be merge to one non-terminal; so since we can apply the 

reduction rule to this particular B D D. So that is why it is not an reduced B D D, this is 

not ordered because we are not having the similar order in out of it and it is not reduced; 

so this is simple example that I am giving. 

Now we are having some impact of the chosen variable. Now we can say that I am going 

to say that we are going to put a variable ordering, say some x I am having some variable 

x 1, x 2, x 3 like that say x n; this may be one variable ordering. Secondly I can say that; 

x n, x n minus 1, x n minus 2 like that up to x 1 this may be another variable ordering. So 

with a help of this particular variable ordering, I can get an BDD I will say that, this is 

your BDD B 1 and with a help of this variable ordering, I can again have the BDD 

representation of the given function and I say that this is your b 2. Now we are getting 

these two B D Ds but these two B D Ds are representing the same Boolean function.  

Now after that will use the reduction of these things, so we are going to get reduce order 

binary decision diagram. Now in this particular case, we have to see what will be the size 

of b 1 and b 2, it may happen that the size may vary in both the cases; one may be bigger 

one and one may be smaller one. So that means the ordering of variable is going to 

material doped for the size of our BDD; I will explain this things with the help of one 

simple example. 
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So just see that, consider this particular Boolean function f, we are saying that x 1 plus x 

2 x 3 plus x 4 x 5 plus x 6 like that up to x twice n minus 1 plus x twice n that means; we 

are having twice n variables. So this is a function of twice n variable and this is simple 

function. Now in this particular case, if we choose the variable ordering x 1 to x 2 up to x 

n x twice n say this is one particular variable ordering. Then in that particular case what 

happens, we can draw the BDD for this particular function and the ordered BDD will 

have twice n plus two nodes, we will see. So we can construct the BDD for this 

particular Boolean function and that particular Boolean function will have 2 to the power 

twice n plus two nodes and we will see that, no more deduction can be possible and we 

can said that, this is the reduced order binary decision diagram. 

On the other hand, if we choose the variable ordering something like that x 1, x 3, x 5 

then up to x twice n minus 1 then x 2, x 4, x 6 up to twice n that means; all the odd 

subscription I am going to put first and then even subscription I am going to put that all. 

So this is also possible variable ordering, so if we use this particular variable ordering, 

then will see that total number of nodes that will be having is your 2 to the power n plus 

1. So, if we having n twice n variable the total number of your this things, that nodes that 

will appear in this BDD is your 2 to the power n plus 1 and the earlier case it is twice n 

plus 1. So you can see that they have considered difference of our size of the BDD and it 

basically depends on the variable ordering. 
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You just see, this is the BDD I have drawn this is basically the same function x 1, x 2, x 

3, x 4, x 5, x 6 and the variable ordering that we are having is your x 1, x 2, x 3, x 4, x 5, 

x 6. So in this particular case, I am getting this particular BDD I am having six non-

terminal nodes and two terminal nodes. 
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Now if I sends the variable ordering, then we are going to get this particular 

representation this BDD so here, the variable ordering basically I am taking x 1, x 3, x 5, 

x 2, x 4, x 6; this is the variable ordering x 1, x 3, x 5 then x 4, x 6, here x 3 separate like 

that. So in all the evaluation path, you will find that it is following this particular variable 

ordering. Now when I am having this particular variable ordering, then you see that I am 

getting a b or B D D. 

So this is the same function I am representing with one ordered B D D, so we are 

ordering is this from x 1, x 2, to x 6 and the same Boolean function I am representing 

with another order BDD where the order is different and we have see that the size is 

more. So the size basically, size of the ordered BDD depends on your the variable 

ordering and if you look into this particular things no more reduction rule is possible for 

this particular B D Ds and on the other hand, for this BDD is also no more reduction rule 

is possible. So these are basically, reduce ordered binary decision diagram. 
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So that is why you are saying that a BDD is said to be reduced, if none of the reduction 

rule can be apply and similarly, for ordered BDD ordered binary decision diagram we are 

going to said that it is a reduce ordered binary decision diagram ROBDD if none of the 

reduction rules can be apply in of order. So eventually you are coming to reduce order 

binary decision diagram.  
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So by it is a binary decision diagram so variable are having a particular ordering so we 

are going say this is the ordered binary decision diagram. Entirely, it is a reduced one no 



more reduction rule is possible so we are going to say this is reduced order binary 

decision diagram and eventually we are going to worked with ROBDD, which is having 

all the required properties from us. 

Now in this particular case you just see that, already I have mention about this particular 

ordering of variables depending on the ordering of our variables, the size of our ordered 

BDD will vary. In some cases, we are going to get a compact representation and in some 

cases, we are going to get slightly bigger representation or bigger ordered BDD or bigger 

reduce ordered B D D. 

Now, how to get the proper variable ordering? So, that we can get a compact 

representation of this particular Boolean function, so that means we have to look for the 

proper variable ordering but to get the proper variable ordering to get a compact 

representation of the function in BDD is a hard problem. We do not have any method or 

we do not have any algorithm to say that, this particular variable ordering is the best 

variable ordering and it will give us the compact representation of a given Boolean 

function. 

So this is a hard problem, it is difficult to find out that particular based variable ordering. 

So this is a open problem plus till working on it whether it can be solve or not. Since it is 

an open problem, it is a hard problem. So currently, we are using some heuristics and 

with the help of this heuristics method, we will try to find out some variable ordering 

which are going to give us some compact representations. It may not be the minimal one 

the BDD that, we are going to get may not be minimal one but it is going to give us some 

compact representation. So we apply some heuristic and use by using this particular 

heuristic thing, we try to find out some variable ordering and after that, we apply this 

particular variable ordering to construct the BDD and in most of a cases, we have found 

that we are getting a each and every good size of BDD representation of any function. 
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Now, we have introduce a data structure call BDD binary decision diagram, which is use 

to represent any Boolean function and later on we have seen that; ordering of the variable 

and reduction of that particular ordered binary decision diagram and eventually we are 

coming to ordered binary decision diagram and we use this particular ROBDD to 

represent any Boolean function. 
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Now after that we now, since we are having this particular BDD representation of 

Boolean function, we may need some algorithm or we need some method to work with 



those particular BDDs. Now once you just see that I am giving a Boolean function and 

you have come up with a variable ordering or you have chosen a particular variable 

ordering, then we are going to construct the BDD, or ordered BDD for that particular 

function and you can very well constructed, with the help of Shannon’s expansion of the 

Boolean function. But eventually whatever you are getting it whether it will be a reduced 

one or not, you have to check it or if it is not reduced one, then you have to construct the 

reduce BDD reduced ordered binary decision diagram and already we have mention that, 

we are having three rules to go for a reduce BDD and we can apply this particular three 

rules to the initial B D D. 

Now we will going to see an algorithm, we are going to put this particular rule in an 

algorithm form and we will say or we will get an algorithm call the algorithm reduce and 

we will apply this particular algorithm reduce to reduce any BDD. So basically, what 

will happen in this particular algorithm reduce, we are going to give a BDD or basically 

we are going to give a ordered BDD as an input and the output, that we are going to get a 

reduce order BDD and the variable ordering of the output B D Ds will be same as with 

the input BDD. So we will look into this particular algorithm. 

So, if we are going look an ordering of some variable say x 1 to x l that means; we are 

having l variables, then we can have at most l plus 1 layer in our BDD. So we are going 

to have l plus 1 layer at most, but in some cases in some part it may be less also because 

that particular function may be independent of that variable.  

Now algorithm traverse this particular, that algorithm reducible traverse that B, that final 

decision diagram B layer by layer in a bottom-up fashion. So we are going to have a 

representation of our Boolean function BDD representation and this algorithm reduce is 

going to traverses it from the bottom layer to the top layer. So that means we will start 

form the terminal nodes and after that, we will traverse it back to the root nodes and 

eventually, we are trying going to apply some rules; so that we can get the reduce BDD. 
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Now here in this particular case we are going to an assign an integer label to each node, 

so first one is the labeling after node. So say if I am having some BDD something like 

that, say this is your x, this is variable y we are going to have some ordering. So in this 

particular case, we are going to assign some integer label to each node, I can say that I 

am not assigning that integer label 3 to 8 and I am assigning that integer label 2 to 8 and 

I am going to said that, integer label 4 assign to this particular reduce. So this is an 

integer label of these particular nodes and we are going to say that, this is basically the id 

of this particular node, id of the node. 

So basically we are going to give an id and id is nothing but the integer label of its node 

and we can say that id of a particular b d node and will be equal to id of m if the sub 

ROBDDs with root nodes n and m denote the same Boolean function. So basically if sub 

BDD denotes the same Boolean function, then we are going to give them the same your 

this thing, so recall integer label just I will say that this is one node say labeled with your 

x and say this is y. So with evaluation 0, we are going to same node and with evaluation 

1, we are coming to same node say this is z and z. 

Now in this particular case, what will happen? You just see that and after that we may 

have this particular BDD. Now for is particular node, say this is n I am talking about and 

say this is m. So once we take the value of x equal to 0, it is going to look for this 

particular sub BDD. Similarly, for this particular node also say y is equal to 0, then sorry 



if they are having the same. So in this particular case, it is also x is equal to 0, they are 

going to have the some sub BDD. Similarly, for 1 both are having the same sub BDD 

that means; both this particular nodes are evaluating the same sub formula for value x 

equal to 0 and x equal to 1. So in that particular case, we are to give the same label to this 

node n and m so we are going to give some label or id and this label will be same for this 

particular this nodes. So if they are going to have the same sub B D Ds, then their label 

will be same; this is in the rule through assign the label to each and every node. 
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And another one we are going to define which is basically two function; one is your low 

and one is your high. So for every non-terminal nodes we define a functional call lo n, so 

this is basically low to be the node pointing to via the dashed line from n and similarly, 

we can have hi of n which is basically high. So if I am having any node say on over here, 

so I can have the dash line and solid line. So in this particular case, are the label of this 

particular node is a 3 and label of this particular node is say 4. 

So in this particular low of n, it is going to written this particular label 3 because it is low 

to be the node pointed to via the dash line; so it is pointing this particular case. Similarly, 

high will written the value 4, because it is pointing to this particular node whose label is 

4. So basically low allow, low and high it say are two function, it is going to give me the 

nodes pointed by dash line and node pointed by solid line respectively. So we are 



defining these two functions, say when with the help of this thing, we are going to 

construct this particular reduce algorithm; so first task is to label each and every node. 
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Now next task is to label the nodes, so how we are going to label the nodes? So label the 

first label say 0 to the first 0-node it encounters. So for basically say, we are going to 

follow from the terminal nodes and following in the bottom of expose approach. So first 

we are going to get some node 0-node, we may have one 0-node and more 0-node label 

by 0. Then we are going to assign a label 0 to those particular 0-nodes and similarly, we 

are having some nodes which are label terminal nodes, which are labeled with 1 and we 

are going to assign label 1 to those particular node.  

So if we are having more 0-nodes, we are going to give the same label to those particular 

0-nodes and we are going to give a 0, label 0 and we may have more 1-nodes to all the 1-

nodes, we are going to get label s 1. So basically this is the starting of our labeling 

algorithm and we are starting from the terminal nodes and we are going to follow the 

bottom of approach. 

Now what we can say, now in this particular case, we are giving that label 0 and 1 now. 

Later on what we are going to do, the nodes which are having the same label will be 

merge together basically, this is a second phase of our reduce algorithm first we are 

going to label each and every node and next phase, we are going to merge the nodes 

which are having the similar label. So in this particular case, all 0-nodes will be label 



merge to 1-node then 1-node will be merge to 1-node label by 1. So this is nothing but 

the reduction rule 1, that we have elimination of duplicate terminals so that means; we 

are going to take care of this duplicate terminals one, say removal of duplicate terminals 

so all zero node will be merge to one 0-node and all one nodes will be merge to 1 1. 
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Now secondly if we are having now, once we label those particular terminal nodes, next 

we are going to follow the bottom of approach. Then we are going to get some non-

terminal nodes, labeling of non-terminal nodes given an x i node n and already assign 

integer label to all nodes of layer i is, layer is greater than i that means; when we follow 

this particular labeling. So this is I am coming label i, then i plus 1, then i plus 2 like that 

up to terminal labeling. When we come to label this particular node, then what it will 

happen? All the nodes below this particular label particular label must be marked, we 

should have all the integer labeling of all those particular node below this particular then 

only we can label. 

Since we are following the bottom up approach so when we reach this particular node, 

then all the nodes below this particular node will be all ready label. If the label l id lo n is 

same as id hi n, then we said id n to be that node, of that label that means; you can say 

that, if I am having a particular node n over here and say low and high both are coming 

to one particular node say m. So in that particular case say, id of low n say this is say I 



can have say some label 3, so id of low of n is equal to 3 similarly, id of i of n is equal to 

3. 

So if both are same then what will happen? We are going to give the same label to this 

particular node, so I can say that this is also labeled with 3. So what basically it means, 

that now in the next page we are going to merge them together, so these will be merged 

together because they are having the same label and you said that this is nothing but the 

reduction rule of redundant nodes specially removal of redundant node because here I am 

having some redundant test for both 0 and 1, it is going to give the same sub BDD. So if 

the id of low n and id of high n is same, then n will get the label of this particular n only. 

So this is basically we are labeling putting an integer label and basically, it is going to 

help us to use this particular reduction rule removal of redundant nodes. 
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Next we are going to say that, already I have say that if I am coming to x i node, then all 

the nodes below that label is already marked. Now if there is another node m such that m 

and n have the same variable x i that means; I am having a node n and I am having a 

node m and both both are labeled with same variable say x i. Now what will happen in 

this particular case, if id lo n is equal to id lo m that means; this is low and this is low 

some label we having sorry this is low. 

Similarly, i and i coming to the same nodes or it may cover to the define node but both 

are having the same label. So in this particular case, say low and low n and low m is 



coming to the same sub BDD and similarly, high n and high m are coming to the same 

sub BDD then id of n will be equal to id of m. So if I am having a already say, id of this 

particular nodes say m say is equal to 5, then I am going to assign the same label to this 

particular node also and it is 5. So if you see this things later on we are going to merged 

them together that means; we are this is basically corresponds to the rule of removal of 

your duplicate nodes. Basically these two are duplicates because; they are having the 

same sub BDD below that they are going to evaluate the same sub function so we can 

merge them together. So this is basically nothing but the removal of these particular 

duplicate nodes.  
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So in this particular case, if it is not getting this to two nodes say I am coming to your 

particular node x i and all the node below this particular node is label and if it is not 

following these particular nodes say, this is the first one and this is the second one; it is 

not following this particular two cases, then what will happen? Otherwise we set id of n 

to be the next unused integer label. So here starting with integer 0 for the 0-node, then 

we are starting with integer 1, then if they are not equal then I will go to next unused 

number 2; then go to next unused number 3 like that. So if it is not following these two 

particular rules that we have already mentioned, then set id of n to be the next unused 

number. 



So next unused number will be given me that means; it is an new node we are getting 

and it will be appeared or it will be present in r it will present in our reduced BDD. So 

once we are having these things, then what we have going to do then already I have 

mentioned that. The next phase what we have going to do? We are going to merge the 

nodes which are having similar label that means; that can be removed. 
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So just we are going to look an example say, this is an BDD we are constructing x y z 

and this is basically BDD also. So if you look into it how we are going to start it? First 

we are going to start the terminal nodes. So in this particular case, we are going to give 0 

to all 0-node and assign 1 label 1 to all 1-nodes; this is the first two labeling the terminal 

nodes 0 and 1. Then we are going to look for this particular thing say, in this particular 

case z 0 is going to 0-node and 1 is going to 1-node. So since these two are define so it is 

going to get a new label. 

Now when we are coming to this node, say these two are having define so it should get a 

a new level but secondly already we are having a z-nodes so we will compared these two 

nodes and the low of this particular z is same with low this particular one and high of this 

particular z is high of this one. So this node will get the same label over here because 

there they are having the same some BDD for 0 and 1. 

And similarly, when I come to this particular node z label by z, I can we find that they 

are having two deferent nodes 0 and 1; so it should be at a defined label but if I consider 



about these nodes, then what will happen the behavior is same so it is going to get this 

particular label 2. So now, first we are labeling the terminal nodes, then we are coming 

one label up of after label this particular node; then will go to the next label. So since I 

am having three variables, so total we are having four labels you are distinct what we 

called non-terminal nodes for three variables and one label is the terminal nodes. 

Now similarly, now when we come to this particular node, you just see that low of your 

this particular node is pointing to that label two nodes and high of these particular node 

is label 2 this particular label 2-nodes. So that means in low of your this nodes is same 

with the high of this nodes that means; this is removal of your redundant node. So since 

they are same this particular node is going to get this particular label so it will be labeled 

with 2. 

Now, when we come to this particular node, then we will find that low is coming to 

labeled 1 and high is coming to label 2 that means; low and high is not giving the same 

representation, we are having the deferent representation, deferent sub B D Ds, different 

function so it is bond to get a new label. Similarly, again behavior of these two nodes are 

not same, second third condition will also clear so it is going to get a new label and we 

are all going to labeled it by 3 so it is assigning a label 3. 

Now when I am coming to these particular things, then low of this particular node is 2 

and high of this particular node is your 3. So id of low is 2 and id of high is 3 that means; 

they are having different sub function so it is going to get a new label 4. So we are 

starting from this particular terminal nodes and we are following the bottom of approach 

and coming to this particular root nodes and we have label all this particular nodes. Now 

in this particular case, now next one is your merging of our duplicates nodes. So, if it is 

id of low of n is equal to id of low m and id of high n is equal to id of high m so which is 

the senior, then we have going to merged. So merging of duplicate nodes in this 

particular case, these three nodes will be merged together. 

And secondly, we are having another one removal of redundant nodes so if id of low of p 

is same as id of high of p. So this is say you have just saying that, this is labeled with p 

and this is a label n and m so that is why I am saying that n and m so that can be merged. 

Hence similarly, it can be merged and now since for this particular node p low and high 

as same so you can remove these things. So basically these are the rules that we are 



going to apply so in this particular case, now we can merge these particular nodes which 

are having the same label and eventually, we are going to get this particular reduce BDD. 
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So this is the reduced ordered binary decision diagram of the BDD that we have studied. 

So now with the help of this reduce algorithm, we can use we can reduce the B D Ds and 

eventually we are going to get a reduced ordered binary decision diagram that means; we 

are having an algorithm called reduce where we are going to give an BDD B. So that 

means; input is your ordered BDD and what output we are going to get the output of this 

algorithm is your ROBDD, reduced ordered binary decision diagram and the variable 

ordering of the output BDD same with the variable ordering of that input BDD. So now 

you just see that, we can construct a BDD for given any Boolean function and after that 

after construction, we can use this particular reduced algorithm to get the reduce order 

binary decision diagram. 

Now this is some properties you can see, now reduced ordered binary diagram, binary 

decision diagram so the reduced ordered binary decision diagram representing a given 

function f is unique. So if you are going to look a particular function f and we are going 

to construct the reduced ordered binary decision diagram of that particular function. 

Then this particular binary reduced ordered binary decision diagram will be unique with 

respect to that particular variable ordering because if you sense the variable ordering then 

size will very because already we have seen that means you we are going to get that 



deferent representation deferent BDD. So with a particular variable ordering we are 

going to get an unique representation. 
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Secondly, we are having a notion of, notion of compatible variable ordering. So if you 

conceder two BDDs B 1 and B 2, if they are having a same variable ordering then we say 

that, they are having the compatible variable ordering. And and this two BDDs say B 1 

and B 2, if they are having the compatible variable ordering and if they are representing 

the same Boolean function, then their structure is same. You just see that we are going to 

get a unique representation with a particular variable ordering so if two BDDs are having 

compatible variable ordering and secondly, if they are representing in a same Boolean 

function then these two BDDs will be identical. 

So again that is why your are saying that for a particular variable ordering we are going 

to get an unique BDD, ROBDD representation. So that is why we are saying that 

ROBDD representation of any function is going to give us the canonical representation 

of that particular function and secondly, already you have seen that how to apply this 

particular reduce algorithm, we are going to get the reduced BDD. 

On the other hand, you can apply this particular reduction rule also and the order in 

which you are applying this particular reduction rule is immaterial, we are going to, 

always going to get the same reduced ordered binary decision diagram. So this is the 

unique property, that we are having, that we are going to get an unique representation of 



a Boolean function with respect to a particular variable ordering; that is why we say that 

ROBDD gives as the canonical representation of Boolean function so this is the main 

picture of ROBDD and you can use this particular BDD. 
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Now similarly, reduced ordered binary decision diagram we are saying that, if we are 

having two B D Ds B 1 and B 2 and this B 1and B 2 are representing say two Boolean 

function f 1 and f 2, say we are having one Boolean function f 1 and we are saying that 

this is the BDD representation B 1 and we are having another Boolean function f 2 and 

BDD representation B 2. 

Now ordering of B 1 and B 2 are said to be compatible, if there are low variable x and y 

such that; x comes before y in the ordering of B 1and y comes before x in the ordering of 

B 2. So we do not have such type of scenario, then we can say that this is the compatible 

variable ordering that means; in B 1 if say x is coming before y, then in B 2 also x must 

come before y. So if y comes before x in B 2, then we are not going to say that these two 

are having the compatible variable ordering. So now you can look for any variable 

ordering and we can look for two BDDs, we will say that these two BDDs will have 

compatible variable ordering, if they are having the same variable ordering.  
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Now, we can have any Boolean function say, if I am having a function x, y, z say some 

random function I am going to say that, x bar y plus x z plus y z. Now if we are having 

such type of function, that I can always keep some chose some variable ordering say I 

am going to chose a variable ordering x, y, z and I can represent this particular function 

with the help of BDD B and if we apply the reduction rule or we apply the reduced 

algorithm to this particular B, we are going to get a ROBDD. 

So once we are getting this ROBDD, then what happens? It is basically nothing but we 

are representing this particular Boolean function, we representing this particular Boolean 

function with the help of ROBDDs. Now once we have this particular ROBDD 

representation of this Boolean function, now what we can do? Already we have mention 

that, most of the cases we are going to get the compact representation of our Boolean 

function and after that we can do some operation, we can do some manipulation on this 

particular BDDs also so for any function we are going to have the BDD representation. 

Now this BDD representation is going to help us to take some decision very quickly so 

what are those particular decisions? 

So first one is I am talking about test for absence of redundant variables, say if say I am 

giving one particular function, can you say that whether this function is redundant of a 

this is independent of some variables. Say I am giving this particular function x bar y 

plus x z plus y z can you see tell me what are independent of some variables? This is 



small function, we can see it and you can say that it may be independent it may not be 

independent but if we are having a BDD representation then by looking into a structure 

of BDD, easily we can say that whether it is independent of some variable or not. 

(Refer Slide Time: 45:37) 

 

So how we can say that? If the value of a Boolean function say f x 1 to x n does not 

depends on a particular variable say x i, then any ROBDD which represent f does not 

contain any x i node. So if I am having a BDD representation of a function say x is 

coming something like that, say this is y, say this is 0, 0 and say this is 1 so this is a 

function f x, y, z. If I look into the BDD, in this particular BDD we have found that this 

particular B D Ds not having this particular variable z. So we can very well say that this 

function is independent of this particular variable z. 

So test for absence of redundant variable is easily check by looking in the structure of 

this particular ROBDD because ROBDD is going to give us a unique representation with 

respect to particular variable ordering, so you are not going to get any other 

representation for that particular variable ordering. So if one particular variable is not 

appearing in this particular structure; very well you can say that, it is independent this 

particular variable. 
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Similarly, we can say that test for semantic equivalence because with respect to 

particular variable ordering; it is going to give me a unique BDD representation. Now if I 

am giving two function, say f 1 and f 2 and I am asking whether f 1 is equivalent to f 2 or 

not, whether they are representing the same Boolean function or not. Then what will 

happen? We are going to do some Boolean manipulation on this particular f 1 and we try 

to say whether we can get the f 2 or not. Now, if we construct now BDD B 1 for f 1 and 

BDD B 2 for f 2, with a particular variable ordering that means; they should have a 

compatible variable ordering. 

Now once we construct this particular B D Ds for function f 1 and f 2; and eventually if 

we find that, both are having the identically structure. Then we can say that both f 1 and f 

2 are representing the same Boolean function that means; f 1 and f 2 equivalent. So the 

semantic equivalence can be check very easily once we construct or once have the BDD 

for these two functions, if they are having the identical BDD representation with respect 

to a compatible variable ordering, then we can say that these two functions are 

equivalent. 
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Similarly, we can say that, test for validity we know when we say that, a particular 

variable Boolean function is valid or not. For all valuation of this particular variable it is 

evaluate to 1, then we can say that this is a valid function. So in this particular case, now 

if we construct a BDD and if your BDD is your B 1, then we can always say that it is a 

valid function. So, basically we can say that BDD B 1 if it is on the terminal node, then 

we are going to say this is your BDD B 1. So if I am giving any function f, now construct 

the ROBDD and with respect to particular variable ordering and if this ROBDDs happen 

to be your the BDD B 1, then we can say that this is a valid function. So you just see 

that, if I am giving a long expression to check whether it is a valid or not it is a the (( )) 

but if I am having a BDD representation and if BDD representation is B 1, then we can 

very well say that this is a valid function. 
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Similarly, test for implication, whether f implies g or not so f implies g so this is 

something like that; f implies g is equivalent or knot of f or g. So in this particular case 

what I am going to do? I am going to have a take the negation of this thing so negation of 

f implies g. So if I take the negation that means what happens? I am going to get the knot 

of f or g applying De Morgan’s law, what I am going to get? This is your f and g that 

means; if I am going to construct the BDD b f and knot of sorry, this is knot of this knot 

of B g and if this particular BDD is your B 0 because I am taking the negation you just 

see. So that that means the negation is an contradiction that means; your negation is a 

contradiction that possibility gives a satisfaction. So in that particular case, if this is 

equal to your B 0, that you can say that, f implies g. So these is also but how to do this 

operation we are going to check may be discuss this things in our next class. 
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Similarly, we can say that test for satisfiability, when we say that a function is satisfiable 

if for at least one valuation or even one evaluation it gives the value as 1, then we can 

say that it is satisfiable that means; if I am having a function say f x, y, z then at least for 

one valuation it should be made of functional value as 1. Then in the particular case, we 

are going to say that this function is satisfiable. Now how to check it? Now we have to 

look for all will be valuation or if we having a truth able representation and we are 

having ending one entry as 1, then we can say that it is satisfiable. 

So if I am having a BDD representation of this particular function and if this BDD 

representation is not equal to your B 0, if it is not B 0, then we can say that this is a 

satisfiable function that means; if it is B 0 for all valuation it will go to B 0 that means, 

for all valuation we are going to get 0. So if the resultant BDD is not equal to B 0, I can 

say that it is your satisfiable because for some valuation it is going to get the terminal 

node 1. 

So by looking into the structure, looking into the resultant ROBDD because ROBDD is 

your a unique representation of the function and which is the canonical representation of 

the function. If the ROBDD is not equal to your B 0, then you can say that the function is 

satisfiable you just see that, now if we are having a Boolean function and if we can 

represent this Boolean function with the help of ROBDD with respect to a particular 

variable again, then some decision can be taken very quickly like; whether it is valid or 



not? Whether it is your satisfiable or not? Whether this function is independent of some 

variables or not? Whether two functions are equivalent or not? So such type of decision 

can be taken very quickly. So, these are the advantage of using ROBDD. 
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Now as a one question, I am saying that apply the algorithm reduce to reduce this 

particular BDD. So I am giving in your OBDD, ordered binary decision diagram and you 

apply the algorithm reduce to it. So it is having three variable x 1 and x 2, x 3 and the 

ordering is your x 1, x 2, x 3 so this is the ordering that we are having and this is the 

given BDD. Now apply the algorithm reduce to reduce this particular B D D. So in this 

particular case what will happen? First I am going to label these particular nodes. 

So, in this particular case what will happen? All 0-node will be labeled with 0 and all 1-

node will be labeled with 1 now, where labeled is particular terminal nodes, then we go 

up. Now in this particular case, when I come to this particular label x 3 so it is 1-node is 

coming to 1 and 0-node is coming to 0 that means; your sub BDD is not same so we are 

going to have a order is s 2. And similarly, this is also in x 3,0 is going to 0 and 1 is 

going to 1. So, these are not same with 0 and 1and secondly these two are having the 

same label x 2 same variable x 3 and x 3. So sub BDDs are 0 for both the 0, it is going to 

one terminals for both 1, it is going to zero terminals. So, it will also going to get, going 

to get the same label with this particular x 3 so both are label with your x 2. 
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Similarly, if I am coming to this particular node then if 0 is going to label 0 and 1 is 

going to label to that means; their sub BDDs are not same so it is going to get a define 

label so I am going to label it which tree. When I come to this particular label with 0, we 

are going to this particular label 2 with 1 also we are coming to this particular label 2. So 

in this particular case, it is going to get the same label with these two nodes, it is going to 

get x 2. 

Now when I come to this particular node, 0 is coming to your tree and 1 is coming to 

your label 2 so these are different. So in that particular it is going to get a new label and 

we are going to say that, going to give a label 4. Now this is, now we are starting from 

the terminal nodes going in a bottom operation and coming to the terminal nodes, this is 

root nodes and all labeling is over. So in that particular case, now next page is your 

merging. 

So, these three nodes are having the same label so we can merge together and ultimately 

we are going to get this particular reduced BDD. So merge all the nodes which have the 

same label so these tree are having the same label, we are going to reduce it to 1-nodes 

and accordingly; we are redirecting this particular in inputs and output edge. So, 

ultimately we are going to get this particular reduced B D D. 
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So another question you just see that, consider this particular Boolean function x z plus x 

z dash plus x dash y, is it independent of any variable? So this is a function x, y, z and it 

is having involved this particular x, y, z now you have to see whether it is independent of 

any variable or not. I think we can simply construct this particular BDD so; this is your x 

if I am having a ordering. So x equal to 0, I have to take decision on y, if x equal to 1, 

then I have to take decision on z. Now if it is y is equal to 0, then my it is 0 and if y is 

equal to 1, then I am having 1. 



Now similarly, if it is x z then if z is equal to 1 and then what will happen? x equal to 1, z 

equal to 1. So in this particular case, my functional value is 1 and if x equal to 0 1 and z 

equal to 0, then one functional value is your 0 sorry, x equal to 1 and z equal to 0 sorry, 

this is not. So in both the cases, it will be one only because x equal to 1, z equal to 1; it is 

going to give me 1, x equal to 1, z equal to 0, it is going to be 1. 

So in this particular case, I am having this particular redundant test so I can remove this 

one. So, in this particular case, eventually this is come to these particular points so this is 

the resultant BDD and in this particular resultant BDD, z is not appearing over here so 

we can say that, this particular function is independent of set. So this is small function I 

can, we can do the Boolean manipulation also what I am going to get from this function 

x z plus z bar plus x bar y that means; what I am going to get? x z plus z bar is equal to 1, 

so this is x plus x bar y which input (( )) also we can say that, this function is 

independent of the variable z but if I give a bigger expression, such type of manipulation 

may not be that simple. So if you have that BDD representation, from this BDD 

representation we can say that, this function is independent of variable z. 
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Similarly, you just look into this particular function very small function and simple 

function I am giving x z plus x z bar plus x bar, is it independent of any variables? Is it 

test for validity? Can you look for the validity? When I can say that it is valid, if the 

resultant validity is your 0s, just try to construct it again. Again I can say that I am going 



to take decision of your so this is a very simple it is from this equation itself, I can say 

that it is y is not there so it is independent of y. So I am going to take x x may take value 

as 0 and x may take value as 1. So when I am going to construct it, when x bar equal to 

0, then my functional value is 1. Now when x equal to 1, then we have to take decision 

on this particular z. Now when z is 1, then x z is going to give me 1 and when z is 0, x 1 

z 0 is going to give me 0 so in this particular case I am going to have this thing. 

Now eventually what will happen you just see that, now this is a redundant test so I can 

remove it. So what I am going to get? This is x sorry, this is terminal so I am removing it 

so 1 is come over here. Now see that x is again this redundant test x is equal to 0 is 1, x 

equal to 1 so what happen? From here I can say that, I am going to get this particular 

BDD 1. So what are the BDD I am getting? This is the BDD B 1 that means; for all 

valuation the function is going to give me 1. 

So since my resultant BDD is B 1 so what I can say that, this is a valid function. 

Secondly, by looking into this particular function, I have said this is independent of y. 

Now after looking into this particular BDD, what I can say that? It is independent of x, y 

and z that means; this function is independent of this all these particular three variables. 

So just see that, by looking into this particular BDD, we can take the decision very 

easily. So this is a small function I am giving but if I am going to give a bigger 

expression by inspecting this function, it would be difficult to say whether it is valid? 

Whether it independent of some variables? But, once we get ROBDD by looking into the 

structure of this particular ROBDD, we can take many more decision quickly with this I 

end of my lecture today. 

Thank you.  


